East-West J. of Mathematics: Vol.14, No 1 (2012) pp. 76-83

THE Q_{α} -CONVOLUTION OF ARITHMETIC FUNCTIONS AND SOME OF ITS PROPERTIES

Sunanta Srisopha^{*}, Pattira Ruengsinsub^{*} and Nittiya Pabhapote^{**}

* Department of Mathematics, Kasetsart University, Bangkok 10900

** Department of Mathematics, University of the Thai Chamber of Commerce Bangkok 10400, Thailand

 $email: \ naejung_s@hotmail.com, \ fscipar@ku.ac.th\\ nittiya_pab@utcc.ac.th$

Abstract

Let α be an arithmetic function such that $\alpha(n) \neq 0$ $(n \in \mathbb{N})$. The Q_{α} -convolution of two arithmetic functions is defined as

$$(f \diamond g)(n) = \sum_{ij=n} \frac{\alpha(n)}{\alpha(i)\alpha(j)} f(i)g(j).$$

Basic properties of the Q_{α} -convolution and characterizations of completely multiplicative functions using Q_{α} -convolution are derived. The solubility of the equation

$$T_{\alpha}g := a_d \diamond g^{\diamond d} + a_{d-1} \diamond g^{\diamond (d-1)} + \dots + a_1 \diamond g + a_0 = 0$$

with fixed arithmetic functions $a_d \neq 0$, $a_{d-1}, \ldots, a_1, a_0$ is investigated.

1 Introduction

An arithmetic function is a complex-valued function whose domain is the set of positive integers, \mathbb{N} , and whose range is a subset of \mathbb{C} . Let \mathcal{A} be the set of arithmetic functions equipped with addition, (usual) multiplication and Dirichlet

Keywords: arithmetic functions, Dirichlet convolution, Q_{α} -convolution (2010) AMS Classification: 11A25

Supported by the Thailand Research Fund.

convolution defined over \mathbb{N} , respectively, by

$$(f+g)(n) = f(n) + g(n), \ fg(n) = f(n)g(n), \ (f*g)(n) = \sum_{xy=n} f(x)g(y).$$

The usual multiplication identity of \mathcal{A} is the unit function u defined by u(n) = 1 for all $n \in \mathbb{N}$. The Dirichlet convolution identity $I \in \mathcal{A}$ is defined by I(1) = 1 and I(n) = 0 for n > 1. An arithmetic function $f \in \mathcal{A}$ is said to be multiplicative if

$$f(mn) = f(m)f(n) \tag{1}$$

whenever gcd(m, n) = 1, and is said to be completely multiplicative if (1) holds for all $m, n \in \mathbb{N}$. For brevity, put

 $\mathcal{M} = \{f \in \mathcal{A} ; f \text{ is multiplicative}\}, \ \mathcal{C} = \{f \in \mathcal{A} ; f \text{ is completely multiplicative}\}.$

In [4], Lambek, see also [1], gave the following characterization of completely multiplicative functions: f is completely multiplicative if and only if f(g * h) = fg * fh for every pair $g, h \in \mathcal{A}$.

In [7], Tóth and Haukkanen introduced the binomial convolution which is defined for $f, g \in \mathcal{A}$ by

$$(f \circ g)(n) = \sum_{xy=n} \frac{\xi(n)}{\xi(x)\xi(y)} f(x)g(y),$$

where $\xi(n) = \prod_{\text{prime } p} \nu_p(n)!$; $\nu_p(n)$ being the highest power of p dividing n.

Tóth-Haukkanen proved that a similar characterization under the Dirichlet convolution holds for the binomial convolution; note that the arithmetic function Iis also the identity with respect to binomial convolution.

