THE Q_{α}-CONVOLUTION OF ARITHMETIC FUNCTIONS AND SOME OF ITS PROPERTIES

Sunanta Srisopha*, Pattira Ruengsinsub*
and
Nittiya Pabhapote**
* Department of Mathematics, Kasetsart University, Bangkok 10900
** Department of Mathematics, University of the Thai Chamber of Commerce Bangkok 10400, Thailand
email: naejung_s@hotmail.com, fscipar@ku.ac.th nittiya_pab@utcc.ac.th

Abstract

Let α be an arithmetic function such that $\alpha(n) \neq 0(n \in \mathbb{N})$. The Q_{α}-convolution of two arithmetic functions is defined as $$
(f \diamond g)(n)=\sum_{i j=n} \frac{\alpha(n)}{\alpha(i) \alpha(j)} f(i) g(j)
$$

Basic properties of the Q_{α}-convolution and characterizations of completely multiplicative functions using Q_{α}-convolution are derived. The solubility of the equation $$
T_{\alpha} g:=a_{d} \diamond g^{\diamond d}+a_{d-1} \diamond g^{\diamond(d-1)}+\cdots+a_{1} \diamond g+a_{0}=0
$$ with fixed arithmetic functions $a_{d}(\neq 0), a_{d-1}, \ldots, a_{1}, a_{0}$ is investigated.

1 Introduction

An arithmetic function is a complex-valued function whose domain is the set of positive integers, \mathbb{N}, and whose range is a subset of \mathbb{C}. Let \mathcal{A} be the set of arithmetic functions equipped with addition, (usual) multiplication and Dirichlet

Keywords: arithmetic functions, Dirichlet convolution, Q_{α}-convolution
(2010) AMS Classification: 11A25

Supported by the Thailand Research Fund.
convolution defined over \mathbb{N}, respectively, by

$$
(f+g)(n)=f(n)+g(n), f g(n)=f(n) g(n),(f * g)(n)=\sum_{x y=n} f(x) g(y) .
$$

The usual multiplication identity of \mathcal{A} is the unit function u defined by $u(n)=1$ for all $n \in \mathbb{N}$. The Dirichlet convolution identity $I \in \mathcal{A}$ is defined by $I(1)=1$ and $I(n)=0$ for $n>1$. An arithmetic function $f \in \mathcal{A}$ is said to be multiplicative if

$$
\begin{equation*}
f(m n)=f(m) f(n) \tag{1}
\end{equation*}
$$

whenever $\operatorname{gcd}(m, n)=1$, and is said to be completely multiplicative if (1) holds for all $m, n \in \mathbb{N}$. For brevity, put
$\mathcal{M}=\{f \in \mathcal{A} ; f$ is multiplicative $\}, \mathcal{C}=\{f \in \mathcal{A} ; f$ is completely multiplicative $\}$.
In [4], Lambek, see also [1], gave the following characterization of completely multiplicative functions: f is completely multiplicative if and only if $f(g * h)=$ $f g * f h$ for every pair $g, h \in \mathcal{A}$.

In [7], Tóth and Haukkanen introduced the binomial convolution which is defined for $f, g \in \mathcal{A}$ by

$$
(f \circ g)(n)=\sum_{x y=n} \frac{\xi(n)}{\xi(x) \xi(y)} f(x) g(y),
$$

where $\xi(n)=\prod_{\text {prime } p} \nu_{p}(n)!; \nu_{p}(n)$ being the highest power of p dividing n. Tóth-Haukkanen proved that a similar characterization under the Dirichlet convolution holds for the binomial convolution; note that the arithmetic function I is also the identity with respect to binomial convolution.

