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Abstract

An algorithm to construct a general continued fraction expansion for
elements in a discrete-valued non-archimedean fields (K, | · |) is devised.
Such continued fraction takes the form

b1
a1+

b2
a2+

· · · bn

an+
· · · ,

where the elements an, bn are subject to the condition |an| > |bn|. Sev-
eral examples are given to show that this algorithm yields almost all
known continued fraction expansions as special cases. Criteria for alge-
braic and linear dependences of certain classes of such continued fractions
are derived.

1 Introduction

A continued fraction expansion is an expression of the form

a0 +
b1

a1 + b2

a2+
b3

...
an−1+ bn

.. .

:= a0 +
b1

a1+
b2

a2+
· · · bn

an+
· · · ,
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where the elements b1, b2, b3, . . . are called its partial numerators, and a1, a2, a3, . . .
its partial denominators. When all bi = 1 (i ≥ 1), it is usually referred to as
a regular or simple continued fraction expansion. In 2002, Y. Hartono, C.
Kraaikamp and F. Schweiger [3] introduced a new continued fraction expan-
sion, called Engel continued fraction (or ECF) expansion, of the real numbers
in the interval (0, 1) . The ECF map TE : [0, 1) → [0, 1) is given by

TE(x) :=
1

�1/x�
(

1
x
−

⌊
1
x

⌋)
, x �= 0; TE(0) := 0.

For each x ∈ (0, 1), the ECF map generates a continued fraction expansion of
x of the form

x =
1

a1+
a1

a2+
· · · an−1

an+
· · · , an = an(x) :=

⌊
1/Tn−1

E (x)
⌋

(n ≥ 1),

where the digits an satisfy the condition 1 ≤ an ≤ an+1. Motivated by Hartono-
Kraaikamp-Schweiger’s work, we devise an algorithm that enables us to uniquely
construct a continued fraction expansion, henceforth called a JR-continued
fraction, for each element in a field completed with respect to a discrete non-
archimedean valuation. Several well-known examples are then shown to be
special cases of JR-continued fractions. In the last section, general criteria for
algebraic and linear independences are derived for JR-continued fractions.

2 Algorithm

Let us start by briefly recalling some known facts, for a general reference, see
[5]. Let K be a field completed with respect to a discrete non-archimedean
valuation | · | and let

O := {α ∈ K ; |α| ≤ 1}
be its ring of integers. The set

P := {α ∈ K ; |α| < 1}
is an ideal in O, which is both a maximal ideal and a principal ideal, generated
by a prime element τ ∈ K. The quotient ring O/P is a field, called the residue
class field. Let A ⊂ O be a set of representatives of O/P . Each α ∈ K \ {0} is
uniquely representable as

α =
∞∑

n=N

cnτn (N ∈ Z, cn ∈ A, cN �= 0);

such representation is usually referred to as its canonical representation. The
non-archimedean valuation of α is so normalized that |α| = e−N , with |0| := 0.
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The head part 〈α〉 of α is defined as the finite series

〈α〉 =
0∑

n=N

cnτn if N ≤ 0, and 0 otherwise.

Denote the set of all head parts by

S := {〈α〉 ; α ∈ K} .

We are now ready to introduce our continued fraction algorithm.
Let {bi}i≥1 be a sequence in K\{0}, each of whose elements bi is either fixed

or is uniquely determined from α and previously known parameters bj , aj (j < i)
arising from the algorithm.

For convenience, we consider α ∈ K such that |α| < 1. Let A1 := α �= 0.
Assume that b1 ∈ K \ {0} is subject to the condition that

|b1/A1| ≥ 1. (1)

Define a1 =
〈

b1
A1

〉
∈ S \ {0}.

• If a1 = b1/A1, then the process stops and we write

α = A1 =
b1

a1
.

• When a1 �= b1/A1, we have 0 < |b1/A1 − a1| < 1. Assume that b2 ∈ K \
{0} is subject to the condition that the element A2 = 1

b2

(
b1
A1

− a1

)
�= 0

satisfies
0 < |A2| < 1. (2)

Thus,

α = A1 =
b1

a1 + b2A2
.