In this work, we define a new kind of convolution called the Q_{α} -convolution, extending the binomial convolution. Let $\alpha \in \mathcal{A}$ be such that $\alpha(n) \neq 0$ for all $n \in \mathbb{N}$. The Q_{α} -convolution of $f, g \in \mathcal{A}$ is defined as

$$(f \diamond g)(n) = \sum_{xy=n} \frac{\alpha(n)}{\alpha(x)\alpha(y)} f(x)g(y).$$
⁽²⁾

Clearly, the Q_{α} -convolution can be expressed in term of the Dirichlet convolution as

$$f \diamond g = \alpha \left(\frac{f}{\alpha} * \frac{g}{\alpha}\right). \tag{3}$$

Our objectives are first to establish basic properties of Q_{α} -convolution, second to use it to characterize completely multiplicative functions and finally to solve a polynomial Q_{α} -convolution equation similar to the one in [2].

2 Basic properties

Our first information deals with basic structure, whose proof is just an easy exercise.

Theorem 1. The algebras $(\mathcal{A}, +, *, \mathbb{C})$ and $(\mathcal{A}, +, \diamond, \mathbb{C})$ are isomorphic under the map $f \mapsto f/\alpha$.

We denote the inverses of $f \in \mathcal{A}$ under the Dirichlet convolution and the Q_{α} convolution by f^{-1*} and $f^{-1\diamond}$, respectively. It is easy to check that f^{-1*} and $f^{-1\diamond}$ exist if and only if $f(1) \neq 0$. Moreover, we have

Theorem 2. If $f \in \mathcal{A}$ satisfies $f(1) \neq 0$, then

$$f^{-1*} = \frac{(\alpha f)^{-1\diamond}}{\alpha} , \qquad (4)$$

$$f^{-1\diamond} = \alpha \left(\frac{f}{\alpha}\right)^{-1*}.$$
(5)

Proof. Since $f * f^{-1*} = I$, from (2) we have $\alpha f \diamond \alpha f^{-1*} = \alpha I$. Thus,

$$\alpha f^{-1*} = (\alpha f)^{-1\diamond},$$

and (4) follows. On the other hand, from $f \diamond f^{-1\diamond} = \alpha I$, we get

$$\frac{f}{\alpha} * \frac{f^{-1\diamond}}{\alpha} = I,$$

from which (5) follows.

Next, we give a characterization of completely multiplicative functions through the use of the distributivity with respect to Q_{α} -convolution.

Theorem 3. Let $f \in \mathcal{A}$ be multiplicative. Then $f \in \mathcal{C}$ if and only if $f(g \diamond h) = fg \diamond fh$ for all $g, h \in \mathcal{A}$.

Proof. Assume that $f \in \mathcal{C}$. Let $g, h \in \mathcal{A}$. Then

$$f(g \diamond h) = f\alpha \left(\frac{g}{\alpha} * \frac{h}{\alpha}\right) = \alpha \left(\frac{fg}{\alpha} * \frac{fh}{\alpha}\right) = fg \diamond fh.$$

Conversely, assume that $f(g \diamond h) = fg \diamond fh$ for all $g, h \in \mathcal{A}$. Then

$$\alpha f(g \ast h) = f(\alpha g \diamond \alpha h) = \alpha fg \diamond \alpha fh = \alpha \left(\frac{\alpha fg}{\alpha} \ast \frac{\alpha fh}{\alpha}\right) = \alpha (fg \ast fh)$$

and so f(g * h) = fg * fh. By Lembek's Theorem, [7], $f \in \mathcal{C}$.

S. SRISOPHA, P. RUENGSINSUB AND N. PABHAPOTE

Theorem 4. Let $f \in \mathcal{M}$. Then $f \in \mathcal{C}$ if and only if $(fg)^{-1\diamond} = fg^{-1\diamond}$ for all $g \in \mathcal{A}$ with $g(1) \neq 0$.

