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Abstract

This paper discusses some relationships between matroids and con-
cept lattices. All the discussion are based on lattice theory.

1 Introduction

Wikipedia on matroid which was accessed on September 5, 2011 [1] pointed out
that matroid theory, a branch of combinatorics, dates from the 1930’s when van
der Waerden in his “Moderns Algebra” first approached linear and algebraic
dependence axiomatically and Whitney in his basic paper first used the term
matroid.

Additionally, Welsh in [2] indicated that matroid theory borrows extensively
from the terminology of linear algebra and graph theory, largely because it is
the abstraction of various notions of central importance in these fields. This
is not to say that all aspects of combinatorial theory can be covered by the
matroid umbrella.

Even though, some researchers discover many new results of matroids ap-
plying lattice theory, and besides, some results of matroids are more clearly
understood by the use of lattice theory (cf. [1-7]). In addition, using some re-
sults of matroids relative to lattice theory, matroid theory are applied in many
fields (cf. [1, 2, 8, 9]).

Concept lattice was proposed by Wille [10] in 1982. In addition, Ganter and
Wille [11] pointed out that concept lattice theory is a field of applied mathe-
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matics based on the mathematization of concept and conceptual hierarchy, in
particular on theory of complete lattices. Thereby, as an effective tool for data
analysis and knowledge processing, concept lattice has been applied to various
fields (cf. [10-13]).

Though the history and present condition of matroids and concept lattices
illustrate that lattice theory is an effective research way on matroids and con-
cept lattices, how to use matroid theory to the study on concept lattice theory
has seldom results. If we utilize matroid theory into the study of concept lat-
tices, then we may prescribe that it obtains a new way for concept lattice’s
research. Approaching to this purpose, the first what we need to do is to find
out the relationships between matroids and concept lattices. This paper will
do this work. The other works, such as using these relationships to apply some
approaches of matroid theory into the discussion of concept lattices, are left
rooms to the future.

The paper is organized as follows. Section 2 is to review some preliminaries
what we need. In Section 3, using a constructive way, we build up a concept
lattice directly from a matroid. Afterwards, we reveal some relationships be-
tween matroids and concept lattices by lattice theory.

2 Basic notions and properties

We recall back some basic notions and properties what we need in the sequel.
For the others, concept lattices are referred to [11, 12]; lattice theory are seen
in [14, 15]; matroids are referred to [2].

2.1 Concept lattice

Definition 2.1.1 [11, p.17] A context K = (O, P, R) consists of two sets
O and P and a relation R between O and P . The elements of O are called the
objects and the elements of P are called the attributes of context. In order to
express that an object o is in a relation R with an attribute p, we write oRp or
(o, p) ∈ R and read it as “the object o has the attribute p”.

[11, p.17] A small context can be represented by a cross table, i.e., by a
rectangular table the rows of which are headed by the object names and the
columns headed by the attribute names. A cross in row g and column m means
that the object g has the attribute m.

[11, p.18] For a set A ⊆ O of objects, we define A′ = {p ∈ P |xRp for all
x ∈ A}. Correspondingly, for a set B of attributes, we define B′ = {o ∈ O|oRy
for all y ∈ B}.
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A concept of the context (O, P, R) is a pair (A, B) with A ⊆ O, B ⊆ P, A′ =
B and B′ = A. We call A the extent and B the intent of the concept (A, B).

[11, p.19] If (A1, B1) and (A2, B2) are concepts of a context (O, P, R),
(A1, B1) is called a subconcept of (A2, B2), provided that A1 ⊆ A2. In this case,
(A2, B2) is a superconcept of (A1, B1), and we write (A1, B1) ≤K (A2, B2). The
relation ≤K is called the hierarchical order (or simply order) of the concepts.
The set of all concepts of (O, P, R) ordered in this way is denoted by B(O, P, R)
and is called the concept lattice of the context (O, P, R).

