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Abstract

An algorithm to construct a general continued fraction expansion for
elements in a discrete-valued non-archimedean fields (K, |- |) is devised.
Such continued fraction takes the form

b1 b2 bn,

ai+ az+ an+

where the elements an, b, are subject to the condition |a,| > |bn|. Sev-
eral examples are given to show that this algorithm yields almost all
known continued fraction expansions as special cases. Criteria for alge-
braic and linear dependences of certain classes of such continued fractions
are derived.

1 Introduction

A continued fraction expansion is an expression of the form

by g 2 b

a1+ as+ apn+
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where the elements by, bo, bs, . . . are called its partial numerators, and a1, as, as, . . .
its partial denominators. When all b; = 1 (i > 1), it is usually referred to as
a regular or simple continued fraction expansion. In 2002, Y. Hartono, C.
Kraaikamp and F. Schweiger [3] introduced a new continued fraction expan-
sion, called Engel continued fraction (or ECF) expansion, of the real numbers
in the interval (0,1). The ECF map Tg : [0,1) — [0,1) is given by

1 1 1
T = (=-=|= 0; Tg(0):=0.
For each z € (0,1), the ECF map generates a continued fraction expansion of
z of the form

pe LI G = (@) = (1T @) (> 1),

where the digits a,, satisfy the condition 1 < a,, < ay,+1. Motivated by Hartono-
Kraaikamp-Schweiger’s work, we devise an algorithm that enables us to uniquely
construct a continued fraction expansion, henceforth called a JR-continued
fraction, for each element in a field completed with respect to a discrete non-
archimedean valuation. Several well-known examples are then shown to be
special cases of JR-continued fractions. In the last section, general criteria for
algebraic and linear independences are derived for JR-continued fractions.

2 Algorithm

Let us start by briefly recalling some known facts, for a general reference, see
[5]. Let K be a field completed with respect to a discrete non-archimedean
valuation | - | and let

O:={aeK; |a<1}

be its ring of integers. The set
P:={a€K; |a|<1}

is an ideal in O, which is both a maximal ideal and a principal ideal, generated
by a prime element 7 € K. The quotient ring O/P is a field, called the residue
class field. Let A C O be a set of representatives of O/P. Each o € K \ {0} is
uniquely representable as

achnT" (NeZ, ch€ A, ey #0);
n=N

such representation is usually referred to as its canonical representation. The
non-archimedean valuation of « is so normalized that |a| = ™, with [0 := 0.
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The head part (o) of « is defined as the finite series

0
(o) = Z en™™ if N <0, and 0 otherwise.
n=N

Denote the set of all head parts by
S:={({a) ; a € K}.

We are now ready to introduce our continued fraction algorithm.

Let {b;},~; be a sequence in K\{0}, each of whose elementsb; is either fized
or is uniquely determined from o and previously known parametersb;, a; (j < i)
arising from the algorithm.

For convenience, we consider o« € K such that |a] < 1. Let Ay := « # 0.
Assume that b; € K \ {0} is subject to the condition that

b1 /Ay | > 1. (1)

Define a; = <z—11> e S\ {0}.
e If a; = b1/A;, then the process stops and we write

b
o = A1 = —1
ai
e When a; # b1/A;, we have 0 < |b1/A; —a1| < 1. Assume that by € K \
{0} is subject to the condition that the element Ay = -1 (Z—ll - al) #0

b2
satisfies
0< |As] < 1. (2)
Thus,
a=A; = 7171
o a1 + bQAQ.

Next, define ag = (1/A45) € S\ {0}.
o If as = 1/A,, then the process stops and we write

S R U
a1 + by Ay al + b_2 a1+ a2'
a2

e When ag # 1/A3, we have 0 < |1/A3 — ag| < 1. Assume that b3 € K\ {0}
is subject to the condition that the element A3z = % ALQ —az) # 0

satisfies
0< |As] < 1. (3)
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Thus,
by by b b

a1 + by As - al + b o a1+ az + b3A3.
az + b3 Az

Continuing this process, if A; #0 (i > 2) has already been constructed with
0 < |A;] < 1, then define a; = (1/4;) € S\ {0}.

e Ifa; = 1/A;, then the process stops and we have a finite continued fraction

expansion
b1 by b;

a1+ a2+ a;’
e When a; # 1/A;, we have 0 < |1/A; — a;| < 1. Assume that b;11 € K \

{0} is subject to the condition that the element A; 1 = ﬁ (AL - ai) £
0 satisfies
0< |A¢+1| <1, (4)

and so
b b bi

a1+ az+ a; + b¢+1A¢+1 '
Observe that |a1| = |b1|/|A1| > |b1], since 0 < |boAa| = |b1/A1 — a1] < 1 and
0< |b¢+1A¢+1| = |1/A1 — CL¢| <1 (’L > 2), we have

laiv1| = 1/[Ait1] > [biya] (i >1). (5)

Note that if the b;’s belong to S\ {0}, then the requirements (1), (2), (3) and
(4) hold automatically.