In this work, we define a new kind of convolution called the Q_{α}-convolution, extending the binomial convolution. Let $\alpha \in \mathcal{A}$ be such that $\alpha(n) \neq 0$ for all $n \in \mathbb{N}$. The Q_{α}-convolution of $f, g \in \mathcal{A}$ is defined as

$$
\begin{equation*}
(f \diamond g)(n)=\sum_{x y=n} \frac{\alpha(n)}{\alpha(x) \alpha(y)} f(x) g(y) . \tag{2}
\end{equation*}
$$

Clearly, the Q_{α}-convolution can be expressed in term of the Dirichlet convolution as

$$
\begin{equation*}
f \diamond g=\alpha\left(\frac{f}{\alpha} * \frac{g}{\alpha}\right) . \tag{3}
\end{equation*}
$$

Our objectives are first to establish basic properties of Q_{α}-convolution, second to use it to characterize completely multiplicative functions and finally to solve a polynomial Q_{α}-convolution equation similar to the one in [2].

2 Basic properties

Our first information deals with basic structure, whose proof is just an easy exercise.

Theorem 1. The algebras $(\mathcal{A},+, *, \mathbb{C})$ and $(\mathcal{A},+, \diamond, \mathbb{C})$ are isomorphic under the map $f \mapsto f / \alpha$.

We denote the inverses of $f \in \mathcal{A}$ under the Dirichlet convolution and the Q_{α} convolution by $f^{-1 *}$ and $f^{-1 \diamond}$, respectively. It is easy to check that $f^{-1 *}$ and $f^{-1 \diamond}$ exist if and only if $f(1) \neq 0$. Moreover, we have

Theorem 2. If $f \in \mathcal{A}$ satisfies $f(1) \neq 0$, then

$$
\begin{align*}
& f^{-1 *}=\frac{(\alpha f)^{-1 \diamond}}{\alpha} \tag{4}\\
& f^{-1 \diamond}=\alpha\left(\frac{f}{\alpha}\right)^{-1 *} \tag{5}
\end{align*}
$$

Proof. Since $f * f^{-1 *}=I$, from (2) we have $\alpha f \diamond \alpha f^{-1 *}=\alpha I$. Thus,

$$
\alpha f^{-1 *}=(\alpha f)^{-1 \diamond}
$$

and (4) follows. On the other hand, from $f \diamond f^{-1 \diamond}=\alpha I$, we get

$$
\frac{f}{\alpha} * \frac{f^{-1 \diamond}}{\alpha}=I
$$

from which (5) follows.
Next, we give a characterization of completely multiplicative functions through the use of the distributivity with respect to Q_{α}-convolution.

Theorem 3. Let $f \in \mathcal{A}$ be multiplicative. Then $f \in \mathcal{C}$ if and only if $f(g \diamond h)=$ $f g \diamond f h$ for all $g, h \in \mathcal{A}$.

Proof. Assume that $f \in \mathcal{C}$. Let $g, h \in \mathcal{A}$. Then

$$
f(g \diamond h)=f \alpha\left(\frac{g}{\alpha} * \frac{h}{\alpha}\right)=\alpha\left(\frac{f g}{\alpha} * \frac{f h}{\alpha}\right)=f g \diamond f h
$$

Conversely, assume that $f(g \diamond h)=f g \diamond f h$ for all $g, h \in \mathcal{A}$. Then

$$
\alpha f(g * h)=f(\alpha g \diamond \alpha h)=\alpha f g \diamond \alpha f h=\alpha\left(\frac{\alpha f g}{\alpha} * \frac{\alpha f h}{\alpha}\right)=\alpha(f g * f h)
$$

and so $f(g * h)=f g * f h$. By Lembek's Theorem, $[7], f \in \mathcal{C}$.

Theorem 4. Let $f \in \mathcal{M}$. Then $f \in \mathcal{C}$ if and only if $(f g)^{-1 \diamond}=f g^{-1 \diamond}$ for all $g \in \mathcal{A}$ with $g(1) \neq 0$.

