COMMUTATIVITY OF PRIME NEAR RINGS

V. K. Bhat, Kiran Chib, Smarti Gosani
School of Mathematics, SMVD University, P/o SMVD
University, Katra, J and K, India-182320
vijaykumarbhat2000@yahoo.com

Abstract

The purpose of this paper is to study and generalize some results of [1] and [6] on commutativity in prime near-rings. Let N be a prime near-ring with multiplicative centre Z. Let σ and τ be automorphisms of N and δ be a (σ, τ)-derivation of N such that $\sigma(\delta(a))=\delta(\sigma(a))$ and $\tau(\delta(a))=\delta(\tau(a))$, for all $a \in N$. The following results are proved: 1. If N is 2 -torsion free and $\delta(N) \subseteq Z$, or $\delta(x) \delta(y)=\delta(y) \delta(x)$, for all $x, y \in N$, then N is a commutative ring. 2. If N is 2 -torsion free, δ_{1} is a derivation of N, δ_{2} is a (σ, τ)-derivation of N such that τ commutes with δ_{1} and δ_{2}, then $\delta_{1} \delta_{2}(N)=0$ implies $\delta_{1}=0$ or $\delta_{2}=0$.

1 Introduction

Throughout this article N denotes a zero symmetric left near-ring with multiplicative centre Z . N is called a prime near ring if $\mathrm{x} \mathrm{N} y=\{0\}$ implies $\mathrm{x}=$ 0 or $\mathrm{y}=0$. An element $x \in N$ is said to be distributive if $(\mathrm{y}+\mathrm{z}) \mathrm{x}=\mathrm{yx}+$ zx for all $x, y, z \in N$. N is called zero symmetric if $0 \mathrm{x}=0$ for all $x \in N$ (left distributivity implies $\mathrm{x} 0=0$). An additive mapping $\delta: N \rightarrow N$ is said to be derivation on N if $\delta(x y)=\delta(x) y+x \delta(y)$; for all $x, y \in N$ or equivalently $\delta(x y)=x \delta(y)+\delta(x) y$ for all $x, y \in N$. An additive mapping $\delta: N \rightarrow N$ is called (σ, τ)-derivation if there exists automorphisms $\sigma, \tau: N \rightarrow N$ such that

Key words: Prime near-ring, automorphism, derivation, (σ, τ)-derivation.
AMS Classification: Primary 16-XX; Secondary 16Y30, 16N60, 16W25
$\delta(x y)=\delta(x) \sigma(y)+\tau(x) \delta(y)$ for all $x, y \in N$. The symbol $[\mathrm{x}, \mathrm{y}]$ denotes $\mathrm{xy}-\mathrm{yx}$ and (x, y) denotes additive group commutator $\mathrm{x}+\mathrm{y}-\mathrm{x}-\mathrm{y}$. For all $x, y \in N$, we write $[x, y]_{\sigma, \tau}=\tau(x) y-y \sigma(x)$; in particular $[x, y]_{1,1}=[x, y]$, in usual sense. An element $c \in N$ for which $\delta(c)=0$ is called a constant.

Some recent results on rings deal with commutativity of prime and semiprime rings admitting suitably-constrained derivations. Here in this paper we look for comparable results on near-rings and this has been done in $[1,2,3,4$, $5,6,7,8]$.

2 Main Result

As the addition of a near-ring is not necessarily commutative, the following Lemma 2.1 has its own significance.

Lemma 2.1. An additive endomorphism δ on a near-ring N is a (σ, τ)-derivation if and only if $\delta(x y)=\tau(x) \delta(y)+\delta(x) \sigma(y)$, for all $x, y \in N$.