Summing up, we see that the algorithm yields a JR-continued fraction ex-
pansion of the form

b bn

a1+ az+ an + bn+1An+1

where a; € S\ {0} and b; are subject to (5). If a3 =b;/A; or a, =1/A, (n >
2), then

b1 by by,

a1+ CL2—|—"'CL”,
i.e., the JR-continued fraction expansion of « is finite. If a; # b1/A; and
an # 1/A, (n > 2), we now proceed to show that this JR-continued fraction
expansion converges.

Define two sequences (Cy,), (D) as follows:
C_i = 1; CO = O; Cn+1 = CLTL+1CY1’L + bn—i—lcn—l (Tl > O)
D_1 =0, Do=1, Dpy1=ant1Dp+bpi1Dp_1 (n>0).

The following proposition is easily established by induction.
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Proposition 1. For anyn >0, € K \ {0}, we have

BCr + by 1Chy b_l b2 bn+t1

Z. p— —_— e ———
) BDp +bpy1Dp—1 a1+ ax+ B

.. Cn bl b2 bn
= ... >1
@) B ot ot @, ™21

(iii) CpDp—1 — Cp—1Dy, = (=1)""tbyby - -b, (n>1)
(iv) |C1| = |ba], |Cn| = [brazaz---an|  (n>2)
(v) Dl = laraz--an] 0 (n>1).
From Proposition 1, we have

Cn ancn—l + ann—Q bl b2 bn
D, anDp_1 4+ bpDyp_o a1+ as+ Qanp

and so C,,/D,, is called the n'" convergent of the JR-continued fraction expan-
sion of «. From the algorithm and Proposition 1 (i), we obtain

b_l b2 bn (an + bn+1An+1) Cn—l + ann—Q

a1+ as+ an + bn+1An+1 N (an + bn+1An+1) Dn—l + ann—Q .

Using Proposition 1(ii) and (iii), it is easy to check that

Cn _ (=1)"b1b2 - - bpbp 1A
DTL DTL ((an + bn+1An+1) Dn—l —|— bTLDTL—Q) :

From
|an| >1> |bn+1|/|an+1| = |bn+1An+1|a

we get |CLn =+ bn+1An+1| = |CLn|, and so | (CLn + bn+1An+1) Dn_l + ann—2| =
|anDp—1]. Thus,

Cn o |b1b2 o 'bn+1|

A -2 =
’ | Dn|| D

showing that C,,/D,, converges to «, which enables us to write

IS B

a1+ as+ an+

To show uniqueness, suppose that o € K \ {0}, |a| < 1, has two such JR-
continued fraction expansions

b1 be bn by by b,

a1+ ax+ an+ a1+ ap+ a,+
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where a;,a; € S\ {0} and the b;, b} are subject to the same requirements as
elaborated above. Observe that we have
bi  bit |bil

b |
ai+ aip1+ |ai|

<1 (i>1) (6)

with the same relations for b}, a; (i > 1). From the construction requirement,
we have by = b} which implies that

b b , b b
2 b b by
as+ asz+

Since a1, a; € S, using (6), we get

/ by b3 b b, by b,
ar = a and =2 2 4 .72 78 4
az+ az+ as+ as+ az+ ay+

Since a; = a;, from the definition, we have by = b;. Continuing in the same
manner, we get a; = a;, b; = b; for all i. The following theorem summarizes
our results so far obtained.

Theorem 1. Each o € K \ {0} with |a] <1, can be represented uniquely by a
JR-continued fraction expansion of the form

oo b

a1+ as+ an+

where a; € S\ {0} and the sequence {b;};-, C K \ {0} is either fized or
is uniquely determined from o and previously known parameters bj, a; (j < 1).
Moreover, the partial numerators and denomintors are subject to the condition,
which will henceforth be referred to as the ab-condition,

|lai| > |bi] (i >1). (7)

3 Examples

We turn now to specific examples.