Next, define a2 = 〈1/A2〉 ∈ S \ {0}.
• If a2 = 1/A2, then the process stops and we write

α =
b1

a1 + b2A2
=

b1

a1 +
b2

a2

=
b1

a1+
b2

a2
.

• When a2 �= 1/A2, we have 0 < |1/A2 − a2| < 1. Assume that b3 ∈ K\{0}
is subject to the condition that the element A3 = 1

b3

(
1

A2
− a2

)
�= 0

satisfies
0 < |A3| < 1. (3)
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Thus,

α =
b1

a1 + b2A2
=

b1

a1 +
b2

a2 + b3A3

=
b1

a1+
b2

a2 + b3A3
.

Continuing this process, if Ai �= 0 (i ≥ 2) has already been constructed with
0 < |Ai| < 1, then define ai = 〈1/Ai〉 ∈ S \ {0}.

• If ai = 1/Ai, then the process stops and we have a finite continued fraction
expansion

α =
b1

a1+
b2

a2+
· · · bi

ai
.

• When ai �= 1/Ai, we have 0 < |1/Ai − ai| < 1. Assume that bi+1 ∈ K \
{0} is subject to the condition that the element Ai+1 = 1

bi+1

(
1

Ai
− ai

)
�=

0 satisfies
0 < |Ai+1| < 1, (4)

and so
α =

b1

a1+
b2

a2+
· · · bi

ai + bi+1Ai+1
.

Observe that |a1| = |b1|/|A1| > |b1|, since 0 < |b2A2| = |b1/A1 − a1| < 1 and
0 < |bi+1Ai+1| = |1/Ai − ai| < 1 (i ≥ 2), we have

|ai+1| = 1/|Ai+1| > |bi+1| (i ≥ 1). (5)

Note that if the bi’s belong to S \ {0}, then the requirements (1), (2), (3) and
(4) hold automatically.

Summing up, we see that the algorithm yields a JR-continued fraction ex-
pansion of the form

α =
b1

a1+
b2

a2+
· · · bn

an + bn+1An+1

where ai ∈ S \ {0} and bi are subject to (5). If a1 = b1/A1 or an = 1/An (n ≥
2), then

α =
b1

a1+
b2

a2+
· · · bn

an
,

i.e., the JR-continued fraction expansion of α is finite. If a1 �= b1/A1 and
an �= 1/An (n ≥ 2), we now proceed to show that this JR-continued fraction
expansion converges.

Define two sequences (Cn), (Dn) as follows:

C−1 = 1, C0 = 0, Cn+1 = an+1Cn + bn+1Cn−1 (n ≥ 0)

D−1 = 0, D0 = 1, Dn+1 = an+1Dn + bn+1Dn−1 (n ≥ 0).

The following proposition is easily established by induction.
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Proposition 1. For any n ≥ 0, β ∈ K \ {0} , we have

(i)
βCn + bn+1Cn−1

βDn + bn+1Dn−1
=

b1

a1+
b2

a2+
· · · bn+1

β

(ii)
Cn

Dn
=

b1

a1+
b2

a2+
· · · bn

an
(n ≥ 1)

(iii) CnDn−1 − Cn−1Dn = (−1)n−1b1b2 · · · bn (n ≥ 1)

(iv) |C1| = |b1|, |Cn| = |b1a2a3 · · ·an| (n ≥ 2)

(v) |Dn| = |a1a2 · · ·an| �= 0 (n ≥ 1).

From Proposition 1, we have

Cn

Dn
=

anCn−1 + bnCn−2

anDn−1 + bnDn−2
=

b1

a1+
b2

a2+
· · · bn

an
(n ≥ 1),

and so Cn/Dn is called the nth convergent of the JR-continued fraction expan-
sion of α. From the algorithm and Proposition 1 (i), we obtain

α =
b1

a1+
b2

a2+
· · · bn

an + bn+1An+1
=

(an + bn+1An+1)Cn−1 + bnCn−2

(an + bn+1An+1)Dn−1 + bnDn−2
.

Using Proposition 1(ii) and (iii), it is easy to check that

α − Cn

Dn
=

(−1)nb1b2 · · · bnbn+1An+1

Dn ((an + bn+1An+1)Dn−1 + bnDn−2)
.

