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Abstract

We consider Markov operators which represent a density function of
random perturbations of an intermittent map with multiplicative noise.
In this paper, we give a class of intermittent maps for which the Foguel
Alternative theorem holds. Actually, we prove that Markov operators
are sweeping under certain conditions.

1 Introduction

Komorowski proved that if S : [0, 1] → [0, 1] is a piecewise convex and of class
C2 satisfying S(0) = 0 and S′(0) = 1, then S does not admit a finite invariant
measure μ � λ, where λ is the Lebesgue measure on [0, 1] in [1]. On the other
hand, if we consider random perturbations of S with additive noise defined by

Xε
n+1 = S(Xε

n) + εYn ( mod 1),

where Y0, Y1, · · · are independent random variables with values in [0, 1] each
having the same density g and a random variable X0 and {Yn}n≥0 are inde-
pendent, then there always exists an invariant probability measure με � λ for
each noise level 0 < ε < 1 (see [3] for more details).
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In this paper, we consider the following random perturbation of S with
multiplicative noise, that is, consider the process {Xε

n}n≥0 (0 < ε < 1) defined
by

Xε
n+1 = (1 − εYn)S(Xε

n). (1)

In this settings, every density function of Xε
n is represented by n-th iterate of a

Markov operator Pε : L1([0, 1], λ) → L1([0, 1], λ) and the initial density f of X0.
We prove that if S has an infinite invariant density function 1

xβ (β ≥ 1) then
the process {Xε

n}n≥0 satisfies the Foguel Alternative theorem. This implies
that either Pε has an invariant density (i.e. there exists an density function hε

∗
such that Pεh

ε∗ = hε∗) or {P n
ε } is sweeping, i.e.,

lim
n→∞

∫
[c,1]

P n
ε f(x)λ(dx) = 0 for every f ∈ D and 0 < c ≤ 1,

where D := {f ∈ L1([0, 1]) : f ≥ 0 and
∫
[0,1]

f(x)dx = 1}. Actually, we prove
that {P n

ε } is sweeping for every 0 < ε < 1 by adding certain conditions to S
and the density g of {Yn}n≥0.

Before we introduce the Foguel Alternative theorem, we have to make the
following definitions.

Let (Λ,B, m) be a σ-finite measure space and P : L1(Λ) → L1(Λ) be the
operator

Pf(x) =
∫

Λ

K(x, y)f(y)m(dy),

where K : Λ×Λ → R is a measurable function which satisfies K(x, y) ≥ 0 a.e.
and

∫
Λ

K(x, y)m(dx) = 1. We call P integral operator with stochastic kernel
K(x, y).

Definition 1.1. A family A ⊂ B is called admissible if A satisfies the following
properties

1 m(A) < ∞ for A ∈ A,

2 A1 ∪ A2 ∈ A for A1, A2 ∈ A,

3 There exists a sequence {An}n≥0 ⊂ A such that ∪n≥0An = Λ.

Definition 1.2. Let P : L1(Λ,B, m) → L1(Λ,B, m) be an integral operator
with stochastic kernel and an admissible family A ⊂ B be fixed. We say that
{P n}n≥0 is sweeping with respect to an admissible family A ⊂ B if

lim
n→∞

∫
A

P nfdm = 0 for A ∈ A and f ∈ D.
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Definition 1.3. Let P : L1(Λ,B, m) → L1(Λ,B, m) be an integral operator
with stochastic kernel and an admissible family A ⊂ B be fixed. A measur-
able function f : Ω → R defined up to a set of measure zero is called locally
integrable if ∫

A

|f |dm < ∞ for A ∈ A

and f : Λ → R is subinvariant if

Pf(x) ≤ f(x) for a.e. x ∈ Λ.

The Foguel Alternative theorem was proved by Komorowski and Tyrcha
[2]:

Theorem 1.4 (Foguel Alternative). Let P : L1(Λ,B, m) → L1(Λ,B, m)
be an integral operator with a stochastic kernel on a σ-finite measure space
(Λ,B, m) and A ⊂ B be an admissible family. If P has a locally integrable and
positive (f > 0 a.e.) subinvariant function f with respect to A, then either P
has an invariant density or {P n}n≥0 is sweeping with respect to A.