Example 1. Let K be a field completed with respect to a discrete non-
archimedean valuation |- |. Taking all b; =1 (¢ > 1) in Theorem 1, we deduce
that every a € K \ {0}, |a] < 1, has a unique regular continued fraction
expansion of the form
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where a; € S\ {0} are subject to the ab-condition, i.e., |a;] > 1 (¢ > 1). This
is the well-known classical regular continued fraction.

Example 2. Let K be a field completed with respect to a discrete non-
archimedean valuation | - |. Taking by = 1, b;41 = a; (i > 1) in Theorem 1,
we deduce that every a € K \ {0}, |a| < 1, has a unique continued fraction
expansion of the form

1w (p—1

a1+ as+ apn+

where a; € S\{0} (i > 1) are subject to the ab-condition, i.e., |a;41]| > |bit1| =
la;] (i > 1). This continued fraction may be regarded as a non-archimedean
analogue of the real ECF expansion due to Hartono-Kraaikamp-Schweiger, [3].
Example 3. Let K be a field completed with respect to a discrete non-
archimedean valuation | - |. Taking by = 1, bjy1 = a? —a; +1 (i > 1) in
Theorem 1, we deduce that every o € K\ {0}, |a| < 1, has a unique continued
fraction expansion of the form

1 a?—a;+1 az_y—an_1+1
a1+ as+ apn+

)

where a; € S\ {0} (¢ > 1) are subject to the ab-condition, i.e., |a;41] >
|biy1] = |a? —a; + 1| (i > 1). This continued fraction may be regarded as a
non-archimedean analogue of the real Sylvester continued fraction expansion
due to A. H. Fan, B. W. Wang and J. Wu, [2].

Example 4. Let K = Q, be the field of p-adic numbers, i.e., the completion
of Q with respect to the p—adic valuation, |- |,, so normalized that |p|, = p~'.
Here, the ring of p—adic integers is O = Z,. Each a € pZ, \ {0} is uniquely
representable in the form

achnp" (NeN, ¢, €{0,1,....,p—1}, ex #0).
n=N
There are two well-known p-adic continued fraction expansions, due respec-
tively to Ruban ([6]) and Schneider ([7]).

4A. The p-adic Ruban continued fraction ([6]) of a € pZ,\ {0} is of the form
1 1 1

a1+ a2+ as+

3

where the a;’s are of the form
c—mp_m+c—m+1p_m+1+' ~tco (m € N); Cj € {Oa 1) s 'ap_l}a C—m 7& 0.

This is a JR-continued fraction with all b; = 1. The ab-condition (7)
holds trivially.



J. RATTANAMOONG, V. LAOHAKOSOL AND T. CHAICHANA 91

4B. The p-adic Schneider continued fraction ([7]) of a € pZ, \ {0} is of the
form

b1 by b3

a1+ az+ as+

where a; € {0,1,...,p— 1}, by = |oz|g1, and each b; is of the form
p® (s € N) and is uniquely determined form « and previously known
a, b; (j <1).

Example 5. Let F be a field and let

—1 L Cr Cr41 Cr42 .
IF((x )) .—{;—Fxrﬂ +x7’+2 +---5 r€Z, ¢ €F, CT#O}
be the completion of the rational function field F(z) with respect to the non-
archimedean degree valuation, | - |o, so normalized that |27} = e™!. Let
{b;};2, be a fixed sequence in Fz] \ {0}. By Theorem 1, each a € F ((z71)) \
{0}, |a]e < 1, has a unique JR~continued fraction expansion of the form

N B!

a1+ as+ an+

where a; € F[z]\ {0} are subject to the ab-condition, i.e., |a;|oc > |biloo (i > 1).
The JR-continued fraction expansion in this case is indeed the non-regular
continued fraction expansion constructed in [4].

Example 6. Let F be a field and let 7 be a prime element in F[z]. The field

F((n)) = {cn” + e +erpan 2+ r €2, ¢; € Fla], degei < degm, cr #0}

of all formal Laurent series in 7 is the completion of F[z] with respect to the
m-adic valuation, |- |, so normalized that ||, = e~9° ™. Its ring of integers
is the set of formal power series

Fl[r]] := {co+ exm + com® + -+ ; ¢; € Flz], dege; < degm},
and the set of head parts is
S = {cmr 4t m 4y r<0, ¢ € Flz], degc; < degw} .