Proof Let δ be a (σ, τ)-derivation on a near-ring N. Since $x(y+y)=x y+$ xy, we have

$$
\begin{gathered}
\delta(x(y+y))=\delta(x) \sigma(y+y)+\tau(x) \delta(y+y)= \\
\delta(x) \sigma(y)+\delta(x) \sigma(y)+\tau(x) \delta(y)+\tau(x) \delta(y)
\end{gathered}
$$

for all $x, y \in N$.
Also

$$
\delta(x y+x y)=\delta(x y)+\delta(x y)=\delta(x) \sigma(y)+\tau(x) \delta(y)+\delta(x) \sigma(y)+\tau(x) \delta(y)
$$

for all $x, y \in N$.
Comparing above, we have

$$
\delta(x) \sigma(y)+\tau(x) \delta(y)=\tau(x) \delta(y)+\delta(x) \sigma(y)
$$

for all $x, y \in N$. Hence, we have $\delta(x y)=\tau(x) \delta(y)+\delta(x) \sigma(y)$ for all $x, y \in N$.
Conversely, suppose that $\delta(x y)=\tau(x) \delta(y)+\delta(x) \sigma(y)$ for all $x, y \in N$. Then for all $x, y \in N$,
$\delta(x(y+y))=\tau(x) \delta(y+y)+\delta(x) \sigma(y+y)=\tau(x) \delta(y)+\tau(x) \delta(y)+\delta(x) \sigma(y)+\delta(x) \sigma(y)$.
Also

$$
\delta(x y+x y)=\delta(x y)+\delta(x y)=\tau(x) \delta(y)+\delta(x) \sigma(y)+\tau(x) \delta(y)+\delta(x) \sigma(y)
$$

for all $x, y \in N$.
Comparing above, we have $\tau(x) \delta(y)+\delta(x) \sigma(y)=\delta(x) \sigma(y)+\tau(x) \delta(y)$, for all $x, y \in N$. Thus we have, $\delta(x y)=\delta(x) \sigma(y)+\tau(x) \delta(y)$ for all $x, y \in N$.

Lemma 2.2. Let δ be a (σ, τ)-derivation on a near-ring N. Then for all $x, y, z \in N ;(\delta(x) \sigma(y)+\tau(x) \delta(y)) \sigma(z)=\delta(x) \sigma(y) \sigma(z)+\tau(x) \delta(y) \sigma(z)$.

Proof For all $x, y, z \in N$,
$\delta((x y) z)=\delta(x y) \sigma(z)+\tau(x y) \delta(z)=(\delta(x) \sigma(y)+\tau(x) \delta(y)) \sigma(z)+\tau(x) \tau(y) \delta(z)$. Also, $\delta(x(y z))=\delta(x) \sigma(y z)+\tau(x) \delta(y z)=\delta(x) \sigma(y) \sigma(z)+\tau(x)(\delta(y)) \sigma(z)+$ $\tau(y) \delta(z))=\delta(x) \sigma(y) \sigma(z)+\tau(x) \delta(y)) \sigma(z)+\tau(x) \tau(y) \delta(z)$ for all $x, y, z \in N$.

Combining these two facts, we get

$$
(\delta(x) \sigma(y)+\tau(x) \delta(y)) \sigma(z)=\delta(x) \sigma(y) \sigma(z)+\tau(x) \delta(y) \sigma(z)
$$

for all $x, y, z \in N$.
Lemma 2.3. Let N be a prime near-ring with multiplicative centre Z. Then:
(1) If z is a nonzero element of Z, then z is not a zero divisor.
(2) If there exists a nonzero element $z \in Z$ such that $z+z \in Z$, then $(N,+)$ is abelian.
(3) Let δ be a nonzero (σ, τ)-derivation of N and $a \in N$. If $\delta(N) \sigma(a)=0$, then $a=0$, and if $a \delta(N)=0$, then $a=0$.

