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Abstract

Let α be an arithmetic function such that α(n) �= 0 (n ∈ N). The
Qα-convolution of two arithmetic functions is defined as

(f � g)(n) =
∑
ij=n

α(n)

α(i)α(j)
f(i)g(j).

Basic properties of the Qα-convolution and characterizations of completely
multiplicative functions using Qα-convolution are derived. The solubility
of the equation

Tαg := ad � g�d + ad−1 � g�(d−1) + · · · + a1 � g + a0 = 0

with fixed arithmetic functions ad( �= 0), ad−1, . . . , a1, a0 is investigated.

1 Introduction

An arithmetic function is a complex-valued function whose domain is the set
of positive integers, N, and whose range is a subset of C. Let A be the set of
arithmetic functions equipped with addition, (usual) multiplication and Dirichlet
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convolution defined over N, respectively, by

(f + g)(n) = f(n) + g(n), fg(n) = f(n)g(n), (f ∗ g)(n) =
∑

xy=n

f(x)g(y).

The usual multiplication identity of A is the unit function u defined by u(n) = 1
for all n ∈ N. The Dirichlet convolution identity I ∈ A is defined by I(1) = 1
and I(n) = 0 for n > 1. An arithmetic function f ∈ A is said to be multiplicative
if

f(mn) = f(m)f(n) (1)

whenever gcd(m, n) = 1, and is said to be completely multiplicative if (1) holds
for all m, n ∈ N. For brevity, put

M = {f ∈ A ; f is multiplicative} , C = {f ∈ A ; f is completely multiplicative} .

In [4], Lambek, see also [1], gave the following characterization of completely
multiplicative functions: f is completely multiplicative if and only if f(g ∗ h) =
fg ∗ fh for every pair g, h ∈ A.

In [7], Tóth and Haukkanen introduced the binomial convolution which is
defined for f, g ∈ A by

(f ◦ g)(n) =
∑

xy=n

ξ(n)
ξ(x)ξ(y)

f(x)g(y),

where ξ(n) =
∏

prime p

νp(n)! ; νp(n) being the highest power of p dividing n.

Tóth-Haukkanen proved that a similar characterization under the Dirichlet con-
volution holds for the binomial convolution; note that the arithmetic function I
is also the identity with respect to binomial convolution.

In this work, we define a new kind of convolution called the Qα-convolution,
extending the binomial convolution. Let α ∈ A be such that α(n) �= 0 for all
n ∈ N. The Qα-convolution of f, g ∈ A is defined as

(f � g)(n) =
∑

xy=n

α(n)
α(x)α(y)

f(x)g(y). (2)

Clearly, the Qα-convolution can be expressed in term of the Dirichlet convolution
as

f � g = α

(
f

α
∗ g

α

)
. (3)

Our objectives are first to establish basic properties of Qα-convolution, second
to use it to characterize completely multiplicative functions and finally to solve
a polynomial Qα-convolution equation similar to the one in [2].
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2 Basic properties

Our first information deals with basic structure, whose proof is just an easy
exercise.

Theorem 1. The algebras (A, +, ∗, C) and (A, +, �, C) are isomorphic under
the map f �→ f/α.

We denote the inverses of f ∈ A under the Dirichlet convolution and the Qα

convolution by f−1∗ and f−1� , respectively. It is easy to check that f−1∗ and
f−1� exist if and only if f(1) �= 0. Moreover, we have

Theorem 2. If f ∈ A satisfies f(1) �= 0, then

f−1∗ =
(αf)−1�

α
, (4)

f−1� = α

(
f

α

)−1∗
. (5)

Proof. Since f ∗ f−1∗ = I, from (2) we have αf � αf−1∗ = αI. Thus,

αf−1∗ = (αf)−1�,

and (4) follows. On the other hand, from f � f−1� = αI, we get

f

α
∗ f−1�

α
= I,

from which (5) follows. �
Next, we give a characterization of completely multiplicative functions through

the use of the distributivity with respect to Qα-convolution.

Theorem 3. Let f ∈ A be multiplicative. Then f ∈ C if and only if f(g � h) =
fg � fh for all g, h ∈ A.

Proof. Assume that f ∈ C. Let g, h ∈ A. Then

f(g � h) = fα

(
g

α
∗ h

α

)
= α

(
fg

α
∗ fh

α

)
= fg � fh.

Conversely, assume that f(g � h) = fg � fh for all g, h ∈ A. Then

αf(g ∗ h) = f(αg � αh) = αfg � αfh = α

(
αfg

α
∗ αfh

α

)
= α(fg ∗ fh)

and so f(g ∗ h) = fg ∗ fh. By Lembek’s Theorem, [7], f ∈ C. �
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Theorem 4. Let f ∈ M. Then f ∈ C if and only if (fg)−1� = fg−1� for all
g ∈ A with g(1) �= 0.