By Theorem 1, each o € 7F[[x]]\ {0} is uniquely represented as a JR-continued

fraction of the form ) ) )
a=— 2 ... (8)

a1+ as+ apn+

where a; € S\ {0} and b; are subject to the ab-condition. There are various
particular examples of JR-continued fractions in this setting. Let us mention
two specific ones.
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6A. The m-adic Ruban continued fraction is constructed in exactly the same
manner as the p-adic Ruban continued fraction mentioned in Example
4A, i.e., each o € 7F[[x]] \ {0} is uniquely representable as

1 1 1

a1+ az+ as+

where the a;’s are of the form
Comm e mn T b deo (m €EN), ¢ € Flz], dege; < degm, c—m # 0.

This is a JR-continued fraction with all b; = 1. The ab-condition (7)
holds trivially.

6B. The m-adic Schneider continued fraction is constructed in exactly the
same manner as the p-adic Schneider continued fraction mentioned in
Example 4B, i.e., each a € 7F[[r]] \ {0} is uniquely representable as

b1 by b3

a1+ a2+ as+

where a; € Flx] \ {0}, dega; < degm, each b; is of the form 7° (s € N)
and is uniquely determined form « and previously known a;, b; (j < i).

4 Independence

In this section, criteria for algebraic and/or linear independences of elements
in F((7)), as expounded in Example 6, are established along the same line as
those in [1]. We begin with algebraic independence.

Theorem 2. Let ay,az,...,an € F((1))\ {0} . Assume that there are polyno-
mials Cnj, Dy j(#£0) € Flz] (N €N, 1<j<n) such that

Dy joj # Cnj, My :=max{|Cn jlec,|Dn,jloc} — 00 (N — 00),
and

i @1 = Cnyj—1/Dnj-il, _
N—oo  |aj—Cn,;j/Dnl,

0 (=2,...,n) (9)

provided n > 2. Assume further that for each positive real number E, there is
an Ng = No(M) € N such that

1
r (MniMyso---Mnj)

_ Cny
Dy,

a; (N>Np; j=1,2,....n). (10)

E

Then ay, o, .. ., ay are algebraically independent over F(x).
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Proof. We proceed by induction on n. For n = 1, suppose that «; is algebraic
of degree m > 1 over F(z). If m = 1, then oy = P/Q for some P, Q € F[z]\{0}.
For all N € N, we get

|IDn1iP —CniQlx > 1
Q| |IDnN1P — Cn1Qloo Q|

0# |Dniar —Cnal, =

and
|IDniP — Cn1Qloo < max{|Dn1P|oo, |Cn1Q|oc} < Mn 1K,

K := max {|P|oo, |Q|co}, which by the product formula implies that
1 K,
™= MyaK|Qls My

)

|Dnjia1r — COnal, > K1 :=1/K|Q|.

y (10), there is an N7 = N;(2) such that, for all N > Ny,

1
_M]%fl,

Cna

)

Dy,

< |Dnior — Cnpal, = |[Dnlx [on —

which is a contradiction. For m > 1, by Uchiyama’s Theorem ([8]), for F((r))
there is a constant K5 > 0 such that

K
|Dniar —Cnal, > MWQL (N € N).
N1

By (10), there is an Ny = Na(m + 1) such that, for all N > No,

[Dnal, 1
M],\.;Ll S |DNlal CN1|7T >~ Mm+1 = Mm_;,_la

which is a contradiction. Thus, «; is transcendental, and we are done in the
case n = 1.

Now consider n > 1. Assume the assertion of the theorem holds up to n—1,
but is false for n. Then there would exist a polynomial f (71,Ts,...,T,) €
Flx][T1,...,Tu] \ {0} of minimal total degree such that f (a1, ag,...,a,) =0.
Expanding f about (aq,...,ay), we get

FTL Ty To) = by (Th = an)™ -+ (T — o)™

where (v) = (v1,v2,...,vy), and
L —h _ 1 8”1+”2+m+”"f (ala ag, ..., an)
) = Nvy,va,.vn) = (Vl g4+ Vn)! 8T1Vl 8T2V2 QT
Clearly,

h,....0y = [ (a1, a2,...,a,) = 0.
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Set