Lemma 2.1.1 [11, p.18] If (O, P, R) is a context, A, A1, A2 ⊆ O are sets
of objects and B, B1 , B2 are sets of attributes, then

(i) A1 ⊆ A2 ⇒ A′
2 ⊆ A′

1; (i)’ B1 ⊆ B2 ⇒ B′
2 ⊆ B′

1;
(ii) A ⊆ A′′; (ii)’ B ⊆ B′′;
(iii) A′ = A′′′; (iii)’ B′ = B′′′.

Lemma 2.1.2 Let (O, P, R) be a context and (At, Bt) ∈ B(O, P, R) (t ∈
T ).

(1)[11, p.20] The concept lattice B(O, P, R) is a complete lattice in which
infimum and supremum are given by∧

t∈T (At, Bt) = (
⋂

t∈T At, (
⋃

t∈T Bt)′′),
∨

t∈T (At, Bt) = ((
⋃

t∈T At)′′,
⋂

t∈T Bt).
(2)[11, p.20] If V is a complete lattice with ≤V as its partial order, then

B(V, V,≤V ) ∼= V .

Remark 2.1.1 For a context (O, P, R), Lemma 2.1.1 and Definition 2.1.1
show that (A′′, A′), (B′, B′′) ∈ B(O, P, R) hold for any A ⊆ O and B ⊆ P .

2.2 Lattice theory

Definition 2.2.1 [2, p.45&14, 15] If P is a poset with a unique minimal
element, which we will always denote by 0, then an atom is an element which
covers 0.

[2, p.47&14, 15] A finite lattice L is semimodular if for all x, y ∈ L: x and
y cover x ∧ y ⇒ x ∨ y covers x and y.

[2, p.48&14, 15] The height of a finite semimodular lattice is h(I), and its
elements of height equal to h(I) − 1 are called its coatoms.

[2, p.51&14, 15] A finite lattice is geometric if it is semimodular and every
point is the join of atoms.

Remark 2.2.1 (1) By the knowledge in [14, 15], we may describe that for
two finite lattices L1 and L2, if a map f : L1 → L2 is join-isomorphic, then f
is a lattice isomorphism.

(2) If two lattices L1 and L2 are isomorphic, it is denoted as L1
∼= L2 in

this paper.
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(3) Let L be a lattice and X ⊆ L. In this paper, sometimes,
∨

x∈X x and∧
x∈X x will be denoted as ∨X and ∧X respectively.

2.3 Matroid

Definition 2.3.1 [2, pp.7-8] A matroid M is a finite set S and a collection
I of subsets of S (called independent sets) such that (I1)-(I3) are satisfied.

(I1) ∅ ∈ I.
(I2) If U ∈ I and V ⊆ U , then V ∈ I.
(I3) If U, V ∈ I with |U | = |V | + 1, then there exists x ∈ U \ V such that

V ∪ x ∈ I.

Lemma 2.3.1 [2, pp.48-50] If M is a matroid on S, we can associate with
M a partially ordered set L(M) whose elements are the closed sets of M ordered
by inclusion. Then under the inclusion ordering, L(M) is a geometric lattice.

[2, p.51] A finite lattice L is isomorphic to the lattice of closed sets of a
matroid if and only if it is geometric.

[2, p.54] The correspondence between a geometric lattice L and the matroid
M(L) on the set of atoms of L is a bijection between the set of finite geometric
lattices and the set of simple matroids.

Remark 2.3.1 Let M be a matroid on S with F as its family of closed
sets.

(1) By the closure operator axioms in [2, p.8], M can be represented as
(S,F). The definition of closed sets of a matroid is referred to [2, p.8].

(2) There is one and only one simple matroid M1 on S determined by M
(cf. [2, p.54]). The definition of a simple matroid is seen [2, p.13].

Notice 2.3.1 Based on Definition 2.3.1, all the discussion in this paper
are finite.

3 Relationships

About the relationships between matroids and concept lattices, it has ex-
isted the following results.