Proof. If $f \in \mathcal{C}$, then by Theorem 3 we get

$$
\alpha I=f \alpha I=f\left(g \diamond g^{-1 \diamond}\right)=f g \diamond f g^{-1 \diamond}
$$

i.e., $(f g)^{-1 \diamond}=f g^{-1 \diamond}$. Conversely, if $(f g)^{-1 \diamond}=f g^{-1 \diamond}$ for all $g \in \mathcal{A}$ with $g(1) \neq 0$, then using also Theorem 2, we get

$$
\alpha f^{-1(*)}=\alpha\left(\frac{f \alpha}{\alpha}\right)^{-1 *}=(f \alpha)^{-1 \diamond}=f \alpha^{-1 \diamond}=f\left(\alpha\left(\frac{\alpha}{\alpha}\right)^{-1 *}\right)=f \alpha \mu
$$

i.e., $f^{-1 *}=f \mu$. By a well-known characterization, see $[1], f \in \mathcal{C}$.

In [5], Langford used the concept of discriminative and partially discriminative products to derive necessary and sufficient conditions for complete multiplicativity. Our next aim is to extend these results through generalizing the Q_{α}-convolution. Before doing so, we need one some more definitions.

Let $r \in \mathbb{N}, r \geq 2$ and let $g_{1}, g_{2}, \ldots, g_{r} \in \mathcal{A} \backslash\{0\}$. We say that the product $k=g_{1} \diamond g_{2} \diamond \cdots \diamond g_{r}$ is

- r-fold Q_{α}-discriminative, or r.q.d. for short, if the relation

$$
\begin{equation*}
\alpha(1)^{r-1} k(n)=\sum_{j=1}^{r} g_{1}(1) \cdots g_{j-1}(1) g_{j}(n) g_{j+1}(1) \cdots g_{r}(1) \tag{6}
\end{equation*}
$$

holds only when n is prime;

- r-fold Q_{α}-partially discriminative, or r.q.p.d. for short, if for every prime power $p^{i}(i \in \mathbb{N})$ the relation

$$
\begin{equation*}
\alpha(1)^{r-1} k\left(p^{i}\right)=\sum_{j=1}^{r} g_{1}(1) \cdots g_{j-1}(1) g_{j}\left(p^{i}\right) g_{j+1}(1) \cdots g_{r}(1) \tag{7}
\end{equation*}
$$

implies that $i=1$;

- r-fold Q_{α}-semi-discriminative, or r.q.s.d. for short, if the relation

$$
\begin{equation*}
\alpha(1)^{r-1} k(n)=\sum_{j=1}^{r} g_{1}(1) \cdots g_{j-1}(1) g_{j}(n) g_{j+1}(1) \cdots g_{r}(1) \tag{8}
\end{equation*}
$$

holds only when $n=1$ or n is prime.
Theorem 5. Let $f \in \mathcal{A}$ with $f(1) \neq 0$. If f distributes over a an r.q.d. product, then $f(1)$ is an $(r-1)^{\text {th }}$ root of unity and $f\left(p_{1} \cdots p_{m}\right)=f\left(p_{1}\right) \cdots f\left(p_{m}\right)$ for any primes p_{1}, \cdots, p_{m}.

Proof. Assume that f distributes over a an r.q.d. product $k=g_{1} \diamond g_{2} \diamond \cdots \diamond g_{r}$. We first show that $k(1) \neq 0$. If $k(1)=0$, then

$$
\frac{1}{\alpha(1)^{r-1}} \sum_{j=1}^{r} g_{1}(1) \cdots g_{j-1}(1) g(1) g_{j+1}(1) \cdots g_{r}(1)=0=k(1)
$$

i.e.

$$
\alpha(1)^{r-1} k(1)=\sum_{j=1}^{r} g_{1}(1) \cdots g_{j-1}(1) g_{j}(1) g_{j+1}(1) \cdots g_{r}(1)
$$

so the equation (6) holds for $n=1$, which is a contradiction. Thus $k(1) \neq 0$. Since

$$
f k=f\left(g_{1} \diamond g_{2} \diamond \cdots \diamond g_{r}\right)=f g_{1} \diamond f g_{2} \diamond \cdots \diamond f g_{r}
$$

we get

$$
\begin{aligned}
f(1) k(1) & =\alpha(1) \frac{f g_{1}}{\alpha}(1) \frac{f g_{2}}{\alpha}(1) \cdots \frac{f g_{r}}{\alpha}(1) \\
& =f(1)^{r}\left(\frac{g_{1}(1) g_{2}(1) \cdots g_{r}(1)}{\alpha(1)^{r-1}}\right) \\
& =f(1)^{r} k(1) .
\end{aligned}
$$