From
|an| ≥ 1 > |bn+1|/|an+1| = |bn+1An+1|,

we get |an + bn+1An+1| = |an|, and so | (an + bn+1An+1)Dn−1 + bnDn−2| =
|anDn−1|. Thus,

∣∣∣∣A1 − Cn

Dn

∣∣∣∣ =
|b1b2 · · · bn+1|
|Dn||Dn+1| → 0 (n → ∞),

showing that Cn/Dn converges to α, which enables us to write

α =
b1

a1+
b2

a2+
· · · bn

an+
· · · .

To show uniqueness, suppose that α ∈ K \ {0} , |α| < 1, has two such JR-
continued fraction expansions

b1

a1+
b2

a2+
· · · bn

an+
· · · = α =

b
′
1

a
′
1+

b
′
2

a
′
2+

· · · b
′
n

a′
n+

· · · ,
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where ai, a
′
i ∈ S \ {0} and the bi, b

′
i are subject to the same requirements as

elaborated above. Observe that we have∣∣∣∣ bi

ai+
bi+1

ai+1+
· · ·

∣∣∣∣ ≤ |bi|
|ai| < 1 (i ≥ 1) (6)

with the same relations for b′i, a′
i (i ≥ 1). From the construction requirement,

we have b1 = b′1 which implies that

a1 +
b2

a2+
b3

a3+
· · · = a

′
1 +

b
′
2

a
′
2+

b
′
3

a
′
3+

· · · .

Since a1, a
′
1 ∈ S, using (6), we get

a1 = a
′
1 and

b2

a2+
b3

a3+
b4

a4+
· · · = b

′
2

a
′
2+

b
′
3

a
′
3+

b
′
4

a
′
4+

· · · .

Since a1 = a
′
1, from the definition, we have b2 = b

′
2. Continuing in the same

manner, we get ai = a
′
i, bi = b

′
i for all i. The following theorem summarizes

our results so far obtained.

Theorem 1. Each α ∈ K \ {0} with |α| < 1, can be represented uniquely by a
JR-continued fraction expansion of the form

α =
b1

a1+
b2

a2+
· · · bn

an+
· · · ,

where ai ∈ S \ {0} and the sequence {bi}∞i=1 ⊆ K \ {0} is either fixed or
is uniquely determined from α and previously known parameters bj, aj (j < i).
Moreover, the partial numerators and denomintors are subject to the condition,
which will henceforth be referred to as the ab-condition,

|ai| > |bi| (i ≥ 1). (7)

3 Examples

We turn now to specific examples.
Example 1. Let K be a field completed with respect to a discrete non-
archimedean valuation | · |. Taking all bi = 1 (i ≥ 1) in Theorem 1, we deduce
that every α ∈ K \ {0} , |α| < 1, has a unique regular continued fraction
expansion of the form

α =
1

a1+
1

a2+
· · · 1

an+
· · · ,
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where ai ∈ S \ {0} are subject to the ab-condition, i.e., |ai| > 1 (i ≥ 1). This
is the well-known classical regular continued fraction.
Example 2. Let K be a field completed with respect to a discrete non-
archimedean valuation | · |. Taking b1 = 1, bi+1 = ai (i ≥ 1) in Theorem 1,
we deduce that every α ∈ K \ {0} , |α| < 1, has a unique continued fraction
expansion of the form

α =
1

a1+
a1

a2+
· · · an−1

an+
· · · ,

where ai ∈ S\{0} (i ≥ 1) are subject to the ab-condition, i.e., |ai+1| > |bi+1| =
|ai| (i ≥ 1). This continued fraction may be regarded as a non-archimedean
analogue of the real ECF expansion due to Hartono-Kraaikamp-Schweiger, [3].
Example 3. Let K be a field completed with respect to a discrete non-
archimedean valuation | · |. Taking b1 = 1, bi+1 = a2

i − ai + 1 (i ≥ 1) in
Theorem 1, we deduce that every α ∈ K \{0} , |α| < 1, has a unique continued
fraction expansion of the form