(3.1) For a given context (O, P, R), H.Mao in [16] presents some criteria
to determine under what conditions, LK or KL is the closure operator of a
matroid, where (L, K) is the Galois connection decided by (O, P, R).

(3.2) For a matroid M with F as the set of closed sets, Remark 2.3.1 points
out that M can be simplified as M1; up to isomorphism, there is one and only
one geometric lattice (F ,⊆) determined by M1.

Additionally, Lemma 2.1.2 and [11] describe that up to isomorphism, there is
a concept lattice B(V, V,⊆) satisfying B(V, V,⊆) ∼= (F ,⊆), where V = (F ,⊆).
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From (3.1) and (3.2), it seems that the relationships between matroids and
concept lattices are clear and it has no value to consider to find out the inter-
relationships again. However, except the way in (3.2), we may hope to discover
another much more direct way to construct a context by a constructive method
from a matriod. As a result, once we face a question relative to concept lattices
or matroids, we may choose the best from the already made ways to answer
the question.

How to find a new way to reveal the relationships between matroids and
concept lattices? We may notice that lattice theory is applied in the study on
both matroids and concept lattices. Utilizing lattice theory, we have discovered
some inter-relationships between matroids and concept lattices such as that in
(3.2). Lemma 2.1.2, Lemma 2.3.1 and Remark 2.3.1 illustrate that we may
reveal the relationships between geometric lattices and concept lattices when
we hope to find out the relationships between matroids and concept lattices.
Based on these ideas, in this section, we first provide examples to show that
the existence of a context which its concept lattice is geometric (cf. Example
3.1) and conversely, a matroid M can provide a concept lattice B(M) satis-
fying B(M) ∼= (F(M),⊆) where F(M) is the family of closed sets of M (cf.
Example 3.2). Afterwards, we will pay our attention to construct a context
(O, P, R) directly yielded out of a geometric lattice L. Meanwhile, we prove
that the concept lattice B(O, P, R) is isomorphic to L. After that, we achieve a
result expressed the inter-relationships between simple matroids and geometric
concept lattices.

Example 3.1 Let (O, P, R) be a context where O = {1, 2, 3, 4}, P =
{a, b, c, d, e} and R ⊆ O×P shown as Table 3.1. From the table, we may receive:
{1}′ = {a, c, e} and {a, c, e}′ = {1}; {2}′ = {a, b, e} and {a, b, e}′ = {2};
{3}′ = {4}′ = {b, c, d} and {b, c, d}′ = {3, 4}. The diagram of B(O, P, R) is
Figure 3.1.

Table 3.1

a b c d e
1 × × ×
2 × × ×
3 × × ×
4 × × ×
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(∅, {a, b, c, d, e})

({1, 2, 3, 4}, ∅)

({1}, {a, c, e}) ({3, 4}, {b, c, d})

({1, 2}, {a, e}) ({2, 3, 4}, {b})
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({2}, {a, b, e})

�
�

�
��

({1, 3, 4}, {c})

Figure 3.1

Example 3.2 Let M = (S,F) be a matroid with F as its family of closed
sets where S = {s1, s2, s3} and F = 2S. For simplicity, let aj = {sj}, (j =
1, 2, 3), c1 = {s1, s2}, c2 = {s1, s3}, c3 = {s2, s3}, 0 = {∅} and I = {S}.
Then (F ,⊆) is shown in Figure 3.2. Evidently, (F ,⊆) is geometric. Put
O = {a1, a2, a3} and P = {c1, c2, c3}. Define R ⊆ O×P as (x, y) ∈ R ⇔ x ⊆ y.
Then we receive a context (O, P, R) and the cross table is Table 3.2. From the
table, we may achieve {a1}′ = {c1, c2}, {a2}′ = {c1, c3}, {a3}′ = {c2, c3}, and
{c1, c2}′ = {a1}, {c1, c3}′ = {a2}, {c2, c3}′ = {a3}. The diagram of B(O, P, R)
is Figure 3.3.
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c2

Figure 3.2

Table 3.2

c1 c2 c3

a1 × ×
a2 × ×
a3 × ×
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(∅, {c1, c2, c3})

({a1, a2, a3}, ∅)
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({a1, a3}, {c2})

Figure 3.3

For a geometric lattice L with ≤ as its partial order, we will prove that
there is a context (O, P, R) satisfying B(O, P, R) ∼= L.