It follows from $f(1) k(1) \neq 0$ that $f(1)^{r-1}=1$. Next we show that for all primes p_{1}, \ldots, p_{m} (not necessary distinct),

$$
\begin{equation*}
f\left(p_{1} \cdots p_{m}\right)=f\left(p_{1}\right) \cdots f\left(p_{m}\right) \tag{9}
\end{equation*}
$$

We proceed by induction on m. This is trivial if $m=1$, so assume that $n=p_{1} \cdots p_{m} ; m \geq 2$ and that (9) is true for all integers whose number of prime factors (not necessary distinct) is less then m. Since

$$
f\left(g_{1} \diamond g_{2} \diamond \cdots \diamond g_{r}\right)=f g_{1} \diamond f g_{2} \diamond \cdots \diamond f g_{r}
$$

then

$$
\begin{gathered}
f\left(p_{1} \cdots p_{m}\right) \alpha\left(p_{1} \cdots p_{m}\right) \sum_{d_{1} \cdots d_{r}=p_{1} \cdots p_{m}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{r}}{\alpha}\left(d_{r}\right) \\
=\alpha\left(p_{1} \cdots p_{m}\right) \sum_{d_{1} \cdots d_{r}=p_{1} \cdots p_{m}} \frac{f g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{f g_{r}}{\alpha}\left(d_{r}\right) .
\end{gathered}
$$

Using the induction hypothesis, we get

$$
\begin{aligned}
& f\left(p_{1} \cdots p_{m}\right) \sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\
d_{j} \neq p_{1} \cdots p_{m} \text { for all }}} \frac{g_{1}}{\alpha \in\{1, \ldots, r\}}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right) \\
& +f\left(p_{1} \cdots p_{m}\right) \sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\
d_{j}=p_{1} \cdots p_{m} \text { for some }}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right) \\
& =f\left(p_{1}\right) \cdots f\left(p_{m}\right) \sum_{\substack{\left.d_{1}, \ldots, r\right\} \\
d_{j} \neq p_{1} \cdots p_{m} \text { for all }}}^{\sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\
j \in\{1, \ldots, r\}}}^{g_{1}}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right)} \\
& +f\left(p_{1} \cdots p_{m}\right) f(1)^{r-1} \sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\
d_{j}=p_{1} \cdots p_{m} \text { for some }}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right) .
\end{aligned}
$$

But $f(1)^{r-1}=1$. Hence

$$
\left[f\left(p_{1} \cdots p_{m}\right)-f\left(p_{1}\right) \cdots f\left(p_{m}\right)\right] \sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\ j \in\{1, \ldots, r\}}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right)=0
$$

Since

$$
=\sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\ d_{j} \neq p_{1} \cdots p_{m} \text { for all } j \in\{1, \ldots, r\}}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right)
$$

and k is $\diamond-$ r.d. product, it follows that

$$
\sum_{\substack{d_{1} \cdots d_{r}=p_{1} \cdots p_{m} \\ d_{j} \neq p_{1} \cdots p_{m} \text { for all } j \in\{1, \ldots, r\}}} \frac{g_{1}}{\alpha}\left(d_{1}\right) \cdots \frac{g_{1}}{\alpha}\left(d_{r}\right) \neq 0
$$

This show that $f\left(p_{1} \cdots p_{m}\right)=f\left(p_{1}\right) \cdots f\left(p_{m}\right)$, as desired.
If we take $f(1)=1$, in theorem 5 , then we have the following corollary.
Corollary 1. Suppose that $f(1)=1$. Then f is completely multiplicative if and only if it distributes over an r.q.d. product.