2 Preliminaries

Let (Ω,F , μ) be a probability space, where F denotes a Borel σ-field and μ a
probability measure. Let X0, Y0, Y1, · · · be random variables on Ω with values
in [0, 1] and S : [0, 1] → [0, 1] be a non-singular measurable transformation (i.e.
λ(S−1(A)) = 0 for any Borel set A ⊂ [0, 1] with λ(A) = 0, where λ is the
Lebesgue measure on [0, 1]) and positive for λ-a.e. x ∈ [0, 1].

Consider the following stochastic process defined by

Xε
n+1(ω) = (1 − εYn)S(Xε

n(ω)) for all n ≥ 0, (2)

where Xε
0 = X0 for each 0 < ε < 1.

We assume the following conditions for random perturbations {Xε
n}n≥0

generated by (2) throughout this paper :

C1 X0, Y0, Y1, Y2, · · · are independent random variables;

C2 X0 has the density function f0 ∈ D, i.e.

μ(X0(ω) ∈ B) =
∫

B

f0(x)λ(dx)

for any Borel set B ⊂ [0, 1], where

D := {f ∈ L1([0, 1]) : f ≥ 0 and
∫

[0,1]

f(x)λ(dx) = 1};
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C3 each Yn has the same density function g ∈ L∞(R) such that g ≥ 0,

supp(g) := {x ∈ [0, 1] : g(x) 
= 0} ⊆ [0, 1] with
∫

R

g(x)λ(dx) = 1.

A linear operator P : L1([0, 1]) → L1([0, 1]) is said to be a Markov operator
if P (D) ⊂ D. With these conditions every density function of Xε

n is represented
by n-th iterate of the Markov operator Pε : L1([0, 1], λ) → L1([0, 1], λ) as
follows:

μ({Xε
n ∈ A}) =

∫
A

P n
ε f0(x)λ(dx) for any Borel set A ⊂ [0, 1].

In fact, Pε is defined by

Pεf(x) =
∫

[0,1]

f(y)g
(

1
ε

(
1 − x

S(y)

))
1

εS(y)
λ(dy)

=
∫

[0,1]

PSf(y)g
(

1
ε

(
1 − x

y

))
1
εy

λ(dy)

for each 0 < ε < 1 and f ∈ L1([0, 1]), where PS is the Perron-Frobenius
operator corresponding to S. In the following lemma, we prove these facts.

Lemma 2.1. Let S : [0, 1] → [0, 1] be a non-singular positive a.e. measur-
able transformation and {Xε

n}n≥0 be a random perturbation defined by (2). If
Conditions C1-C3 are valid for {Xε

n}n≥0, then each density function of Xε
n is

represented by n-th iterate of the Markov operator Pε : L1([0, 1]) → L1([0, 1])
define by

Pεf(x) =
∫

[0,1]

f(y)g
(

1
ε

(
1 − x

S(y)

))
1

εS(y)
λ(dy) (3)

for each 0 < ε < 1.

Proof Fix 0 < ε < 1 arbitrarily. We assume that there exists the density
function fε

n of Xε
n.

Let gε(x) = 1
εg(x

ε ) and 1 − A := {1 − x : x ∈ A} for A ⊂ [0, 1]. Since∫
A

h(1 − x)λ(dx) =
∫

1−A

h(x)λ(dx),

for any Borel set A ⊂ [0, 1] and h ∈ L1(R) with respect to the one-dimensional
Lebesgue integration, we have

μ (1 − εYn ∈ A) =
∫

1−εx∈A

g(x)dx =
∫

1−x∈A

gε(x)dx =
∫

x∈A

gε(1 − x)dx
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for all n ≥ 0. This implies that the sequence {1−εYn}n≥0 is the i.i.d. sequence
and has the same density function gε(1 − x). Thus we have

μ
(
Xε

n+1 ∈ A
)

= μ ((1 − εYn)S(Xε
n) ∈ A)

=
∫ ∫

xS(y)∈A

fε
n(y)gε(1 − x)λ(dy)λ(dx).