Let AL be the set of atoms of L and CL be the set of coatoms of L. For
any l ∈ L, let AL(l) = {a ∈ AL|a ≤ l} and CL(l) = {c ∈ CL|l ≤ c}.

First, we may sum up some properties of geometric lattices from the defini-
tion of a geometric lattice. Let x, y ∈ L. There are the following consequences.

(g1) x = ∨{a ∈ AL|a ≤ x} = ∧{c ∈ CL|x ≤ c}.
(g2) x = y ⇔ {c ∈ CL|x ≤ c} = {c ∈ CL|y ≤ c} ⇔ {a ∈ AL|a ≤ x} = {a ∈

AL|a ≤ y}.

Second, we establish a context (O, P, R) relative to L.
Put O = AL and P = CL. Let R ⊆ O × P be defined as xRy ⇔ x ≤ y in

L.

Third, we prove B(O, P, R) ∼= L step by step.
Step 1. To prove: for any (X, Y ) ∈ B(O, P, R), there is {a ∈ AL|a ≤ ∨X in

L} = X.
According to X ⊆ O = AL and the geometric property of L, it infers to

∨X ∈ L and x ≤ ∨X in L for any x ∈ X. That is to say, {a ∈ AL|a ≤ ∨X in
L} ⊇ X holds.

Additionally, choose a ∈ {a ∈ AL|a ≤ ∨X in L}.
By (X, Y ) ∈ B(O, P, R) and Definition 2.1.1, for any y ∈ X′, it obtains

x ≤ y for all x ∈ X. This follows
∨

x∈X x ≤ y. So, a ≤ ∨X ≤ y holds for any
y ∈ X′. Thus, we may arrive at a ∈ X′′ = X. This causes {a ∈ AL|a ≤ ∨X in
L} ⊆ X.

Moreover, it achieves X = {a ∈ AL|a ≤ ∨X in L}. Further, (X, Y ) ∈
B(O, P, R) follows Y = X′ = {y ∈ CL|x ≤ y, ∀x ∈ X}.

Step 2. Let a ∈ L. We prove that there is (X, Y ) ∈ B(O, P, R) satisfying
a = ∨X.

Put X = AL(a) and Y = CL(a). Then, obviously, X ⊆ O and Y ⊆ P are
correct. In view of Definition 2.1.1, we receive
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X′ = {y ∈ P |xRy, ∀x ∈ X} = {y ∈ P |x ≤ y for all x ∈ X}.
We may deal with the properties of X′ as follows.
Step 2.1. To prove X′ = Y .
Let y ∈ X′. Then for any x ∈ X, x ≤ y holds. This carries out ∨X ≤ y.

By (g1), we may know a = ∨AL(a) = ∨X. Thus, it obtains a ≤ y. This infers
to y ∈ CL(a). Furthermore, X′ ⊆ Y is correct.

Additionally, let y2 ∈ Y . Then a ≤ y2 holds evidently. By the definition
of AL(a), it gets x ≤ a for any x ∈ AL(a). Thus, for any x ∈ AL(a) = X,
x ≤ a ≤ y2 holds, that is, x ≤ y2 is true. Hence, we may indicate y2 ∈ X′.

In one word, X′ = Y is true.
Step 2.2. To prove Y ′ = X.
By Definition 2.1.1, we assure

Y ′ = {x ∈ O|xRy, ∀y ∈ Y } = {x ∈ AL|x ≤ y, ∀y ∈ Y }.
Let y1 ∈ Y ′. Then, y1 ≤ y holds for any y ∈ Y . Thus, we may obtain

y1 ≤ ∧Y . Since L is geometric, by (g1) and (g2), we obtain ∨X = ∨AL(a) =
a = ∧CL(a) = ∧Y . Thus, y1 ≤ a is correct. Furthermore, y1 ∈ X is true.
Therefore, Y ′ ⊆ X is followed.