Proof. If $f \in \mathcal{C}$, then by Theorem 3 we get

$$\alpha I = f\alpha I = f(g \diamond g^{-1\diamond}) = fg \diamond fg^{-1\diamond}$$

i.e., $(fg)^{-1\diamond} = fg^{-1\diamond}$. Conversely, if $(fg)^{-1\diamond} = fg^{-1\diamond}$ for all $g \in \mathcal{A}$ with $g(1) \neq 0$, then using also Theorem 2, we get

$$\alpha f^{-1(*)} = \alpha \left(\frac{f\alpha}{\alpha}\right)^{-1*} = (f\alpha)^{-1\diamond} = f\alpha^{-1\diamond} = f\left(\alpha \left(\frac{\alpha}{\alpha}\right)^{-1*}\right) = f \alpha \mu$$

i.e., $f^{-1*} = f\mu$. By a well-known characterization, see [1], $f \in \mathcal{C}$.

In [5], Langford used the concept of discriminative and partially discriminative products to derive necessary and sufficient conditions for complete multiplicativity. Our next aim is to extend these results through generalizing the Q_{α} -convolution. Before doing so, we need one some more definitions.

Let $r \in \mathbb{N}$, $r \geq 2$ and let $g_1, g_2, \ldots, g_r \in \mathcal{A} \setminus \{0\}$. We say that the product $k = g_1 \diamond g_2 \diamond \cdots \diamond g_r$ is

• r-fold Q_{α} -discriminative, or r.q.d. for short, if the relation

$$\alpha(1)^{r-1}k(n) = \sum_{j=1}^{r} g_1(1) \cdots g_{j-1}(1)g_j(n)g_{j+1}(1) \cdots g_r(1)$$
(6)

holds only when n is prime;

• r-fold Q_{α} -partially discriminative, or r.q.p.d. for short, if for every prime power p^i $(i \in \mathbb{N})$ the relation

$$\alpha(1)^{r-1}k(p^i) = \sum_{j=1}^r g_1(1)\cdots g_{j-1}(1)g_j(p^i)g_{j+1}(1)\cdots g_r(1)$$
(7)

implies that i = 1;

• r-fold Q_{α} -semi-discriminative, or r.q.s.d. for short, if the relation

$$\alpha(1)^{r-1}k(n) = \sum_{j=1}^{r} g_1(1) \cdots g_{j-1}(1)g_j(n)g_{j+1}(1) \cdots g_r(1)$$
(8)

holds only when n = 1 or n is prime.

Theorem 5. Let $f \in \mathcal{A}$ with $f(1) \neq 0$. If f distributes over a an r.q.d. product, then f(1) is an $(r-1)^{th}$ root of unity and $f(p_1 \cdots p_m) = f(p_1) \cdots f(p_m)$ for any primes p_1, \cdots, p_m .

Proof. Assume that f distributes over a an r.q.d. product $k = g_1 \diamond g_2 \diamond \cdots \diamond g_r$. We first show that $k(1) \neq 0$. If k(1) = 0, then

$$\frac{1}{\alpha(1)^{r-1}} \sum_{j=1}^{r} g_1(1) \cdots g_{j-1}(1) g_{j+1}(1) \cdots g_r(1) = 0 = k(1),$$

i.e.

$$\alpha(1)^{r-1}k(1) = \sum_{j=1}^{r} g_1(1) \cdots g_{j-1}(1)g_j(1)g_{j+1}(1) \cdots g_r(1),$$

so the equation (6) holds for n = 1, which is a contradiction. Thus $k(1) \neq 0$. Since

$$fk = f(g_1 \diamond g_2 \diamond \cdots \diamond g_r) = fg_1 \diamond fg_2 \diamond \cdots \diamond fg_r,$$

we get

$$f(1)k(1) = \alpha(1)\frac{fg_1}{\alpha}(1)\frac{fg_2}{\alpha}(1)\cdots\frac{fg_r}{\alpha}(1)$$

= $f(1)^r \left(\frac{g_1(1)g_2(1)\cdots g_r(1)}{\alpha(1)^{r-1}}\right)$
= $f(1)^r k(1).$