Proof. If f is completely multiplicative then $f(g \diamond h)=f g \diamond f h$ for all $g, h \in \mathcal{A}$. Assume now that f distributes over an r.q.d. product. Then $f\left(p_{1} \cdots p_{m}\right)=$ $f\left(p_{1}\right) \cdots f\left(p_{m}\right)$ for any primes p_{1}, \cdots, p_{m}, by Theorem 5 . Hence f is completely multiplicative.

Theorem 6. Suppose that f is multiplicative. Then f is completely multiplicative if and only if it distributes over an r.q.p.d. product.

Proof. If f is completely multiplicative then $f(g \diamond h)=f g \diamond f h$ for all $g, h \in \mathcal{A}$. Conversely, assume that f distributes over an r.q.p.d. product $k=g_{1} \diamond g_{2} \diamond \cdots \diamond g_{r}$. Since f is multiplicative, it suffices to show that for all primes $p, f\left(p^{m}\right)=f(p)^{m}$; for all $m \in \mathbb{N}$. The case $m=1$ being trivial, so assume that $m \geq 2$ and $f\left(p^{t}\right)=f(p)^{t}$ holds for $t<m$. The remaining proof is similar to that of the last half of Theorem 5 by induction on m, but making use of k being an r.q.p.d. product.
Corollary 2. If we take $f(1)=1$, then f is completely multiplicative if and only if it distributes over a an r.q.s.d. product.

3 Solving a polynomial Q_{α}-convolution equation

In [2], Glöckner, Lucht and Porubský solved the polynomial convolution equation

$$
\begin{equation*}
T g=a_{d} * g^{* d}+a_{d-1} * g^{*(d-1)}+\cdots+a_{1} * g+a_{0}=0 \tag{10}
\end{equation*}
$$

with fixed coefficients $a_{d}, a_{d-1}, \ldots, a_{1}, a_{0} \in \mathcal{A}$ and $a_{d} \neq 0$ by showing that it has a solution $g \in \mathcal{A}$ satisfying $g(1)=z_{o}$, if z_{0} is a simple zero of the polynomial

$$
f(z)=a_{d}(1) z^{d}+a_{d-1}(1) z^{d-1}+\cdots+a_{1}(1) z+a_{0}(1)
$$

We show next that the polynomial Q_{α}-convolution equation

$$
T_{\alpha} g=a_{d} \diamond g^{\diamond d}+a_{d-1} \diamond g^{\diamond(d-1)}+\cdots+a_{1} \diamond g+a_{0}=0
$$

has solution $g \in \mathcal{A}$ under similar conditions.
Theorem 7. For $d \in \mathbb{N}$, let $T_{\alpha}: \mathcal{A} \rightarrow \mathcal{A}$ be defined by

$$
\begin{equation*}
T_{\alpha} g=a_{d} \diamond g^{\diamond d}+a_{d-1} \diamond g^{\diamond(d-1)}+\cdots+a_{1} \diamond g+a_{0} \tag{11}
\end{equation*}
$$

with $a_{d}, a_{d-1}, \ldots, a_{1}, a_{0} \in \mathcal{A}$ and $a_{d} \neq 0$. If z_{0} is a simple zero of the polynomial

$$
\begin{equation*}
f(z)=a_{d}(1) z^{d}+a_{d-1}(1) z^{d-1}+\cdots+a_{1}(1) z+a_{0}(1) \tag{12}
\end{equation*}
$$

then there exists a unique solution $g \in \mathcal{A}$ to the convolution equation $T_{\alpha} g=0$ satisfying $g(1)=\alpha(1) z_{o}$.