Let x2 ∈ X. Then x2 ≤ ∨X = ∨AL(a) = a =
∧

y∈Y y. This follows x2 ≤ y
for any y ∈ Y . Thus, x2 ∈ Y ′ is true. Furthermore, X ⊆ Y ′ holds.

Therefore, X = Y ′ is followed.
Step 2.3. To prove X = X′′.
Considered Y = X′ by Step 2.1, we may express that Y ′ = X′′ holds.

Combining with Step 2.2, it follows X = X′′.
Step 2.4. Combining Step 2.1-Step 2.3 with Remark 2.1.1, we may infer to

(X, Y ) = (X′′, X′) ∈ B(O, P, R) and a = ∨X.
Step 3. Considering Step 1 and Step 2, we may define a map f : B(O, P, R) →

L as (X, Y ) �→ ∨
g∈X g. We prove that f is a lattice isomorphic map.

Step 3.1. To prove: f is an injection.
Let (Xj , Yj) ∈ B(O, P, R) (j = 1, 2). By Definition 2.1.1, we know (X1, Y1) �=

(X2 , Y2) if and only if X1 �= X2. According to Xj ⊆ O (j = 1, 2) and Step 1,
we may believe that X1 �= X2 follows

∨
g∈X1

g �= ∨
g∈X2

g in L. Hence, it yields
out that f is an injection.

Step 3.2. To prove: f is surjective.
Let y0 ∈ L. Utilizing the geometric property of L, it carries out y0 =∨

g∈AL(y0)
g. In view of Step 2, there exists X = {g ∈ AL|g ≤ y0} satisfying

(X, X′) ∈ B(O, P, R) and ∨X = y0. Further, using the definition of f , we
receive f((X, X′)) =

∨
g∈X g =

∨
g∈AL(y0)

g = y0.
Therefore, we may state that f is a surjection.
Step 3.3. To prove: f is join-preserved.
Let (Xj , Yj) ∈ B(O, P, R) (j = 1, 2). We will prove

f((X1 , Y1) ∨ (X2, Y2)) = f((X1 , Y1)) ∨ f((X2 , Y2)).
According to the definition of f , we get f((Xj , Yj)) =

∨
g∈Xj

g, (j =
1, 2). Considered the geometric property of L, we may indicate (

∨
g∈X1

g) ∨
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(
∨

g∈X2
g) =

∨
g∈X1∪X2

g. However, the property that f is a surjection and a
injection follows that there is one and only one (X, Y ) ∈ B(O, P, R) satisfying
f((X, Y )) =

∨
g∈X1∪X2

g, i.e. f((X, Y )) =
∨

g∈X g =
∨

g∈X1∪X2
g. Thus, there

is f((X, Y )) = f((X1 , Y1)) ∨ f((X2 , Y2)).
Considered

∨
g∈X g = (

∨
g∈X1

g) ∨ (
∨

g∈X2
g), we may carry out

∨
g∈Xj

g ≤
∨

g∈X1∪X2
g =

∨
g∈X g, (j = 1, 2). Taken this result and Step 1 with the

geometric property of L, we may point out Xj ⊆ X, (j = 1, 2), and so,
X1 ∪ X2 ⊆ X. Thus, it yields out (X1 ∪ X2)′′ ⊆ X′′ = X by Lemma 2.1.1. In
light of Lemma 2.1.1, we may achieve X1 ∪ X2 ⊆ (X1 ∪ X2)′′. Hence, there
is

∨
g∈X1∪X2

g ≤ ∨
g∈(X1∪X2)′′ g ≤ ∨

g∈X g =
∨

g∈X1∪X2
g to be correct. That

is to say,
∨

g∈(X1∪X2)′′ g =
∨

g∈X g = f((X, Y )) holds. According to Remark
2.1.1, it causes ((X1∪X2)′′, (X1∪X2)′) ∈ B(O, P, R). Further, by the definition
of f , we may believe f((X1 ∪ X2)′′, (X1 ∪X2)′) =

∨
g∈X g = f((X, Y )).