Proof. If f ∈ C, then by Theorem 3 we get

αI = fαI = f(g � g−1�) = fg � fg−1�,

i.e., (fg)−1� = fg−1�. Conversely, if (fg)−1� = fg−1� for all g ∈ A with g(1) �= 0,
then using also Theorem 2, we get

α f−1(∗) = α

(
fα

α

)−1∗
= (fα)−1� = fα−1� = f

(
α

(α

α

)−1∗)
= f α μ

i.e., f−1∗ = fμ. By a well-known characterization, see [1], f ∈ C. �
In [5], Langford used the concept of discriminative and partially discrimi-

native products to derive necessary and sufficient conditions for complete mul-
tiplicativity. Our next aim is to extend these results through generalizing the
Qα-convolution. Before doing so, we need one some more definitions.

Let r ∈ N, r ≥ 2 and let g1, g2, . . . , gr ∈ A\ {0}. We say that the product
k = g1 � g2 � · · · � gr is

• r-fold Qα-discriminative, or r.q.d. for short, if the relation

α(1)r−1k(n) =
r∑

j=1

g1(1) · · · gj−1(1)gj(n)gj+1(1) · · ·gr(1) (6)

holds only when n is prime;

• r-fold Qα-partially discriminative, or r.q.p.d. for short, if for every prime
power pi (i ∈ N) the relation

α(1)r−1k(pi) =
r∑

j=1

g1(1) · · · gj−1(1)gj(pi)gj+1(1) · · ·gr(1) (7)

implies that i = 1;

• r-fold Qα-semi-discriminative, or r.q.s.d. for short, if the relation

α(1)r−1k(n) =
r∑

j=1

g1(1) · · · gj−1(1)gj(n)gj+1(1) · · ·gr(1) (8)

holds only when n = 1 or n is prime.

Theorem 5. Let f ∈ A with f(1) �= 0. If f distributes over a an r.q.d. product,
then f(1) is an (r−1)th root of unity and f(p1 · · ·pm) = f(p1) · · · f(pm) for any
primes p1, · · · , pm.
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Proof. Assume that f distributes over a an r.q.d. product k = g1 � g2 � · · · � gr.
We first show that k(1) �= 0. If k(1) = 0, then

1
α(1)r−1

r∑
j=1

g1(1) · · ·gj−1(1)g(1)gj+1(1) · · · gr(1) = 0 = k(1),

i.e.

α(1)r−1k(1) =
r∑

j=1

g1(1) · · ·gj−1(1)gj(1)gj+1(1) · · · gr(1),

so the equation (6) holds for n = 1, which is a contradiction. Thus k(1) �= 0.
Since

fk = f(g1 � g2 � · · · � gr) = fg1 � fg2 � · · · � fgr ,

we get

f(1)k(1) = α(1)
fg1

α
(1)

fg2

α
(1) · · · fgr

α
(1)

= f(1)r

(
g1(1)g2(1) · · ·gr(1)

α(1)r−1

)

= f(1)rk(1).

It follows from f(1)k(1) �= 0 that f(1)r−1 = 1. Next we show that for all primes
p1, . . . , pm (not necessary distinct),

f(p1 · · ·pm) = f(p1) · · ·f(pm). (9)

We proceed by induction on m. This is trivial if m = 1, so assume that
n = p1 · · ·pm; m ≥ 2 and that (9) is true for all integers whose number of prime
factors (not necessary distinct) is less then m. Since

f(g1 � g2 � · · · � gr) = fg1 � fg2 � · · · � fgr ,

then

f(p1 · · · pm)α(p1 · · · pm)
∑

d1···dr=p1···pm

g1

α
(d1) · · · gr

α
(dr)

= α(p1 · · ·pm)
∑

d1···dr=p1···pm

fg1

α
(d1) · · · fgr

α
(dr).
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Using the induction hypothesis, we get

f(p1 · · ·pm)
∑

d1···dr=p1···pm

dj �=p1···pm for all j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr)

+ f(p1 · · ·pm)
∑

d1···dr=p1···pm

dj=p1···pm for some j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr)

=f(p1) · · · f(pm)
∑

d1···dr=p1···pm

dj �=p1···pm for all j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr)

+ f(p1 · · ·pm)f(1)r−1
∑

d1···dr=p1···pm

dj=p1···pm for some j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr).

But f(1)r−1 = 1. Hence

[f(p1 · · ·pm) − f(p1) · · ·f(pm)]
∑

d1···dr=p1···pm

dj �=p1···pm for all j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr) = 0.

Since ∑
d1···dr=p1···pm

dj �=p1···pmfor all j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr)

= k(p1 · · · pm) −
∑

d1···dr=p1···pm

dj=p1···pm for some j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr)

and k is �−r.d. product, it follows that

∑
d1···dr=p1···pm

dj �=p1···pm for all j∈{1,...,r}

g1

α
(d1) · · · g1

α
(dr) �= 0.

