http://eastwestmath.org/index.php/ewm/issue/feedEast West Math2024-07-22T14:50:14+08:00Trung, Nguyen Hoang Baonhbtrung@ntt.edu.vnOpen Journal Systemshttp://eastwestmath.org/index.php/ewm/article/view/493THE HIT PROBLEM OF RANK FIVE IN A GENERIC DEGRE2024-07-22T14:46:55+08:00Nguyen Sumnguyensum@sgu.edu.vn<p><span class="fontstyle0">Let </span><span class="fontstyle2">E</span><span class="fontstyle3">k </span><span class="fontstyle0">be an elementary abelian 2-group of rank </span><span class="fontstyle2">k </span><span class="fontstyle0">and let </span><span class="fontstyle2">BE</span><span class="fontstyle3">k </span><span class="fontstyle0">be the classifying space of </span><span class="fontstyle2">E</span><span class="fontstyle3">k</span><span class="fontstyle0">. Then, </span><span class="fontstyle2">P</span><span class="fontstyle3">k </span><span class="fontstyle0">:= </span><span class="fontstyle2">H</span><span class="fontstyle4">∗</span><span class="fontstyle0">(</span><span class="fontstyle2">BE</span><span class="fontstyle3">k</span><span class="fontstyle0">) </span><span class="fontstyle5">∼ </span><span class="fontstyle0">= </span><span class="fontstyle6">F</span><span class="fontstyle7">2</span><span class="fontstyle0">[</span><span class="fontstyle2">x</span><span class="fontstyle7">1</span><span class="fontstyle2">, x</span><span class="fontstyle7">2</span><span class="fontstyle2">, . . . , x</span><span class="fontstyle3">k</span><span class="fontstyle0">]</span><span class="fontstyle2">, </span><span class="fontstyle0">a polynomial algebra in </span><span class="fontstyle2">k </span><span class="fontstyle0">generators </span><span class="fontstyle2">x</span><span class="fontstyle7">1</span><span class="fontstyle2">, x</span><span class="fontstyle7">2</span><span class="fontstyle2">, . . . , x</span><span class="fontstyle3">k</span><span class="fontstyle0">, with the degree of each </span><span class="fontstyle2">x</span><span class="fontstyle3">i </span><span class="fontstyle0">being 1. This algebra is regarded as a module over the mod-2 Steenrod algebra, </span><span class="fontstyle5">A</span><span class="fontstyle2">. </span><span class="fontstyle0">We study the </span><span class="fontstyle8">Peterson hit problem </span><span class="fontstyle0">of finding a minimal set of generators for </span><span class="fontstyle5">A</span><span class="fontstyle0">-module </span><span class="fontstyle2">P</span><span class="fontstyle3">k</span><span class="fontstyle0">. It is an open problem in Algebraic Topology. In this paper, we explicitly determine a minimal set of </span><span class="fontstyle5">A</span><span class="fontstyle0">-generators for </span><span class="fontstyle2">P</span><span class="fontstyle7">5 </span><span class="fontstyle0">in terms of the admissible monomials for the case of the generic degree </span><span class="fontstyle2">m </span><span class="fontstyle0">= 2</span><span class="fontstyle3">d</span><span class="fontstyle7">+2 </span><span class="fontstyle0">+ 2</span><span class="fontstyle3">d</span><span class="fontstyle7">+1 </span><span class="fontstyle5">- </span><span class="fontstyle0">3 with </span><span class="fontstyle2">d </span><span class="fontstyle9">⩾ </span><span class="fontstyle0">6.</span> </p>2024-07-22T14:46:30+08:00Copyright (c) 2024 East West Mathhttp://eastwestmath.org/index.php/ewm/article/view/494SELECTIVE INERTIAL BLOCK-ITERATIVE SCHEMES FOR A CLASS OF VARIATIONAL INEQUALITIES AND APPLICATIONS2024-07-22T14:50:14+08:00Nguyen Thi Quynh Anhquynhanhnguyen0178@gmail.com<p><span class="fontstyle0">Our purpose in this paper is to present inertial block-iterative schemes with selective technique for finding a solution of a variational inequality problem over the set of common fixed points of a finite family of demiclosed quasinonexpansive mappings in Hilbert spaces. First, we introduce a basic scheme and show that any sequence, generated by this scheme, converges weakly to a point in the common fixed point set. Then, based on a specific combination of the scheme with the steepest-descent method, we propose new schemes, strong convergence of which is proved without the approximately shrinking and boundedly regular assumptions on the mappings and their fixed point sets, respectively, that are usually required recently in literature. An application to study a networked system and computational experiments are given for illustration and comparison</span> </p>2024-07-22T00:00:00+08:00Copyright (c) 2024 East West Math