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Abstract

We study the construction of a parity check matrix H(D) ∈ R(D)(n−k)×n

of a rate-k/n convolutional code C over a commutative ring R that sat-
isfies the descending chain condition. A (n − k) × n systematic par-
ity check matrix H(D) is obtained from a standard generator matrix
G(D) ∈ R(D)k×n of C. If G(D) = (Ik, A) such that n = 2k and
A−1 = −AT , then H(D) = (−AT , Ik) is equivalent to G(D), and con-
sequently C is self-dual. New examples of encoders of rate-4/8 self-dual
convolutional codes over the binary field F2 and the integer ring Z4 are
presented.

1 Introduction

Convolutional codes are used successfully in numerous practical applications
in order to achieve reliable data transmission. It includes, but not limited to,
digital imaging, radio and mobile communications, and deep space telecommu-
nications. A strong convolutional code or the combination of a convolutional
code with a block code are used to achieve power efficient communications.
The first error control code developed for deep space application is a rate-1/2
convolutional code of memory 24 for the Pioneer 9 solar orbiter launched in
November 1968. In various radio communication technologies, the Code Divi-
sion Multiple Access (CDMA) digital system is used. This technology increases
the capacity up to ten times that of an analog system, improves call quality
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by producing better and more consistent sound, enhances privacy, and widens
network coverage. The IS-95 CDMA cellular standard uses a convolutional
code with memory equal to 8. For a detailed discussion of applications of
convolutional codes, the reader is referred to [13].

Due to theoretical and practical considerations in coding theory, researchers
were motivated to use a bigger class of rings as base structure. Massey and
Mittelholzer [6] initiated the theory of convolutional codes over rings when
they showed that the most appropriate codes for phase modulation are the
linear codes over the residue class ring ZM . Moreover, Fagnani and Zampieri
[3] gave a complete characterization and analysis of the structural properties
of generator matrices and convolutional codes over Zpr . This analysis can be
extended to the ZM case. The usage of this particular ring is motivated mainly
by two reasons: this ring plays a key role for phase-modulated signals and
there are some strong results in convolutional codes over this ring which are
completely analogous to the classical theory of convolutional codes over fields.

Self-dual block codes stimulated the great interest of many researchers be-
cause of its usefulness in practical applications and its rich mathematical theory.
To cite, the extended Hamming code of length 8 and the extended Golay code
of length 24 are the best known classical self-dual binary linear block codes.
These codes, in some sense, are optimal and their construction admits an effi-
cient decoding algorithm. Another one is the self-dual code over the field F128

which is used to encode information for compact discs and digital versatile
discs. Until now, researchers are focusing on finding and classifying optimal
self-dual block codes of higher dimensions. A survey of self-dual block codes
and some open problems are found in [10].

It is rather a different scenario in the theory of self-dual convolutional codes.
There are several duality notions and properties for convolutional codes and
they are justified by their respective applications [2]. There are two concepts of
duality that are most commonly found in literature: the sequence space duality
and the natural notion of duality from block codes (for instance, see [2], [14],
[5] and [11]).

R. Johannesson, P. St̊ahl and E. Wittenmark [4] reported the world’s second
Type II binary convolutional code. The first was done by A. R. Calderbank,
G. D. Forney, Jr. and A. Vardy [1]. We say that a code is of Type II if each
codeword in the code has a weight divisible by four (doubly-even) and the code
is self-dual.

We can see that the reported self-dual convolutional codes are classified in
terms of their weight properties (i.e. of being Type II). Moreover, the duality
of these codes are defined with respect to the sequence space duality. In our
case, we consider self-duality of convolutional codes in the sense of Definition 2
given in (3). It is quite evident that little is known about this type of self-dual
convolutional codes. Nevertheless, Schneider [11], in his doctoral dissertation,
generalized some concepts in the theory of self-dual linear block codes over
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fields to self-dual convolutional codes over fields. In this paper, we focus on
constructing encoders of self-dual convolutional codes over a commutative ring
R that satisfies the descending chain condition.

The material is organized as follows. Section 2 introduces the definition of
convolutional codes over rings and the notion of self-duality for these codes.
Section 3 talks about the algorithm that is used to construct the encoders of
self-dual convolutional codes. New examples of minimal-basic and systematic
encoders of rate-4/8 self-dual convolutional codes over the binary field F2 and
integer ring Z4 are presented in Section 4. These examples are constructed
using a MAGMA� routine. In Section 5, the summary, conclusion and recom-
mendations are given.