This show that f(p1 · · · pm) = f(p1) · · ·f(pm), as desired. �
If we take f(1) = 1, in theorem 5, then we have the following corollary.

Corollary 1. Suppose that f(1) = 1. Then f is completely multiplicative if and
only if it distributes over an r.q.d. product.

Proof. If f is completely multiplicative then f(g � h) = fg � fh for all g, h ∈ A.
Assume now that f distributes over an r.q.d. product. Then f(p1 · · · pm) =
f(p1) · · ·f(pm) for any primes p1, · · · , pm, by Theorem 5. Hence f is completely
multiplicative. �
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Theorem 6. Suppose that f is multiplicative. Then f is completely multiplica-
tive if and only if it distributes over an r.q.p.d. product.

Proof. If f is completely multiplicative then f(g � h) = fg � fh for all g, h ∈ A.
Conversely, assume that f distributes over an r.q.p.d. product k = g1�g2�· · ·�gr.
Since f is multiplicative, it suffices to show that for all primes p, f(pm) = f(p)m ;
for all m ∈ N. The case m = 1 being trivial, so assume that m ≥ 2 and
f(pt) = f(p)t holds for t < m. The remaining proof is similar to that of the
last half of Theorem 5 by induction on m, but making use of k being an r.q.p.d.
product. �

Corollary 2. If we take f(1) = 1, then f is completely multiplicative if and
only if it distributes over a an r.q.s.d. product.

3 Solving a polynomial Qα-convolution equation

In [2], Glöckner, Lucht and Porubský solved the polynomial convolution equation

Tg = ad ∗ g∗d + ad−1 ∗ g∗(d−1) + · · ·+ a1 ∗ g + a0 = 0 (10)

with fixed coefficients ad, ad−1, . . . , a1, a0 ∈ A and ad �= 0 by showing that it has
a solution g ∈ A satisfying g(1) = zo, if z0 is a simple zero of the polynomial

f(z) = ad(1)zd + ad−1(1)zd−1 + · · ·+ a1(1)z + a0(1).

We show next that the polynomial Qα-convolution equation

Tαg = ad � g�d + ad−1 � g�(d−1) + · · ·+ a1 � g + a0 = 0

has solution g ∈ A under similar conditions.

Theorem 7. For d ∈ N, let Tα : A → A be defined by

Tαg = ad � g�d + ad−1 � g�(d−1) + · · ·+ a1 � g + a0 (11)

with ad, ad−1, . . . , a1, a0 ∈ A and ad �= 0. If z0 is a simple zero of the polynomial

f(z) = ad(1)zd + ad−1(1)zd−1 + · · ·+ a1(1)z + a0(1), (12)

then there exists a unique solution g ∈ A to the convolution equation Tαg = 0
satisfying g(1) = α(1)zo.

Proof. Assume that z0 is a simple zero of f(z). If g ∈ A satisfies Tαg = 0, then

0 = α(1)
(ad

α
(1)

( g

α

)
(1)d +

ad−1

α
(1)

( g

α

)
(1)d−1 + · · ·+ a1

α
(1)

g

α
(1)

)
+ a0(1)

= f
( g

α
(1)

)
,
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so that
g

α
(1) is a zero of f(z) = 0. Define the starting value of g ∈ A by

g(1)
α(1)

= z0. Observe that

aj � g�j(n) = j
aj

α
(1)g(1)j−1g(n)+α(n)

∑
ln1···nj=n
n1···nj<n

aj

α
(l)

g

α
(n1) · · · g

α
(nj) (j ∈ N).

We now show that the equation Tαg = 0 uniquely and successively determines
the values of g(n) for n ≥ 2. To this end, consider

0 =
∑

1≤j≤d

aj � g�j(n) + a0(n)

=
∑

1≤j≤d

j
aj

α
(1)g(1)j−1g(n) + α(n)

∑
1≤j≤d

∑
ln1···nj=n
n1···nj<n

aj

α
(l)

g

α
(n1) · · · g

α
(nj) + a0(n).

Since
∑

1≤j≤d j
aj

α (1)g(1)j−1g(n) = f ′(g(1))
α(1) g(n) and f ′(g(1)) �= 0, it follows that,

for n ≥ 2,

g(n) = − α(1)
f ′(g(1))

⎧⎪⎪⎨
⎪⎪⎩

α(n)
∑

1≤j≤d

∑
ln1···nj=n
n1···nj<n

aj

α
(l)

g

α
(n1) · · · g

α
(nj) + a0(n)

⎫⎪⎪⎬
⎪⎪⎭

,

i.e., the value of g(n) can be uniquely and successively determined. �
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