It follows from $f(1)k(1) \neq 0$ that $f(1)^{r-1} = 1$. Next we show that for all primes p_1, \ldots, p_m (not necessary distinct),

$$f(p_1 \cdots p_m) = f(p_1) \cdots f(p_m). \tag{9}$$

We proceed by induction on m. This is trivial if m = 1, so assume that $n = p_1 \cdots p_m$; $m \ge 2$ and that (9) is true for all integers whose number of prime factors (not necessary distinct) is less then m. Since

$$f(g_1 \diamond g_2 \diamond \cdots \diamond g_r) = fg_1 \diamond fg_2 \diamond \cdots \diamond fg_r,$$

then

$$f(p_1 \cdots p_m) \alpha(p_1 \cdots p_m) \sum_{d_1 \cdots d_r = p_1 \cdots p_m} \frac{g_1}{\alpha}(d_1) \cdots \frac{g_r}{\alpha}(d_r)$$

$$= \alpha(p_1 \cdots p_m) \sum_{d_1 \cdots d_r = p_1 \cdots p_m} \frac{fg_1}{\alpha}(d_1) \cdots \frac{fg_r}{\alpha}(d_r).$$

S. SRISOPHA, P. RUENGSINSUB AND N. PABHAPOTE

Using the induction hypothesis, we get

$$f(p_{1}\cdots p_{m}) \sum_{\substack{d_{1}\cdots d_{r}=p_{1}\cdots p_{m} \\ d_{j}\neq p_{1}\cdots p_{m} \text{ for all } j\in\{1,\dots,r\}}} \frac{g_{1}}{\alpha}(d_{1})\cdots \frac{g_{1}}{\alpha}(d_{r})$$

$$+ f(p_{1}\cdots p_{m}) \sum_{\substack{d_{1}\cdots d_{r}=p_{1}\cdots p_{m} \\ d_{j}=p_{1}\cdots p_{m} \text{ for some } j\in\{1,\dots,r\}}} \frac{g_{1}}{\alpha}(d_{1})\cdots \frac{g_{1}}{\alpha}(d_{r})$$

$$= f(p_{1})\cdots f(p_{m}) \sum_{\substack{d_{1}\cdots d_{r}=p_{1}\cdots p_{m} \\ d_{j}\neq p_{1}\cdots p_{m} \text{ for all } j\in\{1,\dots,r\}}} \frac{g_{1}}{\alpha}(d_{1})\cdots \frac{g_{1}}{\alpha}(d_{r})$$

$$+ f(p_{1}\cdots p_{m})f(1)^{r-1} \sum_{\substack{d_{1}\cdots d_{r}=p_{1}\cdots p_{m} \\ d_{j}=p_{1}\cdots p_{m} \text{ for some } j\in\{1,\dots,r\}}} \frac{g_{1}}{\alpha}(d_{1})\cdots \frac{g_{1}}{\alpha}(d_{r}).$$

But $f(1)^{r-1} = 1$. Hence

$$[f(p_1 \cdots p_m) - f(p_1) \cdots f(p_m)] \sum_{\substack{d_1 \cdots d_r = p_1 \cdots p_m \\ d_j \neq p_1 \cdots p_m \text{ for all } j \in \{1, \dots, r\}}} \frac{g_1}{\alpha}(d_1) \cdots \frac{g_1}{\alpha}(d_r) = 0.$$

Since

$$\sum_{\substack{d_1 \cdots d_r = p_1 \cdots p_m \\ d_j \neq p_1 \cdots p_m \text{ for all } j \in \{1, \dots, r\}}} \frac{g_1}{\alpha}(d_1) \cdots \frac{g_1}{\alpha}(d_r)$$
$$= k(p_1 \cdots p_m) - \sum_{\substack{d_1 \cdots d_r = p_1 \cdots p_m \\ d_j = p_1 \cdots p_m \text{ for some } j \in \{1, \dots, r\}}} \frac{g_1}{\alpha}(d_1) \cdots \frac{g_1}{\alpha}(d_r)$$

and k is \diamond -r.d. product, it follows that

$$\sum_{\substack{d_1 \cdots d_r = p_1 \cdots p_m \\ d_j \neq p_1 \cdots p_m \text{ for all } j \in \{1, \dots, r\}}} \frac{g_1}{\alpha}(d_1) \cdots \frac{g_1}{\alpha}(d_r) \neq 0.$$