We remark that the set S−1({0}) is λ-null set by the assumption about S.
By Condition C3, we have gε(1 − x) = 1

εg(1
ε (1 − x)) = 0 for any x > 1 and

x < 0 because 1
ε (1 − x) < 0 and 1

ε (1 − x) > 1
ε > 1 respectively. Thus setting

a = xS(y) and b = y, we obtain

μ
(
Xε

n+1 ∈ A
)

=
∫

a∈A

∫
{b∈[0,1]: a

S(b)∈[0,1], S(b) �=0} fε
n(b)gε

(
1 − a

S(b)

)
1

S(b)
λ(db)λ(da)

=
∫
a∈A

∫
{b∈[0,1]: S(b) �=0} fε

n(b)gε

(
1 − a

S(b)

)
1

S(b)λ(db)λ(da)

=
∫
a∈A

∫
b∈[0,1]

fε
n(b)g

(
1
ε

(
1 − a

S(b)

))
1

εS(b)
λ(db)λ(da)

=
∫

A
Pεf

ε
n(a)λ(da).

This equation implies that if fε
n exits then the density function fε

n+1 of Xε
n+1

also exists and given by

fε
n+1(x) =

∫
y∈[0,1]

fε
n(y)g

(
1
ε

(
1 − x

S(y)

))
1

εS(y)
λ(dy) =: Pεf

ε
n(x) a.e.

From the linearity of integral, the operator Pε is linear and Pεf ≥ 0 for any
f ≥ 0 because of g ≥ 0. Moreover, since supp(g) ⊂ [0, 1] ⊂ [ 1

ε
− 1

εS(y)
, 1

ε
] for

each 0 < ε < 1, we have

‖Pεf‖L1([0,1]) =
∫

[0,1]

Pεf(x)λ(dx)

=
∫

[0,1]

f(y)

{∫
[0,1]

gε

(
1 − x

S(y)

)
1

S(y)
λ(dx)

}
λ(dy) (by Fubini’s theorem)

=
∫

[0,1]

f(y)

{∫
[0, 1

S(y) ]

gε (1 − x)λ(dx)

}
λ(dy)

=
∫

[0,1]

f(y)

{∫
[1− 1

S(y) ,1]

gε (x)λ(dx)

}
λ(dy)

=
∫

[0,1]

f(y)

{∫
[ 1ε− 1

εS(y) , 1
ε ]∩[0,1]

g(x)λ(dx)

}
λ(dy) =

∫
[0,1]

f(y)λ(dy)

= ‖f‖L1([0,1]).
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for any f ≥ 0. Therefore Pε is the Markov operator. �

Remark 2.2. It is obviously that the Markov operator defined by (3) is the inte-
gral operator with stochastic kernel K(x, y) := g

(
1
ε

(
1 − x

S(y)

))
1

εS(y)
because

∫
[0,1]

g

(
1
ε

(
1 − x

S(y)

))
1

εS(y)
λ(dx) =

∫
[0,1]

g

(
1
ε

(1 − x)
)

1
ε
λ(dx) = 1.

Remark 2.3. The Perron-Frobenius operator PS corresponding to S exists be-
cause S is non-singular transformation. Hence we can write the Markov oper-
ator Pε defined by (3) as

Pεf(x) =
∫

[0,1]\{0}
PSf(y)g

(
1
ε

(
1 − x

y

))
1
εy

λ(dy) (4)

and by the change of variables with respect to the one-dimensional Lebesgue
integral and Condition C3, we also have

Pεf(x) =
∫

[0, 1
ε (1−x)]

PSf

(
x

1 − εy

)
g(y)

1 − εy
λ(dy). (5)

3 Main Results

We prove that the Foguel Alternative theorem holds for the Markov operator
{P n

ε } defined by (3).
Let A := {{0} ∪ [c, 1] : 0 < c ≤ 1}. It is easy to see that A satisfies (1)-(3)

in Definition 1.1, so that A is an admissible subfamily of Borel σ-algebra on
[0, 1]. Consequently, we have one of our main theorem.