α =
1

a1+
a2
1 − a1 + 1

a2+
· · · a2

n−1 − an−1 + 1
an+

· · · ,

where ai ∈ S \ {0} (i ≥ 1) are subject to the ab-condition, i.e., |ai+1| >
|bi+1| = |a2

i − ai + 1| (i ≥ 1). This continued fraction may be regarded as a
non-archimedean analogue of the real Sylvester continued fraction expansion
due to A. H. Fan, B. W. Wang and J. Wu, [2].
Example 4. Let K = Qp be the field of p-adic numbers, i.e., the completion
of Q with respect to the p−adic valuation, | · |p, so normalized that |p|p = p−1.
Here, the ring of p−adic integers is O = Zp. Each α ∈ pZp \ {0} is uniquely
representable in the form

α =
∞∑

n=N

cnpn (N ∈ N, cn ∈ {0, 1, . . . , p − 1} , cN �= 0).

There are two well-known p-adic continued fraction expansions, due respec-
tively to Ruban ([6]) and Schneider ([7]).

4A. The p–adic Ruban continued fraction ([6]) of α ∈ pZp \ {0} is of the form

α =
1

a1+
1

a2+
1

a3+
· · · ,

where the ai’s are of the form

c−mp−m+c−m+1p
−m+1+· · ·+c0 (m ∈ N), cj ∈ {0, 1, . . . , p−1}, c−m �= 0.

This is a JR-continued fraction with all bi = 1. The ab-condition (7)
holds trivially.
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4B. The p–adic Schneider continued fraction ([7]) of α ∈ pZp \ {0} is of the
form

α =
b1

a1+
b2

a2+
b3

a3+
· · · ,

where ai ∈ {0, 1, . . . , p − 1}, b1 = |α|−1
p , and each bi is of the form

ps (s ∈ N) and is uniquely determined form α and previously known
aj , bj (j < i).

Example 5. Let F be a field and let

F
((

x−1
))

:=
{ cr

xr
+

cr+1

xr+1
+

cr+2

xr+2
+ · · · ; r ∈ Z, ci ∈ F, cr �= 0

}

be the completion of the rational function field F(x) with respect to the non-
archimedean degree valuation, | · |∞, so normalized that |x−1|∞ = e−1. Let
{bi}∞i=1 be a fixed sequence in F[x] \ {0} . By Theorem 1, each α ∈ F

((
x−1

)) \
{0} , |α|∞ < 1, has a unique JR-continued fraction expansion of the form

α =
b1

a1+
b2

a2+
· · · bn

an+
· · · ,

where ai ∈ F[x]\{0} are subject to the ab-condition, i.e., |ai|∞ > |bi|∞ (i ≥ 1).
The JR-continued fraction expansion in this case is indeed the non-regular
continued fraction expansion constructed in [4].
Example 6. Let F be a field and let π be a prime element in F[x]. The field

F ((π)) :=
{
crπ

r + cr+1π
r+1 + cr+2π

r+2 + · · · ; r ∈ Z, ci ∈ F[x], deg ci < deg π, cr �= 0
}

of all formal Laurent series in π is the completion of F[x] with respect to the
π-adic valuation, | · |π, so normalized that |π|π = e−deg π . Its ring of integers
is the set of formal power series

F[[π]] :=
{
c0 + c1π + c2π

2 + · · · ; ci ∈ F[x], deg ci < deg π
}

,

and the set of head parts is

S :=
{
crπ

r + · · ·+ c−1π
−1 + c0; r ≤ 0, ci ∈ F[x], deg ci < deg π

}
.

By Theorem 1, each α ∈ πF[[π]]\{0} is uniquely represented as a JR-continued
fraction of the form

α =
b1

a1+
b2

a2+
· · · bn

an+
· · · , (8)

where ai ∈ S \ {0} and bi are subject to the ab-condition. There are various
particular examples of JR-continued fractions in this setting. Let us mention
two specific ones.
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6A. The π-adic Ruban continued fraction is constructed in exactly the same
manner as the p-adic Ruban continued fraction mentioned in Example
4A, i.e., each α ∈ πF[[π]] \ {0} is uniquely representable as

α =
1

a1+
1

a2+
1

a3+
· · · ,

where the ai’s are of the form

c−mπ−m+c−m+1π
−m+1+· · ·+c0 (m ∈ N), cj ∈ F[x], deg cj < deg π, c−m �= 0.

