THE COMMUTATIVITY OF SEMIPRIME RINGS WITH SYMMETRIC Bi-(α, α)-DERIVATIONS

  • Emine Ko¸ c S¨ og¨ utc¨ u
  • Oznur G¨ ¨ olba¸ sı
Keywords: Semiprime rings, ideals, derivations, bi-derivations, symmetric bi-derivation

Abstract

Let R be a semiprime ring, I a nonzero ideal of R, D : R × R R a symmetric bi-(α, α)-derivation, d be the trace of D and α an automorphism. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: i) d([x, y] α,α) ± [x,y]α,αCα,α,ii)[d(x), d(y)]α,α± [x, y]α,αCα,α, iii)d((x y)α,α) ± (x y)α,αCα,α,iv)(d(x) d(y))α,α± (xoy)α,αCα,α, v)d((x y)α,α) ± [x, y]α,αCα,α,vi)(d(x) d(y))α,α± [x, y]α,αCα,α, vii)d([x, y]α,α) ± (x y)α,αCα,α,viii)[d(x), d(y)]α,α± (x y)α,αC
α,α, ix)d (x) d (y) ± [x, y]α,αCα,α,x)d (x) d (y)±(x y)α,αCα,α, xi)[d (x) , y]α,αCα,α, xii)d [x, y]α,α±[d(x), y]α,αCα,α,xiii)d(x y)α,α ± [d(x),y] Cα,α, for all x, y I.

Published
2022-06-16