Theorem 3.1. Let S : [0, 1] → [0, 1] be a non-singular positive a.e. trans-
formation and Pε be the Markov operator defined by (3) for each 0 < ε < 1.
Suppose that there exists an invariant infinite density function hβ : (x) = 1

xβ

(β ≥ 1) such that PShβ(x) = hβ(x) a.e. x, where PS is the Perron-Frobenius
operator corresponding to S. Then hβ is a locally integrable, positive and subin-
variant function with respect to A and Pε. Consequently, the Foguel alternative
theorem holds for Pε, that is, either Pε has an invariant density or sweeping
with respect to A.

Proof Obviously,
∫

A
hβ(x)dx < ∞ for all A ∈ A and hβ(x) > 0 a.e. x ∈ [0, 1].

Hence hβ is locally integrable positive function with respect to A.
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Fix 0 < x ≤ 1 arbitrarily. Hence there exists 0 < c < x and we denote
1

xβ 1[c,1](x) by f∗(x). Since f∗(x) ≤ 1
xβ =: hβ(x), we have

Pεhβ(x) = Pεf∗(x) =
∫

[0,1]

PSf∗(y)
1
εy

g

(
1
ε

(
1 − x

y

))
λ(dy)

=
∫

[0, 1
ε (1−x)]

PSf∗

(
x

1 − εy

)
g(y)

1 − εy
λ(dy)

≤
∫

[0, 1
ε (1−x)]

PShβ

(
x

1 − εy

)
g(y)

1 − εy
λ(dy)

≤ 1
xβ

∫
[0, 1

ε (1−x)]

g(y)λ(dy) ≤ 1
xβ

= hβ(x).

This yields Pεhβ(x) ≤ hβ(x) for a.e. x ∈ (0, 1]. Therefore hβ is a locally inte-
grable, positive and subinvariant function with respect to A. �

Actually, the Markov operators defined by (3) with respect to some inter-
mittent maps are sweeping for all noise level 0 < ε < 1.

 0

 1

 0  1

Figure 1: example of an intermittent
map S satisfying S1-S3.

From now, we add assumptions to
a non-singular positive a.e. transfor-
mation S : [0, 1] → [0, 1] :

S1 There exists a partition 0 = a0 <
a1 < · · · < am = 1 such that
for each integer j, the restric-
tion Sj of S to the interval
[aj, aj+1) is C1 monotonic func-
tion for j = 1, · · · , m − 1 and
S(0) = 0 and S′(0) = 1.

S2 a1 ≥ 1
2 .

S3 S(a1) 
= 1 if m ≥ 2.

Lemma 3.2. We denote εS(x) by
Sε(x) for x ∈ [0, 1]. Let PSε be
the Perron-Frobenius operator corre-
sponding to Sε for which conditions (S1)-(S3) are satisfied. Let με

n(dx) :=
P n

Sε
f(x)dx for an arbitrarily f ∈ D. Then we have

με
n =⇒ δ0 in weakly as n → ∞

for each 0 < ε ≤ 1
2
.
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Proof We have limn→∞ Sn
ε (x) = 0 for all x ∈ [0, 1] because Sε([0, 1

2
]) is

included in [0, 1
2 ) and Sε([0, 1]) ⊂ [0, 1

2 ] by the assumptions about S. This
implies that for any bounded continuous function r(x) on [0, 1],

lim
n→∞

∫
[0,1]

r(x)με
n(dx) = lim

n→∞

∫
[0,1]

r (Sn
ε (x)) f(x)λ(dx) =

∫
[0,1]

r(0)f(x)λ(dx) = r(0)

by the dominated convergence theorem. Therefore με
n converges to the Dirac

measurer supported by {0}. �

Remark 3.3. By the piecewise monotonicity of S from condition S1, we can see
that Sε is also the non-singular transformation for each 0 < ε ≤ 1

2 .

The following theorem is our main result.

Theorem 3.4. Let S : [0, 1] → [0, 1] be a transformation satisfying S1-S3 and
Pε be the Markov operator defined by (3) with respect to S and 0 < ε < 1.
Suppose that (P n

Sσ
1[0,1](x))′ ≤ 0 holds for all n ≥ 1 and σ ≤ 1

2
.

1 For any 0 < ε ≤ 1
2 , if the density function g satisfies

−‖g‖L∞ log (1 − ε) ≤ 1, (6)

then {P n
ε } is sweeping with respect to A.