This is a JR-continued fraction with all bi = 1. The ab-condition (7)
holds trivially.

6B. The π-adic Schneider continued fraction is constructed in exactly the
same manner as the p-adic Schneider continued fraction mentioned in
Example 4B, i.e., each α ∈ πF[[π]] \ {0} is uniquely representable as

α =
b1

a1+
b2

a2+
b3

a3+
· · · ,

where ai ∈ F[x] \ {0}, deg ai < deg π, each bi is of the form πs (s ∈ N)
and is uniquely determined form α and previously known aj , bj (j < i).

4 Independence

In this section, criteria for algebraic and/or linear independences of elements
in F ((π)), as expounded in Example 6, are established along the same line as
those in [1]. We begin with algebraic independence.

Theorem 2. Let α1, α2, . . . , αn ∈ F ((π)) \ {0} . Assume that there are polyno-
mials CN,j, DN,j(�= 0) ∈ F[x] (N ∈ N, 1 ≤ j ≤ n) such that

DN,jαj �= CN,j , MN,j := max {|CN,j|∞, |DN,j |∞} → ∞ (N → ∞),

and

lim
N→∞

|αj−1 − CN,j−1/DN,j−1|π
|αj − CN,j/DN,j |π

= 0 (j = 2, . . . , n) (9)

provided n ≥ 2. Assume further that for each positive real number E, there is
an N0 = N0(M) ∈ N such that

∣∣∣∣αj − CN,j

DN,j

∣∣∣∣
π

≤ 1

(MN,1MN,2 · · ·MN,j)
E

(N ≥ N0 ; j = 1, 2, . . . , n). (10)

Then α1, α2, . . . , αn are algebraically independent over F(x).
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Proof. We proceed by induction on n. For n = 1, suppose that α1 is algebraic
of degree m ≥ 1 over F(x). If m = 1, then α1 = P/Q for some P, Q ∈ F[x]\{0} .
For all N ∈ N, we get

0 �= |DN,1α1 − CN,1|π =
|DN,1P − CN,1Q|π

|Q|π ≥ 1
|DN,1P − CN,1Q|∞ |Q|π ,

and
|DN,1P − CN,1Q|∞ ≤ max {|DN,1P |∞, |CN,1Q|∞} ≤ MN,1K,

K := max{|P |∞, |Q|∞} , which by the product formula implies that

|DN,1α1 − CN,1|π ≥ 1
MN,1K|Q|π =

K1

MN,1
, K1 := 1/K|Q|π.

By (10), there is an N1 = N1(2) such that, for all N ≥ N1,

K1

MN,1
≤ |DN,1α1 − CN,1|π = |DN,1|π

∣∣∣∣α1 − CN,1

DN,1

∣∣∣∣
π

≤ 1
M2

N,1

,

which is a contradiction. For m > 1, by Uchiyama’s Theorem ([8]), for F ((π))
there is a constant K2 > 0 such that

|DN,1α1 − CN,1|π ≥ K2

Mm
N,1

(N ∈ N).

By (10), there is an N2 = N2(m + 1) such that, for all N ≥ N2,

K2

Mm
N,1

≤ |DN,1α1 − CN,1|π ≤ |DN,1 |π
Mm+1

N,1

≤ 1
Mm+1

N,1

,

which is a contradiction. Thus, α1 is transcendental, and we are done in the
case n = 1.

Now consider n > 1. Assume the assertion of the theorem holds up to n−1,
but is false for n. Then there would exist a polynomial f (T1, T2, . . . , Tn) ∈
F[x][T1, . . . , Tn] \ {0} of minimal total degree such that f (α1, α2, . . . , αn) = 0.
Expanding f about (α1, . . . , αn) , we get

f (T1, T2, . . . , Tn) =
∑

h(ν) (T1 − α1)
ν1 · · · (Tn − αn)νn ,

where (ν) = (ν1, ν2, . . . , νn), and

h(ν) := h(ν1,ν2,...,νn) =
1

(ν1 + ν2 + · · ·+ νn)!
∂ν1+ν2+···+νnf (α1, α2, . . . , αn)

∂T ν1
1 ∂T ν2

2 · · ·∂T νn
n

.