0
Hn (Tl,TQ,...,Tn) = ﬁf(TlaTQ;---;Tn);

H; =ho,. 010,00 (@E=12,...,n),

where the digit 1 is at the i*" position. Observe that T}, occurs in f. Thus,
H, (Th,Ts, ..., T,) £ 0 and Hy, = H, (1, gy . i)
Next, we show that H,, # 0. Suppose not. If T;, occurs in H,, (T1,...,T,),

then (o, ..., ay) is a root of a nonzero polynomial whose degree is lower than
that of f, which is a contradiction. Thus, T;, does not occur in H,, (T, ..., Ty).
This means that oy, as, . . ., a,—1 are algebraically dependent, contradicting the
induction hypothesis. Thus, H,, # 0.
Let o
(%(N)zﬁ—aj (j=1,2,...,n).
Dy ;

Since Dy jo; # Cn j, we get |6, ()| # 0. Now

(CN,1 Cn,2 Cnpn >
Dni’' Dn2’ ' Dy

=D hw0i(N)" -8 (N)™
(v)

ZZH151(N)+ Z h(u)5l(N)”1 5n(N)un
=1 Vit v, >2

On

51(N) -1

By hypotheses (9) and (10), we see that
51 (N) Sn—1(N)
e H, e
(V) T TS
51(IV)
I (N)

+ O ([6n(N)])

s

On—1(N)
ey |Hpoy ————=
Tra ;’ 1 5n N)

< max{’Hl

AM%WMﬁ—W(NHmL

which yields, when N is large enough,

’ (CN,1 Cn,2 Cnpn >
Dny1’ ' Dn2’ " Dnan

s

Let my,mo, ..., m, be the degrees of f in T1,T5, ..., T,, respectively. Then

Cna CNn>
DM ... DT Lo 2N R {0,
R DR (Gt B ) € ¥l (0)

and so

Cna Cnpn
e
Dy Dy

0<’D%}1---Dmf( )’ < KMy - My,
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where K is a positive constant depending on f but independent of N. By the
product formula, we get

’f (CN,1 CN,n>
Dni' ' Dya /|,

-

Z’D%H-”Dﬁf(

—1
Cna CN,n>
e

Dy Dy

Cni CN,n>
Dni1’ " Dy

s

—1
> (KM g )

o0

Choosing E = max{my,ms,...,m,} + 1, by (10), there exists N3 = N3(FE)
such that for all N > Ng,

1 < Cn1 Cnp Cnpn
KM}\’;L,llM;\’;L;L’L_ DN71,DN72,...,DNR

H,
0N, < — e
(Mna---Mypy)
i.e.,
ol > KMy ™ My o™ — 00 (N = 00),
which is a contradiction. O

Specializing the defining polynomial to be linear in each variable in the
proof of Theorem 2, we get

Theorem 3. Let ay, az,...,an € F((1))\ {0} . Assume that there are polyno-
mials Cn,j, Dnj (#0) (N=1,2,3,...; 1<j<n) inFlz] such that

Dy,joj #Cn,j, Mn,j = mazr{|Cn |, |Dnjlc} = 00 (N — 00),
such that if n > 2,

laj—1 = Cnj—1/Dn,j-1| .
lim - . T =0 =2,...,n).
N—co  |aj—Cn,;/Dnl, G )

Assume further that there is a positive-valued function g of natural argument,
with
g(N) — o0 (N — o0),

and there is an Ng = Ny(g) € N such that

1
T~ MyiMnyo---Myjg(N)

_ Cny
Dy,

a; (N>Ny; j=1,2,....,n).

s

Then 1, a1, ag, . .., ay are linearly independent over F(x).
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4.1 Applications

We apply the results of Theorem 2 and 3 to derive sufficient conditions for
elements in F((7)) \ {0} represented by JR-continued fractions in Example 6
above to be algebraically and linearly independent over F(x). Throughout we
assume (without of generality) that |a|, < 1. Let

CN b1 b2 bN

- = = ... N €N

Dy a1+ as+ an ( )
be the N** convergent of the JR-continued fraction expansion of a. By Propo-
sition 1 (iv) and (v), we have

|Cilx = |bi]x, |Cilx = [bra2az - - - ailx (i > 2), |Dilr = |araz---ai|r (1 >1),

which implies that |D;|, = |a1C;/b1|x > |Cilz= (i > 1). Since C, Dy do not
necessarily belong to F[x], to apply the results of Theorems 2 and 3, we need to
convert the JR-continued fraction of Example 6 into an equivalent continued
fraction.