2 For any 1
2 < ε < 1, if the density function g satisfies that

−‖g‖L∞

ε
(1 − ε) log(1 − ε) ≤ 1, (7)

then {P n
ε } is sweeping with respect to A.

Proof Fix x ∈ (0, 1] arbitrarily. Firstly, we consider the case 1. For 0 < ε ≤ 1
2
,

Pε1[0,1](x) =
∫

[0,1]

1[0,1](y)
1

εS(y)
g

(
1
ε

(
1 − x

S(y)

))
λ(dy)

=
∫

[0,1]

PSε1[0,1](y)
1
y

g

(
1
ε
− x

y

)
λ(dy)

=
∫

[εx, εx
1−ε ]

PSε1[0,1](y)
1
y

g

(
1
ε
− x

y

)
λ(dy)

since support of g is included in [0, 1], the support of g
(

1
ε − x

y

)
is included in
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[
εx, εx

1−ε

]
. Because of (PSε1[0,1](x))′ ≤ 0 and Condition (6), we have

Pε1[0,1](x) ≤ PSε1[0,1](εx)λ(dy) · ‖g‖L∞

∫
[εx, εx

1−ε ]

1
y
λ(dy)

= PSε1[0,1](εx) · ‖g‖L∞ log
(

1
1 − ε

)
≤ PSε1[0,1](x).

If P n
ε 1[0,1](x) ≤ P n

Sε
1[0,1](x) holds for some n ≥ 2, then we have

P n+1
ε 1[0,1](x) ≤ Pε(P n

Sε
f(x))

=
∫

[εx, εx
1−ε ]

P n+1
Sε

1[0,1](y)
1
y

g

(
1
ε
− x

y

)
λ(dy)

≤ P n+1
Sε

1[0,1](εx) = P n+1
Sε

1[0,1](x)

whence by induction, it follows that

P n
ε 1[0,1](x) ≤ P n

Sε
1[0,1](x) for all n ≥ 0.

Therefore we have∫
[c,1]

P n
ε 1[0,1](x)λ(dx)

≤
∫

[c,1]

P n
Sε

1[0,1](x)λ(dx) → 0 as n → ∞ for 0 < c ≤ 1

by Lemma 3.2.
Consider the case 2. With analogous considerations we have

Pε1[0,1](x) =
∫
[0,1]

1[0,1](y)1−ε
ε

· 1
(1−ε)S(y)

· g
(

1
ε
− 1−ε

ε
· x

(1−ε)S(y)

)
λ(dy)

=
∫
[0,1] PS(1−ε)1[0,1](y)1−ε

εy · g
(

1
ε − 1−ε

ε · x
y

)
λ(dy)

=
∫
[(1−ε)x,x]

PS(1−ε)1[0,1](y)1−ε
εy g

(
1
ε − 1−ε

ε
x
y

)
λ(dy)

since support of g is included in [0, 1], the support of g
(

1
ε
− x

y

)
is included in

[(1 − ε)x, x]. Because of (PS(1−ε)1[0,1](x))′ ≤ 0 and Condition (7), we have

Pε1[0,1](x) ≤ PS(1−ε)1[0,1]((1 − ε)x) · ‖g‖L∞

∫
[(1−ε)x,x]

1 − ε

εy
λ(dy)

= PS(1−ε)1[0,1](x) · ‖g‖L∞
1 − ε

ε
log

(
1

1 − ε

)
≤ PS(1−ε)1[0,1](x).



10 The Foguel alternative and sweeping for ...

Therefore by induction, it follows that

P n
ε 1[0,1](x) ≤ P n

S(1−ε)
1[0,1](x) for x ∈ (0, 1].

Therefore we have∫
[c,1]

P n
ε 1[0,1](x)λ(dx)

≤
∫

[c,1]

P n
S(1−ε)

1[0,1](x)λ(dx) → 0 as n → ∞ for 0 < c ≤ 1

by Lemma 3.2.
Give an arbitrary density function f ∈ D. Since for any δ > 0, there exists

a constant M > 0 such that∫
[0,1]

(f − M)+λ(dx) ≤ δ,

where (f)+ = max{0, f − M}, we have that

∫ 1

c

P n
ε f(x)λ(dx) ≤ M

∫ 1

c

P n
ε 1[0,1](x)λ(dx) + δ.