Clearly,
h(0,...,0) = f (α1, α2, . . . , αn) = 0.
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Set

Hn (T1, T2, . . . , Tn) :=
∂

∂Tn
f (T1, T2, . . . , Tn) ,

Hi = h(0,...,0,1,0,...,0) (i = 1, 2, . . . , n),

where the digit 1 is at the ith position. Observe that Tn occurs in f. Thus,
Hn (T1, T2, . . . , Tn) �≡ 0 and Hn = Hn (α1, α2, . . . , αn) .

Next, we show that Hn �= 0. Suppose not. If Tn occurs in Hn (T1, . . . , Tn) ,
then (α1, . . . , αn) is a root of a nonzero polynomial whose degree is lower than
that of f, which is a contradiction. Thus, Tn does not occur in Hn (T1, . . . , Tn) .
This means that α1, α2, . . . , αn−1 are algebraically dependent, contradicting the
induction hypothesis. Thus, Hn �= 0.

Let
δj(N) =

CN,j

DN,j
− αj (j = 1, 2, . . . , n).

Since DN,jαj �= CN,j, we get |δn(N)|π �= 0. Now

f

(
CN,1

DN,1
,
CN,2

DN,2
, . . . ,

CN,n

DN,n

)
=

∑
(ν)

h(ν)δ1(N)ν1 · · ·δn(N)νn

=
∑
i=1

Hiδ1(N) +
∑

ν1+···+νn≥2

h(ν)δ1(N)ν1 · · ·δn(N)νn

= δn(N)
((

H1
δ1(N)
δn(N)

+ · · ·+ Hn−1
δn−1(N)
δn(N)

+ Hn

)
+ O (|δn(N)|π)

)
.

By hypotheses (9) and (10), we see that∣∣∣∣H1
δ1(N)
δn(N)

+ · · ·+ Hn−1
δn−1(N)
δn(N)

+ O (|δn(N)|π)
∣∣∣∣
π

≤ max
{∣∣∣∣H1

δ1(N)
δn(N)

∣∣∣∣
π

, . . . ,

∣∣∣∣Hn−1
δn−1(N)
δn(N)

∣∣∣∣
π

, O (|δn(N)|π)
}

→ 0 (N → ∞),

which yields, when N is large enough,∣∣∣∣f
(

CN,1

DN,1
,
CN,2

DN,2
, . . . ,

CN,n

DN,n

)∣∣∣∣
π

= |δn(N)Hn|π �= 0.

Let m1, m2, . . . , mn be the degrees of f in T1, T2, . . . , Tn, respectively. Then

Dm1
N,1 · · ·Dmn

N,nf

(
CN,1

DN,1
, . . . ,

CN,n

DN,n

)
∈ F[x] \ {0},

and so

0 <

∣∣∣∣Dm1
N,1 · · ·Dmn

N,n f

(
CN,1

DN,1
, . . . ,

CN,n

DN,n

)∣∣∣∣
∞

≤ KMm1
N,1 · · ·Mmn

N,n,
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where K is a positive constant depending on f but independent of N . By the
product formula, we get

∣∣∣∣f
(

CN,1

DN,1
, . . . ,

CN,n

DN,n

)∣∣∣∣
π

≥
∣∣∣∣Dm1

N,1 · · ·Dmn

N,n f

(
CN,1

DN,1
, . . . ,

CN,n

DN,n

)∣∣∣∣
π

>

∣∣∣∣Dm1
N,1 · · ·Dmn

N,n f

(
CN,1

DN,1
, . . . ,

CN,n

DN,n

)∣∣∣∣
−1

∞
>

(
KMm1

N,1 · · ·Mmn

N,n

)−1

.