2 Preliminaries and definitions

2.1 Convolutional codes over rings

Let R be a commutative ring with identity 1R �= 0. We let R[D] be the ring
of polynomials in the delay operator D with coefficients ring R. Moreover,
consider the ring of rational functions R(D) whose elements are of the form

p(D)
q(D)

(1)

where p(D), q(D) ∈ R[D], and such that the trailing coefficient of q(D) is a
unit in R. The trailing coefficient is the coefficient of the smallest power of D
with a nonzero coefficient.

We adopt the following definition due to Massey.

Definition 1. The R(D)-submodule of R(D)n given by{
u(D)G(D)|u(D) ∈ R(D)k

}
(2)

where G(D) is a k × n matrix over R(D) whose rows are free over R(D), is
called a rate-k/n convolutional code C over R. The matrix G(D) is a generator
matrix (encoder) for C if all entries in G(D) are realizable.

Note that the convolutional code C as defined is completely determined and
characterized by the k × n matrix G(D). Two encoders are equivalent if they
generate the same code. Moreover, two encoders G(D) and G′(D) of C are
equivalent if and only if there exists a k × k invertible matrix T (D) over R(D)
such that G′(D) = T (D)G(D) [14].

An encoder G(D) is said to be systematic if it causes the information sym-
bols to appear unchanged among the code symbols, or equivalently, if some k
of its columns form the k × k identity matrix.



H. S. Palines and V. P. Sison 31

The encoder G(D) is said to be a polynomial generator matrix for C if its
entries are all polynomial. We say that G(D) is basic if it is polynomial and
has a polynomial right inverse.

Consider a polynomial encoder G(D). The ith constraint length of G(D),
denoted by νi, is defined to be the maximum among the degrees of the com-
ponent polynomials of the ith row of G(D). The overall constraint length of

G(D) is given by ν =
k∑

i=1

νi.

An encoder G(D) is minimal-basic if it is basic and the overall constraint
length ν is minimal over all equivalent basic encoders.

The reader is referred to [14], [12], [5] and [3] for a complete discussion of
structural properties of convolutional encoders.

2.2 Self-dual convolutional codes

The (n−k)×n matrix H(D) over R(D), of full rank, is a parity check matrix of
a rate-k/n convolutional code C generated by a k×n encoder G(D) if and only if
v(D)H(D)T = 0 for all v(D) ∈ C, or equivalently, if and only if G(D)H(D)T =
0, where H(D)T is the transpose of H(D). In other words, the rows of G(D)
and H(D) are orthogonal.

We simply extend to the ring case the definition of the dual of a convolu-
tional code over fields found in [5].

Definition 2. If C is a rate-k/n convolutional code over a ring R, its dual
code, denoted by C⊥ is defined by:

C⊥ = {x(D) ∈ R(D)n|x(D) · v(D) = 0, for all v(D) ∈ C} . (3)

Since the convolutional code C can be regarded as a linear block code over
R(D), the inner product on R(D)n can be defined as follows: if x(D), v(D) ∈
R(D) such that x(D) = [x1(D), x2(D), . . . , xn(D)] and v(D) = [v1(D), v2(D),
. . . , vn(D)], then x(D) · v(D), or simply x(D)v(D), is given by

n∑
i=1

xi(D)vi(D) , (4)

where the product xi(D)vi(D) is taken over R(D).
If the ring R satisfies the descending chain condition (DCC) on its ideals,

the rate-k/n convolutional code C over R can be characterized by a (n−k)×n
parity check matrix H(D) over R(D) [7]. In this case, the n − k linearly
independent rows of H(D) span C⊥. In other words, H(D) can be considered
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as an encoder of C⊥. That is, C⊥ can be seen as a rate-(n− k)/n convolutional
code over R generated by H(D).

If C = C⊥, then we say C is self-dual. It is apparent that a convolutional code
C is self-dual if and only if the encoders of C and C⊥ are equivalent.Henceforth,
we consider the ring R to be a commutative ring with identity 1R �= 0 that
satisfies DCC.