Proof The proofs of (1) and (2) are in [1]
(3) By hypothesis, $\delta(N) \sigma(a)=0$. It follows that, for all $x, y \in N, \delta(x y) \sigma(a)=$ 0 . By 2.2 , we have

$$
\delta(x) \sigma(y) \sigma(a)+\tau(x) \delta(y) \sigma(a)=0
$$

i.e. $\delta(x) \sigma(y) \sigma(a)=0$, or $\delta(x) N \sigma(a)=0$. Since N is a prime near-ring, δ a nonzero (σ, τ)-derivation of N and σ is an automorphism, we get $a=0$. Let $a \delta(N)=0$. Then, for all $x, y \in N, a \delta(x y)=0$, i.e.

$$
a(\delta(x) \sigma(y)+\tau(x) \delta(y))=0
$$

or

$$
a \delta(x) \sigma(y)+a \tau(x) \delta(y)=0
$$

Therefore, we have $a \tau(x) \delta(y)=0$, for all $x, y \in N$. Since τ is an automorphism of N , it would imply that $(a N) \delta(N)=0$. Moreover, N is prime and $\delta(N) \neq 0$ we infer that $a=0$, and the proof is now complete.

Lemma 2.4. Let N be a 2-torsion free near-ring, and δ be a (σ, τ)-derivation of N. If $\delta^{2}=0$, and σ, τ both commute with δ, then $\delta=0$.

Proof For all $x, y \in N, \delta^{2}(x y)=0$. So, we have $0=\delta(\delta(x y))=\delta(\delta(x) \sigma(y)+$ $\tau(x) \delta(y))=\delta(\delta(x) \sigma(y))+\delta(\tau(x) \delta(y))=\delta(\delta(x)) \sigma(\sigma(y))+\tau(\delta(x)) \delta(\sigma(y))+$ $\left.\left.\delta(\tau(x)) \sigma(\delta(y))+\tau(\tau(x)) \delta(\delta(y))=\delta^{2}(x)\right) \sigma^{2}(y)\right)+\tau(\delta(x)) \delta(\sigma(y))+\delta(\tau(x)) \sigma(\delta(y))+$ $\left.\left.\tau^{2}(x)\right) \delta^{2}(y)\right)=2 \delta(\tau(x)) \delta(\sigma(y))$, by hypothesis.

Therefore, for all $x, y \in N, \delta(\tau(x)) \delta(\sigma(y))=0$. Since N is a 2-torsion free near-ring and σ is an automorphism of N, we get $\delta(\tau(x)) \delta(N)=0$. It follows from 2.3 that $\delta=0$.

Theorem 2.5. Let δ be a (σ, τ)-derivation of a near-ring N. If $a \in N$ is not a left zero divisor and $[a, \delta(a)]_{\sigma, \tau}=0$, then (x, a) is constant (i.e. $\delta(x, a)=0$) for all $x \in N$.

Proof We have, $a(x+a)=a x+a^{2}$ and therefore, $\delta(a(x+a))=\delta\left(a x+a^{2}\right)$. Expanding the equation, we have $\delta(a) \sigma(x)+\delta(a) \sigma(a)+\tau(a) \delta(x)+\tau(a) \delta(a)=$ $\delta(a) \sigma(x)+\tau(a) \delta(x)+\delta(a) \sigma(a)+\tau(a) \delta(a)$. Therefore $\delta(a) \sigma(a)+\tau(a) \delta(x)=$ $\tau(a) \delta(x)+\delta(a) \sigma(a)$; i.e. $0=\tau(a) \delta(x)+\delta(a) \sigma(a)-\tau(a) \delta(x)-\delta(a) \sigma(a)$. But $[a, \delta(a)]_{\sigma, \tau}=0$, it implies that $\tau(a) \delta(a)-\delta(a) \sigma(a)=0$. Hence, we have, $0=$ $\tau(a) \delta(x)+\tau(a) \delta(a)-\tau(a) \delta(x)-\tau(a) \delta(a)$, which implies that $\tau(a) \delta(x, a)=0$. Since τ is an automorphism of N, and $\tau(a)$ is not a left zero divisor, we can see that $\delta(x, a)=0$. Hence (x, a) is constant for all $x \in N$.