Since {P n
ε 1[0,1]} converges uniformly to zero on [c, 1] for each 0 < ε ≤ 1, we

have

lim
n→∞

∫ 1

c

P n
ε f(x)λ(dx) = 0 for 0 < c ≤ 1.

Then the proof is now completed. �

4 Examples

In this section, we give two examples which satisfy the sufficient conditions of
Theorem 3.1 and 3.4.
Example 1
Let S : [0, 1] → [0, 1] be a map defined by

S(x) =

⎧⎪⎪⎨
⎪⎪⎩

x

1 − x
x ∈

[
0,

1
2

)

2x − 1 x ∈
[
1
2
, 1

]
.

Indeed, S has the invariant density 1
x

(cf. [5]). Therefore the Foguel Alternative
theorem holds for the Markov operator defined by (3) with respect to A =
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{{0}∪[c, 1] : 0 < c ≤ 1}. Moreover this transformation satisfied the assumption
of Theorem 3.4. Fix 0 < ε ≤ 1

2 arbitrarily. Since

Sε(x) = εS(x)

⎧⎪⎪⎨
⎪⎪⎩

εx

1 − x
x ∈

[
0,

1
2

)

(2x − 1)ε x ∈
[
1
2
, 1

]
,

we have

PSεf(x) =
ε

(ε + x)2
f

(
x

ε + x

)
· 1[0,ε](x) +

1
2ε

f

(
1
2

+
x

2ε

)
· 1[0,ε](x).

First of all, we have

(PSε1[0,1](x))′ = − 2ε

(ε + x)3
1[0,ε](x) ≤ 0.

Furthermore, if we assume (P k
Sε

1[0,1](x))′ ≤ 0 for some k ≥ 2 then we have

(P k+1
Sε

1[0,1](x))′ =
( ε

(ε + x)2
P k

Sε
1[0,1]

( x

ε + x

)
· 1[0,ε](x)

+
1
2ε

P k
Sε

1[0,1]

(1
2

+
x

2ε

)
· 1[0,ε](x)

)′

=
−2εx

(ε + x)3
P k

Sε
1[0,1]

(
x

ε + x

)
· 1[0,ε](x)

+
ε2

(ε + x)4

(
P k

Sε
1[0,1]

(
x

ε + x

))′
· 1[0,ε](x)

+
1

4ε2

(
P k

Sε
1[0,1]

(
1
2

+
x

2ε

))′
· 1[0,ε](x)

≤ 0 for all x ∈ [0, 1].

Therefore by induction, we have (P n
Sε

1[0,1](x))′ ≤ 0 for all n ≥ 1. There-
fore the intermittent map S satisfies the sufficient conditions of Theorem 3.4.

Example 2
Let S : [0, 1] → [0, 1] be a map defined by S(x) = x. Since PSf(x) = f(x), it is
obviously that 1

x is a positive subinvariant function with respect to A = {{0}∪
[c, 1] : 0 < c ≤ 1} and S satisfies (S1)-(S3). Since P n

Sε
1[0,1](x) = 1

εn 1[0,εn](x)
for ε ≤ 1

2 , we have P n
Sε

1[0,1](x)′ = 0 for all x ∈ [0, 1] and n ≥ 0. Therefore S
satisfies the sufficient conditions of Theorem 3.4.

References
[1] T. Komorowski, Piecewise convex transformations with no infinite invari-

ant measure, Ann. Polon. Math. 54 (1991), no.1, 59-68.



12 The Foguel alternative and sweeping for ...

[2] T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov
operators, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 221-228.

[3] Y. Iwata and T. Ogihara, Random perturbations of non-singular trans-
formations on [0, 1], Hokkaido Mathematical Journal, to appear.

[4] A. Lasota and M. Mackey, “Chaos, fractals, and noise”, 2nd edn., Springer-
Verlag, 1994.

[5] M. Thaler The asymptotics of the Perron-Frobenius operator of a class of
interval maps preserving infinite measures, Studia Math. 143 (2000), no.
2, 103-119.