3 Obtaining the encoders of self-dual convolu-

tional codes

The second Type II binary convolutional code in [4] was obtained by a com-
puter search. The authors constructed first a huge set of rate-1/8 doubly-even
convolutional codes which served as building blocks to create a huge set of
rate-2/8 doubly-even convolutional codes. This set was then used to derive the
set of rate-4/8 doubly-even convolutional codes. From this, a class of Type II
binary convolutional codes can be obtained. See [4] for the thorough analysis
of these codes. A specific encoder for this code is given by

G(D) =

⎛
⎜⎜⎝

0 0 1 D D + 1 D + 1 1 D
D 0 0 1 1 D + 1 D + 1 1
D D D + 1 0 0 D D + 1 1

D + 1 D + 1 0 0 D 1 D 1

⎞
⎟⎟⎠ .

In our sense, the method discussed in [4] is completely different. Our pro-
posed method is strongly motivated by the following encoders found in [10], [5]
and [11], respectively.

GR =

⎛
⎜⎜⎝

1 0 0 0 2 1 1 1
0 1 0 0 3 2 1 3
0 0 1 0 3 3 2 1
0 0 0 1 3 1 3 2

⎞
⎟⎟⎠ ,

GM(D) =
(

1 0 1
1+D

D
1+D

0 1 D
1+D

1
1+D

)
,

and

GS(D) =

(
1 0 2D2+2D+1

D2+2D+2
2D2+2

D2+2D+2

0 1 D2+1
D2+2D+2

2D2+2D+1
D2+2D+2

)
.

The 4 × 8 matrix GR over Z4 is an encoder of the octacode which is a
self-dual linear block code over Z4. While the matrices GM(D) and GS(D)
are encoders of rate-2/4 self-dual convolutional codes over the finite fields F2

and F3, respectively. We observe that GR, GM (D), and GS(D) take the form
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(Ir, A) where Ir is the r × r identity matrix and A is an r × r matrix over Z4,
F2(D), and F3(D), respectively. Moreover, each matrix satisfies A−1 = −AT

and GRGT
R = 0, GM (D)GM (D)T = 0 and GS(D)GS(D)T = 0.

The following lemma is used to derive a parity check matrix of a convo-
lutional code from a standard systematic generator matrix of the code. The
proof is quite straight forward (see [9]). In fact, this lemma is the convolutional
counterpart of the linear block code case. Let 0r×s denote the r×s zero matrix.

Lemma 1. Let G(D) be a k × n matrix over R(D). If G(D) = (Ik, A) is an
encoder of a convolutional code C over R, then a (n−k)×n parity check matrix
H(D) of C is given by

H(D) =
(−AT , In−k

)
.

The following theorem is the main tool in creating the algorithm for con-
structing the encoders of self-dual convolutional codes over R.

Theorem 1. If G(D) = (Ik, A) is a k × n generator matrix of a convolutional
code C over R where n = 2k (i.e. I, A ∈ R(D)k×k), A is invertible over R(D)
and A−1 = −AT , then the parity check matrix H(D) =

(−AT , In−k

)
for C is

equivalent to G(D) and consequently, C is self-dual.

Proof

H(D) =
(−AT , Ik

)
=
(
A−1, Ik

)
= A−1 (Ik, A)
= A−1G(D).

Note further that A and A−1 are invertible over R(D). Indeed, H(D) and
G(D) are equivalent. Since G(D) and H(D) generate C and C⊥, respectively,
therefore C = C⊥. Thus, C is self-dual. �

The Algorithm

Theorem 1 also tells us that G(D) is both a generator matrix and a parity
check matrix of C. One can immediately verify by block matrix multiplication
that G(D)G(D)T = 0k×k.

The algorithm for finding G(D) = (Ik, A), that satisfies the conditions of
Theorem 1, deals on finding the suitable matrix A such that A−1 = −AT . The
algorithm is given below.

1. Construct set P of polynomials of degree less than or equal to L.

2. Construct set Q of all possible (distinct) rational functions, such as in
(1), from the elements of P .
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3. Construct k × k matrices Ai with entries coming from Q.

4. For each i, test whether matrix Ai is invertible and satisfies A−1
i = −AT

i .

5. Obtain matrix G(D) by augmenting matrix Ai, that completed step 4,
to the identity matrix Ik such that G(D) = (Ik, Ai).

Since G(D) = (Ik, Ai) satisfies the conditions of Theorem 1, G(D) will
generate a self-dual convolutional code.