Theorem 2.6. Let N have no non-zero divisors of zero. If N admits a nontrivial (σ, τ)-commuting (σ, τ)-derivation δ, then $(N,+)$ is abelian.

Proof Let c be any additive commutator. Then 2.5 implies that c is a constant. Also, for any $x \in N$, xc is also an additive commutator, and hence a constant. Thus, $0=\delta(x c)=\delta(x) \sigma(c)+\tau(x) \delta(c)$ for all $x \in N$. This implies $\delta(x) \sigma(c)=0$ for all $x \in N$. Since $\delta(x) \neq 0$ for some $x \in N$, we get that $\sigma(c)=0$. Thus $\mathrm{c}=$ 0 for all additive commutators c. Hence, ($\mathrm{N},+$) is abelian.

Theorem 2.7. Let N be a prime near-ring with a nonzero (σ, τ)-derivation δ such that $\sigma(\delta(a))=\delta(\sigma(a))$ and $\tau(\delta(a))=\delta(\tau(a)), a \in N$. If $\delta(N) \subseteq Z$, then $(N,+)$ is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof By hypothesis, $\delta(N) \subseteq Z$ and δ is non-trivial. Hence, there exists $0 \neq a \in N$ such that $z=\delta(a) \in Z-\{0\}$. It would imply that $z+z=$ $\delta(a+a) \in Z-\{0\}$. It follows from 2.3 that $(N,+)$ is abelian. Again by hypothesis, we have $\sigma(c) \delta(a b)=\delta(a b) \sigma(c)$, for all $a, b, c \in N$. By 2.2, we have

$$
\sigma(c) \delta(a) \sigma(b)+\sigma(c) \tau(a) \delta(b)=\delta(a) \sigma(b) \sigma(c)+\tau(a) \delta(b) \sigma(c)
$$

for all $a, b, c \in N$. Comparing the two sides, using $\delta(N) \subseteq Z$, and the fact that $(N,+)$ is abelian, we get

$$
\sigma(c) \delta(a) \sigma(b)-\delta(a) \sigma(b) \sigma(c)=\tau(a) \delta(b) \sigma(c)-\sigma(c) \tau(a) \delta(b)
$$

for all $a, b, c \in N$. Thus

$$
\delta(a) \sigma(c) \sigma(b)-\delta(a) \sigma(b) \sigma(c)=\tau(a) \sigma(c) \delta(b)-\sigma(c) \tau(a) \delta(b)
$$

for all $a, b, c \in N$, or $\delta(a) \sigma([c, b])=\delta(b)[\tau(a), \sigma(c)]$, for all $a, b, c \in N$. We now suppose that N is not commutative, and choose $b, c \in N$ such that $[c, b] \neq 0$, and $a=\delta(x) \in Z$. Then, we get $\delta^{2}(x) \sigma([c, b])=0$, for all $x \in N$. By 2.3 we can see that the central element $\delta^{2}(x)$ can not be a divisor of zero, which implies that $\delta^{2}(x)=0$ for all $x \in N$. By 2.4 this cannot happen for the non-trivial δ. Thus, $\sigma([c, b])=0$, for all $b, c \in N$. Hence N is a commutative ring, as σ is an automorphism of N.

Theorem 2.8. Let N be a prime near-ring with a nonzero (σ, τ)-derivation δ such that $\sigma(\delta(a))=\delta(\sigma(a))$ and $\tau(\delta(a))=\delta(\tau(a))$, $a \in N$. If $\delta(x) \delta(y)=$ $\delta(y) \delta(x)$, for all $x, y \in N$, then $(N,+)$ is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof By hypothesis, we have $\delta(x+x) \delta(x+y)=\delta(x+y) \delta(x+x)$ for all $x, y \in N$. This implies that

$$
\delta(x) \delta(x)+\delta(x) \delta(y)=\delta(x) \delta(x)+\delta(y) \delta(x)
$$