Throughout, we focus only on the case when the sequenec {b;} is a subset
of

{a:;::+...+%—|—co—|—clﬂ'l+"'+csﬂ'sGF((T"))\{O}Q

r,s € NU{0}, ¢; € Flz], degc; < degm}.

For each ¢ € N, write

’ ’

b,

o ai e 1
Q; ‘= ﬁ, bl = W’
where n; € NU{0}, m; € Z, and a,, b, € F[z] are both relatively prime to , so
that

@il = 1= (bl lails = ™57, [bi], = s

From the ab-condition, we have n; > m; (i € N). It is convenient to introduce
an associated JR-continued fraction

71 Y2 Yi (11)

G+ Bt B

where
! ! !
- itniy1—m; _ -
Y1 =0y T iy = by TR T B =a, (1 €N).

Clearly, the partial numerators 7; and the partial denominators 3; of the as-
sociated continued fraction (11) are in F[z] and |v;|, > e98™ (i > 1) . We
similarly define the N*" convergent of (11) to be

CNn — m 72 N

Dy "Bt Bt By VEN
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where
Co.i=1, Co=0, Cit1 =L0i41Ci +7vit1Ciz1 (1 >0)

D_1=0, Do=1, Dit1 = LBix1Di+vi+1Di-1 (1 >0).

The JR-continued fraction (8) and its associated continued fraction (11) are
equivalent in the sense that Cy /Dy = Cn/Dn (N € N). Clearly, Cy and Dy
are in Flz|. In what follows, we assume that

1BiBit+1loo > [Fit1loos (i €N), (12)

which is equivalent to |a;a;t1|, > [bit1],,, where | - | denote the degree val-
uation mentioned in Example 5. The next lemma summarizes basic properties
of Cny and Dy, whose induction proof is omitted.

Lemma 1. Let the notation be as above. If (12) holds, then
(i) 1C1loc = Moo, [CNloo = [C182 -+ BNloo (N 22)
(ii) | DN|oo = |B162- - Bnloe  (n EN)

(iti) My := max {|CN|sc; |PN|oo} — 00 (N — 00).

Let a; € nF[[7]] \ {0} (1 <j < k) with associated JR-continued fractions

s L 2
T Bt Bagt

3

and let their corresponding N*" convergent be

CNjg _ Mg g . N
Dy  Puj+ Bojt+ DBy

(1<j<k NeN).

If the requirement (12) holds for each j € {1,...,k}, then Lemma 1 yields
My j = max{|Cn jloo, PN jloc} =00 (N — 00).
Theorem 4. Let the notation be as bove. Assume that
L the condition (12) is fulfilled for each j € {1,...,k};

1I. the limiting values

biiibo i1 bittiilelDs D1 ilx _
1 | ZJ ; 2,J 1b +17Jl) 1| | DJ +17J| -0 (2 <j< k) (13)
=00 | 1,992,5°°° ’L+1,j|7r| 1,7—1 ’L+1,j—1|7r

hold and
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II1. there exists g : N — Z with g(i) — oo (i — 00) such that

| Dij Dit1,5] > (M’i,lM’L72"'M’L7j)g() (1<j<k;ieN). (14)
|bl,j52,j e 'bz'+1,j|7r

Then ai, o, ..., ax are algebraically independent over F(zx).
Moreover, if the condition (14) is replaced by

D; iD;y1.4lx .
DiiDisrile 5 o) My Min My )
|b1,5b2,5++ biy1,jlx

then 1, a1, ag, . .., oy are linearly independent over F(zx).

Proof. For a fixed E > 0, from ¢(i) — oo (i — 00), there is Ny € N such that
for all N > Ny, we have g(N) > E. For 1 < j < k and N > Ny, applying (14),
we get

’ CCng| ’a_ Cng| _ Ibagba - byiajlx
Dn,j|, Dnjl, |DN,jDn+1,jlx
1 1
< =- (15)

<
(Mny1Myo-- 'MN,j)g(N) (Mn1Myyo--- My ;)
From (13), we get

laj—1—CnN;j-1/Dnj-1l, _ laj—1 = Cnj—1/Dn,j—1l,
laj —Cn,j /D, laj = Cn,j/Dnjl,

_ brj—abojor b alx /I D1 DNt - lx

-0 (N — ).
(16)

|b1,b2,j -+ - ONt1,jl /DN DN+1,5]x

Noting (15) and (16), Theorem 2 yields the desired result of the first part. The
second part follows using similar arguments but appealing instead to Theorem
3. O
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