Choosing E = max{m1, m2, . . . , mn} + 1, by (10), there exists N3 = N3(E)
such that for all N ≥ N3,

1
KMm1

N,1 · · ·Mmn

N,n

≤
∣∣∣∣f

(
CN,1

DN,1
,
CN,2

DN,2
, . . . ,

CN,n

DN,n

)∣∣∣∣
π

= |δn(N)Hn|π ≤ |Hn|π
(MN,1 · · ·MN,n)E

,

i.e.,
|Hn|π ≥ KMM−m1

N,1 · · ·MM−mn

N,n → ∞ (N → ∞),

which is a contradiction. �
Specializing the defining polynomial to be linear in each variable in the

proof of Theorem 2, we get

Theorem 3. Let α1, α2, . . . , αn ∈ F ((π)) \ {0} . Assume that there are polyno-
mials CN,j, DN,j (�= 0) (N = 1, 2, 3, . . . ; 1 ≤ j ≤ n) in F[x] such that

DN,jαj �= CN,j , MN,j := max {|CN,j|∞, |DN,j|∞} → ∞ (N → ∞),

such that if n ≥ 2,

lim
N→∞

|αj−1 − CN,j−1/DN,j−1|π
|αj − CN,j/DN,j |π

= 0 (j = 2, . . . , n).

Assume further that there is a positive-valued function g of natural argument,
with

g(N) → ∞ (N → ∞),

and there is an N0 = N0(g) ∈ N such that
∣∣∣∣αj − CN,j

DN,j

∣∣∣∣
π

≤ 1
MN,1MN,2 · · ·MN,jg(N)

(N ≥ N0 ; j = 1, 2, . . . , n).

Then 1, α1, α2, . . . , αn are linearly independent over F(x).
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4.1 Applications

We apply the results of Theorem 2 and 3 to derive sufficient conditions for
elements in F ((π)) \ {0} represented by JR-continued fractions in Example 6
above to be algebraically and linearly independent over F(x). Throughout we
assume (without of generality) that |α|π < 1. Let

CN

DN
=

b1

a1+
b2

a2+
· · · bN

aN
(N ∈ N)

be the N th convergent of the JR-continued fraction expansion of α. By Propo-
sition 1 (iv) and (v), we have

|C1|π = |b1|π , |Ci|π = |b1a2a3 · · ·ai|π (i ≥ 2), |Di|π = |a1a2 · · ·ai|π (i ≥ 1),

which implies that |Di|π = |a1Ci/b1|π > |Ci|π (i ≥ 1). Since CN , DN do not
necessarily belong to F[x], to apply the results of Theorems 2 and 3, we need to
convert the JR-continued fraction of Example 6 into an equivalent continued
fraction.

Throughout, we focus only on the case when the sequenec {bi} is a subset
of

{α =
c−r

π−r
+ · · ·+ c−1

π−1
+co + c1π

1 + · · ·+ csπ
s ∈ F((π)) \ {0} ;

r, s ∈ N ∪ {0} , ci ∈ F[x], deg ci < deg π}.
For each i ∈ N, write

ai :=
a

′
i

πni
, bi :=

b
′
i

πmi
,

where ni ∈ N∪ {0}, mi ∈ Z, and a
′
i, b

′
i ∈ F[x] are both relatively prime to π, so

that
|a′

i|π = 1 = |b′
i|π, |ai|π = eni deg π , |bi|π = emi deg π .

From the ab-condition, we have ni > mi (i ∈ N). It is convenient to introduce
an associated JR-continued fraction

γ1

β1+
γ2

β2+
· · · γi

βi
· · · , (11)

where

γ1 = b
′
1π

n1−m1 , γi+1 = b
′
i+1π

ni+ni+1−mi+1 , βi = a
′
i (i ∈ N).

Clearly, the partial numerators γi and the partial denominators βi of the as-
sociated continued fraction (11) are in F[x] and |γi|∞ > edeg π (i ≥ 1) . We
similarly define the N th convergent of (11) to be

CN

DN
=

γ1

β1+
γ2

β2+
· · · γN

βN
(N ∈ N),
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where
C−1 = 1, C0 = 0, Ci+1 = βi+1Ci + γi+1Ci−1 (i ≥ 0)

D−1 = 0, D0 = 1, Di+1 = βi+1Di + γi+1Di−1 (i ≥ 0).