Proof. Assume that z_{0} is a simple zero of $f(z)$. If $g \in \mathcal{A}$ satisfies $T_{\alpha} g=0$, then

$$
\begin{aligned}
0 & =\alpha(1)\left(\frac{a_{d}}{\alpha}(1)\left(\frac{g}{\alpha}\right)(1)^{d}+\frac{a_{d-1}}{\alpha}(1)\left(\frac{g}{\alpha}\right)(1)^{d-1}+\cdots+\frac{a_{1}}{\alpha}(1) \frac{g}{\alpha}(1)\right)+a_{0}(1) \\
& =f\left(\frac{g}{\alpha}(1)\right)
\end{aligned}
$$

so that $\frac{g}{\alpha}(1)$ is a zero of $f(z)=0$. Define the starting value of $g \in \mathcal{A}$ by $\frac{g(1)}{\alpha(1)}=z_{0}$. Observe that
$a_{j} \diamond g^{\diamond j}(n)=j \frac{a_{j}}{\alpha}(1) g(1)^{j-1} g(n)+\alpha(n) \sum_{\substack{l n_{1} \cdots n_{j}=n \\ n_{1} \cdots n_{j}<n}} \frac{a_{j}}{\alpha}(l) \frac{g}{\alpha}\left(n_{1}\right) \cdots \frac{g}{\alpha}\left(n_{j}\right) \quad(j \in \mathbb{N})$.
We now show that the equation $T_{\alpha} g=0$ uniquely and successively determines the values of $g(n)$ for $n \geq 2$. To this end, consider

$$
\begin{aligned}
0 & =\sum_{1 \leq j \leq d} a_{j} \diamond g^{\diamond j}(n)+a_{0}(n) \\
& =\sum_{1 \leq j \leq d} j \frac{a_{j}}{\alpha}(1) g(1)^{j-1} g(n)+\alpha(n) \sum_{\substack{1 \leq j \leq d}} \sum_{\substack{n_{1} \cdots n_{j}=n \\
n_{1} \cdots n_{j}<n}} \frac{a_{j}}{\alpha}(l) \frac{g}{\alpha}\left(n_{1}\right) \cdots \frac{g}{\alpha}\left(n_{j}\right)+a_{0}(n) .
\end{aligned}
$$

Since $\sum_{1 \leq j \leq d} j \frac{a_{j}}{\alpha}(1) g(1)^{j-1} g(n)=\frac{f^{\prime}(g(1))}{\alpha(1)} g(n)$ and $f^{\prime}(g(1)) \neq 0$, it follows that, for $n \geq 2$,

$$
g(n)=-\frac{\alpha(1)}{f^{\prime}(g(1))}\left\{\alpha(n) \sum_{1 \leq j \leq d} \sum_{\substack{n_{1} \cdots n_{j}=n \\ n_{1} \cdots n_{j}<n}} \frac{a_{j}}{\alpha}(l) \frac{g}{\alpha}\left(n_{1}\right) \cdots \frac{g}{\alpha}\left(n_{j}\right)+a_{0}(n)\right\},
$$

i.e., the value of $g(n)$ can be uniquely and successively determined.

References

[1] T. M. Apostol, Some properties of completely multiplicative arithmetical functions, Amer. Math. Monthly, 78 (1971), 266-271.
[2] H. Glöckner, L. G. Lucht and Š. Porubský, Solutions to arithmetic equations, Amer. Math. Soc., 135 (2007), 1619-1629.
[3] P. Haukkanen, On a binomial convolution of arithmetical functions, Nieuw Arch. Wisk., 14 (1996), 209-216.
[4] J.Lambek, Arithmetical functions and distributivity, Amer. Math. Monthly, 73 (1966), 969-973.
[5] E. Langford, Distributivity over the Dirichlet product and completely multiplicative arithmetical functions, Amer. Math. Monthly, 80 (1973), 411-414.
[6] N. Pabhapote and V. Laohakosol, Distributive property of completely multiplicative functions, Lith. Math. J., 50 (2010), 312-322.
[7] L. Tóth and P. Haukkanen, On the binomial convolution of arithmetical functions, J. Comb. Number Theory, 1 (2009), 31-48.