for all $x, y \in N$. Hence $\delta(x) \delta(x, y)=0$ for all $x, y \in N$, which implies that $\delta(x) \delta(c)=0$ for all $x \in N$ and the additive commutator c. Applying 2.3 we have $\delta(c)=0$, for all additive commutators c. Since N is a left near-ring and c is an additive commutator, we see that $x c$ is also an additive commutator for all $x \in N$. Therefore $\delta(x c)=0$ for all $x \in N$ and for all additive commutators c. It follows from 2.3 that $c=0$. Hence $(N,+)$ is abelian.

Assume now that N is 2-torsion free, $\sigma(\delta(a))=\delta(\sigma(a))$ and $\tau(\delta(a))=$ $\delta(\tau(a)), a \in N$. Then by 2.1 and 2.2 we have
$\delta(\delta(x) y)) \delta(z)=\left(\delta^{2}(x) \tau(y)+\sigma(\delta(x)) \delta(y)\right) \delta(z)=\delta^{2}(x) \tau(y) \delta(z)+\sigma(\delta(x)) \delta(y) \delta(z)$
for all $x, y, z \in N$. This implies that

$$
\left.\delta^{2}(x) \tau(y) \delta(z)=\delta(\delta(x) y)\right) \delta(z)-\sigma(\delta(x)) \delta(y) \delta(z)
$$

for all $x, y, z \in N$.
Moreover, since $\delta(x) \delta(y)=\delta(y) \delta(x)$, for all $x, y \in N$, we have $\delta(\delta(x) y)) \delta(z)=$ $\delta(z) \delta(\delta(x) y))=\delta(z) \delta^{2}(x) \tau(y)+\sigma(\delta(x)) \delta(y)=\delta(z) \delta^{2}(x) \tau(y)+\delta(z) \sigma(\delta(x)) \delta(y)=$ $\delta^{2}(x) \delta(z) \tau(y)+\sigma(\delta(x)) \delta(y) \delta(z)$, for all $x, y, z \in N$.

Combining the results, we get

$$
\delta^{2}(x) \tau(y) \delta(z)-\delta^{2}(x) \delta(z) \tau(y)=0
$$

for all $x, y, z \in N$; i.e.

$$
\delta^{2}(x)(\tau(y) \delta(z)-\delta(z) \tau(y))=0
$$

for all $x, y, z \in N$. Replacing y by $y a$ we have

$$
\delta^{2}(x)(\tau(y a) \delta(z)-\delta(z) \tau(y a))=0
$$

for all $a, x, y, z \in N$, i.e.,

$$
\delta^{2}(x) \tau(y)(\tau(a) \delta(z)-\delta(z) \tau(a))=0
$$

for all $a, x, y, z \in N$. Thus, $\delta^{2}(x) N(\tau(a) \delta(z)-\delta(z) \tau(a))=0$ for all $a, x, y, z \in N$. Since N is prime and τ is an automorphism, $\delta^{2}(x)=0$, or $a \delta(z)-\delta(z) a=0$, for all $a, x, z \in N$. Referring to $2.4 \delta^{2}(x)=0$ is not possible. Hence $a \delta(z)-\delta(z) a=$ 0 , for all $a, z \in N$. Therefore, $\delta(N) \subseteq Z$ and it follows from 2.7 that N is commutative.

Theorem 2.9. Let N be a 2-torsion free prime near-ring N, δ_{1} be a (σ, τ) derivation of N and δ_{2} be a derivation of N. If $\delta_{1} \delta_{2}(N)=0$, then $\delta_{1}=0$, or $\delta_{2}=0$.