4 New examples of encoders of rate-4/8 self-

dual convolutional codes over F2 and Z4

Since Zpr satisfies DCC, a rate-k/n convolutional code over Zpr can be char-
acterized by a (n − k) × n parity check matrix over Zpr (D). Consequently,
encoders for rate-4/8 self-dual convolutional codes over the binary field F2 and
the integer ring Z4 are constructed based on the given algorithm. These exam-
ples are obtained using a MAGMA� routine.

4.1 A minimal-basic encoder of a rate-4/8 self-dual con-
volutional code over F2

Let matrix A1 be a 4 × 4 matrix over F2(D) given by

A1 =

⎛
⎜⎜⎝

1
D+1

1
D+1

1
D+1

D
D+1

1
D+1

1
D+1

D
D+1

1
D+1

1
D+1

D
D+1

1
D+1

1
D+1

D
D+1

1
D+1

1
D+1

1
D+1

⎞
⎟⎟⎠ .

It can be verified that A−1
1 = −AT

1 . Since −1 = 1 in F2, we have −AT
1 = AT

1 =
A1 and A1A

T
1 = I4. Now, we augment matrix A1 to I4 such that

G1(D) =

⎛
⎜⎜⎝

1 0 0 0 1
D+1

1
D+1

1
D+1

D
D+1

0 1 0 0 1
D+1

1
D+1

D
D+1

1
D+1

0 0 1 0 1
D+1

D
D+1

1
D+1

1
D+1

0 0 0 1 D
D+1

1
D+1

1
D+1

1
D+1

⎞
⎟⎟⎠ .

A minimal-basic encoder equivalent to G1(D) is given by

G′
1(D) =

⎛
⎜⎜⎝

1 0 0 1 1 0 0 1
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
D 0 0 1 0 1 1 D + 1

⎞
⎟⎟⎠ .
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Their equivalence can be seen via

G′
1(D) =

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
1 0 1 0
D 0 0 1

⎞
⎟⎟⎠G1(D) .

Note that G1(D)G1(D)T = 0k×k = G′
1(D)G′

1(D)T . Hence, G1(D) or G′
1(D) is

an encoder of a self-dual rate-4/8 convolutional code over F2. Moreover, since
G′

1(D) is minimal-basic, it is also minimal [14].

4.2 A systematic encoder of a rate-4/8 self-dual convolu-
tional code over Z4

An example of a systematic polynomial encoder of a self-dual rate-4/8 convo-
lutional code over Z4 is given by

G2(D) =

⎛
⎜⎜⎝

1 0 0 0 1 1 2 1
0 1 0 0 3 1 2D + 1 2
0 0 1 0 2 2D + 3 1 2D + 1
0 0 0 1 3 2 2D + 3 1

⎞
⎟⎟⎠ .

One can verify that G2(D)G2(D)T = 04×4 and since the first four columns
of G2(D) form the identity matrix, the rows of G2(D) are free over Z4(D).
Similarly, if we let

A2 =

⎛
⎜⎜⎝

1 1 2 1
3 1 2D + 1 2
2 2D + 3 1 2D + 1
3 2 2D + 3 1

⎞
⎟⎟⎠ ,

then A−1
2 = −AT

2 where

A−1
2 =

⎛
⎜⎜⎝

3 1 2 1
3 3 2D + 1 2
2 2D + 3 3 2D + 1
3 2 2D + 3 3

⎞
⎟⎟⎠ .

Consequently, since G2(D) is a polynomial systematic encoder, it is also
minimal [8].

5 Summary and conclusion

Convolutional codes over rings have been defined. This definition was used
to consider the notion of a self-dual convolutional code over a commutative
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ring R that satisfies DCC. A method for deriving a parity check matrix of
a convolutional code from a standard generator matrix of the code has been
given. It was shown that to obtain a k×n (n = 2k) encoder G(D) of a self-dual
convolutional code over R, it is enough to find a matrix A ∈ R(D)k×k such
that A−1 = −AT where G(D) = (Ik, A) ∈ R(D)k×2k. In this manner, encoders
of a rate-4/8 self-dual convolutional codes over the binary field F2 and integer
ring Z4 were constucted. It was shown that these encoders are minimal-basic
and systematic, respectively.

A good extension of this problem is to consider the doubly-evenness of the
constructed codes. It is also interesting to know whether the given algorithm
works for any value of k > 1.
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