In view of Lemma 2.1.2, there is
(X1, Y1)∨ (X2, Y2) = ((X1∪X2)′′, Y1∩Y2)) = ((X1∪X2)′′, (X1∪X2)′).

Moreover, we may carry out
f((X1 , Y1)∨(X2, Y2)) = f((X1∪X2)′′, Y1∩Y2)) =

∨
g∈(X1∪X2)′′ g = f((X1 , Y1))∨

f((X2 , Y2)).
Step 3.4. In light of Remark 2.2.1 and Step 3.1-Step 3.3, we may express

that f is a lattice isomorphism. That is to say, B(O, P, R) ∼= L is true.

Up to now, for a matroid M = (E,F) with F as its family of closed sets,
using the construction of (F ,⊆), we provide a method to construct a context
(O, P, R) satisfying B(O, P, R) ∼= (F ,⊆). For simplicity, we denote this concept
lattice as B(M).

Let B(O, P, R) be a concept lattice and geometric. We will construct a
matroid.

Let S be the set of atoms in B(O, P, R) and FB = {x|x ∈ B(O, P, R)}. By
the knowledge in [2], (S,FB) is a simple matroid, in notation MB, satisfying
(FB,⊆) ∼= B(O, P, R).

Summing up the above with Section 2.3, we may conclude the following
consequence.

Theorem 3.1 Up to isomorphism, the correspondence between a simple
matroid M and the concept lattice B(M) is a bijection between the set of
geometric concept lattices and the set of simple matroids.

Proof It is straightforward from (F ,⊆) ∼= B(M) ∼= (FB(M),⊆) ∼= B(M(B(M))),
where F is the family of closed sets of M and FB(M) is the family of closed
sets of the matroid M(B(M)) produced by B(M).

Constructive way is better when we deal with a question. Hence, we may
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convince that the way in this paper is better. Evidently, the method here is
different from that in [2]. We may express the following views (3.3) and (3.4).

Let L be a geometric lattice with ≤ as its partial order, and AL, CL as its
set of atoms and coatoms respectively.

(3.3) If we use the method in [2] to construct a context relative to L, then
B(L, L,≤) is the concept lattice and satisfies B(L, L,≤) ∼= L.

We may reveal that to obtain the context (L, L,≤), it needs to consider all
the elements in L with the relation ≤. The complexity is o(n2) where n = |L|.

(3.4) If we use the method here, then B(AL, CL,≤) is the concept lattice
and satisfies B(AL, CL,≤) ∼= L.

We may explore that to obtain the context (AL, CL,≤), it needs only to
consider the relation between AL and CL. The complexity is o(ts) where
|AL| = t and |CL| = s. In addition, AL ⊆ L and CL ⊆ L will cause that
the complexity of building up (AL, CL,≤) is less than that of constructing
(L, L,≤). As a result, obviously, if we adopt the same idea to construct
B(L, L,≤) and B(AL, CL,≤) respectively, then the complexity of building up
B(AL, CL,≤) is less than that of constructing B(L, L,≤), though there is
B(L, L,≤) ∼= B(AL, CL,≤) ∼= L.

Though the method here has some advantages comparing to that in [2] (cf.
(3.3) and (3.4) above), we may state that the method in [2] is also a good one
because it suits for all lattices not only for geometric lattices. However, if one
considers some properties of concept lattices relative to matroids or geometric
lattices, we may suggest the researcher to choose the method here because it
owns lower complexity so as to achieve his(her) aim easily.

We may hope to discover much more methods to construct contexts from
matroids. Applying this way, concept lattice theory is enriched and the applied
fields will be generalized.
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