Proof By hypothesis $\delta_{1} \delta_{2}(a b)=0$ for all $a, b \in N$. Therefore, we have $0=$ $\delta_{1}\left(\delta_{2}(a) b+a \delta_{2}(b)\right)=\delta_{1}\left(\delta_{2}(a) b\right)+\delta_{1}\left(a \delta_{2}(b)\right)=\delta_{1}\left(\delta_{2}(a)\right) \sigma(b)+\tau\left(\delta_{2}(a)\right) \delta_{1}(b)+$ $\delta_{1}(a) \sigma\left(\delta_{2}(b)\right)+\tau(a) \delta_{1}\left(\delta_{2}(b)\right)$. Thus, we have $\tau\left(\delta_{2}(a)\right) \delta_{1}(b)+\delta_{1}(a) \sigma\left(\delta_{2}(b)\right)=0$ for all $a, b \in N$. Replacing a by $\delta_{2}(a)$, we get $\tau\left(\delta_{2}^{2}(a)\right) \delta_{1}(b)=0$ for all $a, b \in N$. By 2.3 , it implies that $\delta_{1}=0$, or $\delta_{2}^{2}=0$. If $\delta_{2}^{2}=0$, then by $2.4, \delta_{2}=0$.

Theorem 2.10. Let N be a 2-torsion free prime near-ring N, δ_{1} be a derivation of N and δ_{2} be a (σ, τ)-derivation of N such that $\tau \delta_{1}=\delta_{1} \tau$ and $\tau \delta_{2}=\delta_{2} \tau$. If $\delta_{1} \delta_{2}(N)=0$, then $\delta_{1}=0$, or $\delta_{2}=0$.

Proof By hypothesis $\delta_{1} \delta_{2}(a b)=0$, for all $a, b \in N$. Therefore, we have $0=\delta_{1}\left(\delta_{2}(a) \sigma(b)+\tau(a) \delta_{2}(b)\right)=\delta_{1}\left(\delta_{2}(a) \sigma(b)\right)+\delta_{1}\left(\tau(a) \delta_{2}(b)\right)=\delta_{1}\left(\delta_{2}(a)\right) \sigma(b)+$ $\left.\delta_{2}(a) \delta_{1}(\sigma(b))+\delta_{1}(\tau(a)) \delta_{2}(b)+\tau(a) \delta_{1} \delta_{2}(b)\right)$. This implies that

$$
\delta_{2}(a) \delta_{1}(\sigma(b))+\delta_{1}(\tau(a)) \delta_{2}(b)=0
$$

for all $a, b \in N$. Replacing a by $\delta_{2}(a)$, and using the fact that $\tau \delta_{1}=\delta_{1} \tau$ and $\tau \delta_{2}=\delta_{2} \tau$, we have $\delta_{2}^{2}(a) \delta_{1}(\sigma(b))=0$, for all $a, b \in N$. Applying 2.3 , we have $\delta_{1}=0$, or $\delta_{2}^{2}=0$. If $\delta_{2}^{2}=0$, then by $2.4, \delta_{2}=0$, proving our Theorem.

References

[1] H. E. Bell and G. Mason, On derivations in near-rings, Near-fields, NorthHolland Math. Stud. 137, (1987).
[2] Bell, H. E. and Mason G., On derivations in near-rings and rings, Math. J. Okayama Univ. 34 (1992), 135-144.
[3] Bell, H. E., On derivations in near-rings-II, Kluwer Academic Publishers, Netherlands (1997), 191-197.
[4] K. I. Beidar, Y. Fong and X. K. Wang, Posner and Herstein Theorem for derivations of 3-prime near-rings, Comm. Algebra 24 (1995), 1581-1589.
[5] O. Golbasi and Neset. Aydin, Results on prime near-rings with (s, t)derivation, Math. J. Okyama Univ. 46 (2004), 1-7.
[6] Ahmed A. M. Kamal, s-derivation on prime near-rings, Tamkang J. Math. 32 (2001), 89-93.
[7] A. Mohammad, Asma Ali and Shakir Ali, (s,t)- derivations on prime nearrings, Arch. Math. (Brno) 40 (2004), 281-286.
[8] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), 361-366.