This show that $f(p_1 \cdots p_m) = f(p_1) \cdots f(p_m)$, as desired.

If we take f(1) = 1, in theorem 5, then we have the following corollary.

Corollary 1. Suppose that f(1) = 1. Then f is completely multiplicative if and only if it distributes over an r.q.d. product.

Proof. If f is completely multiplicative then $f(g \diamond h) = fg \diamond fh$ for all $g, h \in \mathcal{A}$. Assume now that f distributes over an r.q.d. product. Then $f(p_1 \cdots p_m) = f(p_1) \cdots f(p_m)$ for any primes p_1, \cdots, p_m , by Theorem 5. Hence f is completely multiplicative. \Box

Theorem 6. Suppose that f is multiplicative. Then f is completely multiplicative if and only if it distributes over an r.q.p.d. product.

Proof. If f is completely multiplicative then $f(g \diamond h) = fg \diamond fh$ for all $g, h \in \mathcal{A}$. Conversely, assume that f distributes over an r.q.p.d. product $k = g_1 \diamond g_2 \diamond \cdots \diamond g_r$. Since f is multiplicative, it suffices to show that for all primes $p, f(p^m) = f(p)^m$; for all $m \in \mathbb{N}$. The case m = 1 being trivial, so assume that $m \geq 2$ and $f(p^t) = f(p)^t$ holds for t < m. The remaining proof is similar to that of the last half of Theorem 5 by induction on m, but making use of k being an r.q.p.d. product.

Corollary 2. If we take f(1) = 1, then f is completely multiplicative if and only if it distributes over a an r.q.s.d. product.

3 Solving a polynomial Q_{α} -convolution equation

In [2], Glöckner, Lucht and Porubský solved the polynomial convolution equation

$$Tg = a_d * g^{*d} + a_{d-1} * g^{*(d-1)} + \dots + a_1 * g + a_0 = 0$$
(10)

with fixed coefficients $a_d, a_{d-1}, \ldots, a_1, a_0 \in \mathcal{A}$ and $a_d \neq 0$ by showing that it has a solution $g \in \mathcal{A}$ satisfying $g(1) = z_o$, if z_0 is a simple zero of the polynomial

$$f(z) = a_d(1)z^d + a_{d-1}(1)z^{d-1} + \dots + a_1(1)z + a_0(1).$$

We show next that the polynomial Q_{α} -convolution equation

$$T_{\alpha}g = a_d \diamond g^{\diamond d} + a_{d-1} \diamond g^{\diamond (d-1)} + \dots + a_1 \diamond g + a_0 = 0$$

has solution $g \in \mathcal{A}$ under similar conditions.

Theorem 7. For $d \in \mathbb{N}$, let $T_{\alpha} : \mathcal{A} \to \mathcal{A}$ be defined by

$$T_{\alpha}g = a_d \diamond g^{\diamond d} + a_{d-1} \diamond g^{\diamond (d-1)} + \dots + a_1 \diamond g + a_0 \tag{11}$$

with $a_d, a_{d-1}, \ldots, a_1, a_0 \in \mathcal{A}$ and $a_d \neq 0$. If z_0 is a simple zero of the polynomial

$$f(z) = a_d(1)z^d + a_{d-1}(1)z^{d-1} + \dots + a_1(1)z + a_0(1),$$
(12)

then there exists a unique solution $g \in \mathcal{A}$ to the convolution equation $T_{\alpha}g = 0$ satisfying $g(1) = \alpha(1)z_o$.