The JR-continued fraction (8) and its associated continued fraction (11) are
equivalent in the sense that CN/DN = CN/DN (N ∈ N). Clearly, CN and DN

are in F[x]. In what follows, we assume that

|βiβi+1|∞ > |γi+1|∞, (i ∈ N), (12)

which is equivalent to |aiai+1|∞ > |bi+1|∞, where | · |∞ denote the degree val-
uation mentioned in Example 5. The next lemma summarizes basic properties
of CN and DN , whose induction proof is omitted.

Lemma 1. Let the notation be as above. If (12) holds, then

(i) |C1|∞ = |γ1|∞, |CN |∞ = |C1β2 · · ·βN |∞ (N ≥ 2)

(ii) |DN |∞ = |β1β2 · · ·βN |∞ (n ∈ N)

(iii) MN := max{|CN |∞, |DN |∞} → ∞ (N → ∞).

Let αj ∈ πF[[π]] \ {0} (1 ≤ j ≤ k) with associated JR-continued fractions

αj =
γ1,j

β1,j+
γ2,j

β2,j+
· · · ,

and let their corresponding N th convergent be

CN,j

DN,j
=

γ1,j

β1,j+
γ2,j

β2,j+
· · · γN,j

βN,j
(1 ≤ j ≤ k, N ∈ N).

If the requirement (12) holds for each j ∈ {1, . . . , k}, then Lemma 1 yields

MN,j = max{|CN,j|∞, |DN,j|∞} → ∞ (N → ∞).

Theorem 4. Let the notation be as bove. Assume that

I. the condition (12) is fulfilled for each j ∈ {1, . . . , k};
II. the limiting values

lim
i→∞

|b1,j−1b2,j−1 · · · bi+1,j−1|π|Di,jDi+1,j|π
|b1,jb2,j · · · bi+1,j|π|Di,j−1Di+1,j−1|π = 0 (2 ≤ j ≤ k) (13)

hold and
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III. there exists g : N → Z with g(i) → ∞ (i → ∞) such that

|Di,jDi+1,j|π
|b1,jb2,j · · · bi+1,j|π ≥ (Mi,1Mi,2 · · ·Mi,j)

g(i) (1 ≤ j ≤ k; i ∈ N). (14)

Then α1, α2, . . . , αk are algebraically independent over F(x).
Moreover, if the condition (14) is replaced by

|Di,jDi+1,j |π
|b1,jb2,j · · · bi+1,j|π ≥ g(i) (Mi,1Mi,2 · · ·Mi,j) ,

then 1, α1, α2, . . . , αk are linearly independent over F(x).

Proof. For a fixed E > 0, from g(i) → ∞ (i → ∞), there is N0 ∈ N such that
for all N > N0, we have g(N) > E. For 1 ≤ j ≤ k and N > N0, applying (14),
we get

∣∣∣∣α − CN,j

DN,j

∣∣∣∣
π

=
∣∣∣∣α − CN,j

DN,j

∣∣∣∣
π

=
|b1,jb2,j · · · bN+1,j|π
|DN,jDN+1,j |π

≤ 1

(MN,1MN,2 · · ·MN,j)
g(N)

<
1

(MN,1MN,2 · · ·MN,j)
E

. (15)

From (13), we get

|αj−1 − CN,j−1/DN,j−1|π
|αj − CN,j/DN,j |π

=
|αj−1 − CN,j−1/DN,j−1|π

|αj − CN,j/DN,j |π
=

|b1,j−1b2,j−1 · · · bN+1,j−1|π/|DN,j−1DN+1,j−1|π
|b1,jb2,j · · · bN+1,j |π/|DN,jDN+1,j |π → 0 (N → ∞).

(16)

Noting (15) and (16), Theorem 2 yields the desired result of the first part. The
second part follows using similar arguments but appealing instead to Theorem
3. �
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Bordeaux, 14 (2002), 497-516.

[4] V. Laohakosol and P. Vichitkunakorn, A non-regular continued fraction and its char-
acterization property, Chamchuri J. Math., 1 (2009) no. 1, 81-86.



J. Rattanamoong, V. Laohakosol and T. Chaichana 99

[5] P. J. McCarthy, Algebraic Extension of Fields, Dover, New York, 1991.

[6] A. A. Ruban, Some metric properties of p-adic numbers, Sibirsk. Mat. Ž. 11(1970),
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