Proof. Assume that z_0 is a simple zero of f(z). If $g \in \mathcal{A}$ satisfies $T_{\alpha}g = 0$, then

$$0 = \alpha(1) \left(\frac{a_d}{\alpha}(1) \left(\frac{g}{\alpha}\right) (1)^d + \frac{a_{d-1}}{\alpha}(1) \left(\frac{g}{\alpha}\right) (1)^{d-1} + \dots + \frac{a_1}{\alpha}(1)\frac{g}{\alpha}(1)\right) + a_0(1)$$
$$= f\left(\frac{g}{\alpha}(1)\right),$$

so that $\frac{g}{\alpha}(1)$ is a zero of f(z) = 0. Define the starting value of $g \in \mathcal{A}$ by $\frac{g(1)}{\alpha(1)} = z_0$. Observe that $a_j \diamond g^{\diamond j}(n) = j \frac{a_j}{\alpha}(1)g(1)^{j-1}g(n) + \alpha(n) \sum_{\substack{ln_1 \cdots n_j = n \\ n_1 \cdots n_j < n}} \frac{a_j}{\alpha}(l) \frac{g}{\alpha}(n_1) \cdots \frac{g}{\alpha}(n_j) \quad (j \in \mathbb{N}).$

We now show that the equation $T_{\alpha}g = 0$ uniquely and successively determines the values of g(n) for $n \geq 2$. To this end, consider

$$0 = \sum_{1 \le j \le d} a_j \diamond g^{\diamond j}(n) + a_0(n)$$

= $\sum_{1 \le j \le d} j \frac{a_j}{\alpha} (1)g(1)^{j-1}g(n) + \alpha(n) \sum_{1 \le j \le d} \sum_{\substack{ln_1 \cdots n_j = n \\ n_1 \cdots n_j < n}} \frac{a_j}{\alpha} (l) \frac{g}{\alpha}(n_1) \cdots \frac{g}{\alpha}(n_j) + a_0(n)$

Since $\sum_{1 \leq j \leq d} j \frac{a_j}{\alpha}(1)g(1)^{j-1}g(n) = \frac{f'(g(1))}{\alpha(1)}g(n)$ and $f'(g(1)) \neq 0$, it follows that, for $n \geq 2$,

$$g(n) = -\frac{\alpha(1)}{f'(g(1))} \left\{ \alpha(n) \sum_{\substack{1 \le j \le d \\ n_1 \cdots n_j \le n}} \sum_{\substack{ln_1 \cdots n_j \le n \\ n_1 \cdots n_j \le n}} \frac{a_j}{\alpha}(l) \frac{g}{\alpha}(n_1) \cdots \frac{g}{\alpha}(n_j) + a_0(n) \right\},$$

i.e., the value of g(n) can be uniquely and successively determined.

References

- T. M. Apostol, Some properties of completely multiplicative arithmetical functions, Amer. Math. Monthly, 78 (1971), 266–271.
- [2] H. Glöckner, L. G. Lucht and Š. Porubský, Solutions to arithmetic equations, Amer. Math. Soc., 135 (2007), 1619–1629.
- [3] P. Haukkanen, On a binomial convolution of arithmetical functions, Nieuw Arch. Wisk., 14 (1996), 209–216.
- [4] J.Lambek, Arithmetical functions and distributivity, Amer. Math. Monthly, 73 (1966), 969–973.
- [5] E. Langford, Distributivity over the Dirichlet product and completely multiplicative arithmetical functions, Amer. Math. Monthly, 80 (1973), 411–414.
- [6] N. Pabhapote and V. Laohakosol, Distributive property of completely multiplicative functions, Lith. Math. J., 50 (2010), 312–322.
- [7] L. Tóth and P. Haukkanen, On the binomial convolution of arithmetical functions, J. Comb. Number Theory, 1 (2009), 31–48.