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Abstract

In this paper we review properties of B-splines which are shared by
their Hilbert transform and then present some extensions of these results.

1 Introduction

Given any positive integer k and any set of distinct points {tj : j ∈ Zk+1} in
some interval I, where Zk+1 := {0, . . . , k}, we denote the k-th order divided
difference of a real-valued function f on the set of points {tj : j ∈ Zk+1} by
[t0, . . . , tk]f . The k-th divided difference of f is defined to be

[t0, . . . , tk]f :=
∑

i∈Zk+1

f(ti)
w′(ti)

, (1.1)

where w is the polynomial defined at t ∈ R as w(t) =
∏

j∈Zk+1
(t − tj). Cor-

responding to the divided difference there is the k-th order of B-spline defined
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at t ∈ R by
B0,k(t) = (tk − t0)[t0 − t, . . . , tk − t]Tk, (1.2)

where Tk is the truncated power function defined at t ∈ R by

Tk(t) :=
{

tk−1, t > 0,
0, t ≤ 0.

Notice, with this definition, we have that

B0,1(t) =
{

1, t0 ≤ t < t1,
0, otherwise. (1.3)

There are three important facts about B-spline which are of interest to us
in this paper. The first one is the Peano kernel representation of the B-spline
which states, for any real-valued function f ∈ Ck(R), that∫

R

B0,k(t)f(k)(t)dt = (k − 1)!(tk − t0)[t0, . . . , tk]f. (1.4)

The second issue which concerns us pertains to the structure of the linear
span of a biinfinite collection of B-splines. To describe what we have in mind,
we begin with a biinfinite set of distinct points (knots) T := {tj : j ∈ Z}
ordered so that tj < tj+1, for each j ∈ Z, and satisfying the condition that
limj→±∞ tj = ±∞. Corresponding to T there is a set of consecutive B-splines,
denoted by B = {Bj,k : j ∈ Z, k ∈ N}, where the j-th B-spline is defined at
t ∈ R as

Bj,k(t) = (tj+k − tj)[tj − t, . . . , tj+k − t]Tk. (1.5)

We use Sk(T) to denote the algebraic span of all such B-splines, that is,

Sk(T) =

⎧⎨
⎩

∑
j∈Z

cjBj,k : c = (cj : j ∈ Z) ∈ R
Z

⎫⎬
⎭ . (1.6)

Note that, because Bj,k is compactly supported, every element in Sk(T) is well
defined on R for any biinfinite vector c = (cj : j ∈ Z) ∈ R

Z. The Curry-
Schoenberg theorem states, for k ≥ 2, that a function f ∈ Sk(T) if and only
if f ∈ Ck−2(R) and between every two consecutive knots it is a polynomial of
degree at most k − 1.

The third fact is the de Boor recurrence relation for the consecutive B-spline
basis which states for t ∈ R, j ∈ Z, k ∈ N that

Bj,k+1(t) = pj,k(t)Bj,k(t) + qj+1,k(t)Bj+1,k(t), (1.7)

where the linear functions pj,k and qj,k are defined at t ∈ R by

pj,k(t) :=
t − tj

tj+k − tj
, qj,k(t) :=

tj+k − t

tj+k − tj
. (1.8)
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Now, we turn to the Hilbert transform of B-splines. It is indeed remarkable
that the Hilbert transform of B-spline also satisfies equations analogous to
(1.4), (1.5) and (1.7). To describe these facts, we first recall that the Hilbert
transform is defined, for each function f ∈ Lp(R), 1 ≤ p < ∞, at t ∈ R as

(HRf)(t) := p.v.
1
π

∫
R

f(s)
t − s

ds := lim
ε→0+

1
π

∫
|s−t|≥ε

f(s)
t − s

ds, (1.9)

whenever the Cauchy principal value of the above singular integral exists. It is
well known that if f ∈ Lp(R), 1 ≤ p < ∞ then HRf exists almost everywhere
on R, see for example, [2]. Among other things, we obtained in [3] an explicit
formula for the Hilbert transform of the B-spline Bj,k, which we denote by
Hj,k. To explain our formula, we introduce the function Lk which is defined
at t ∈ R by the equation Lk(t) = − 1

π tk−1 ln |t|. In this definition, we see that
L1(0) = −∞ while for k ≥ 2 we have that Lk(0) = 0. Moreover, it was proved
in [3], for any t ∈ R, that

Hj,k(t) = (tj+k − tj)[tj − t, . . . , tj+k − t]Lk, (1.10)

When k ≥ 2, both sides of this equation are finite for all t ∈ R. However, in
the case k = 1, this equation remains valid for all t ∈ R but both sides may be
±∞. Indeed, for all t ∈ R we have that

Hj,1(t) =
1
π

ln
∣∣∣∣ tj − t

tj+1 − t

∣∣∣∣ . (1.11)

To present the analog of the Peano kernel representation for the HB-functions
we recall the definition of the Sobolev space L2

r(R), where r is some positive
integer. Specifically, we define

L2
r(R) := {f : f(m) ∈ L2(R), m ∈ Zr} (1.12)

and recall the following fact from [3]. If f ∈ L2
k(R), j ∈ Z, k ∈ N then

∫
R

Hj,k(t)f(k)(t)dt = (−1)k+1(k − 1)!(tj+k − tj)p.v.
∫

R

f(t)∏
l∈Zk+1

(t − tj+l)
dt.

(1.13)
We view this equation as the Peano kernel representation for the HB-functions.

We remark in passing that the structure of the subspace generated by the
set of functions {Hj,k : j ∈ Z, k ∈ N} is unclear to us. Unlike the B-splines,
these functions are not compactly supported. Therefore, we must resort to
their closed linear span as a subset of Lp(R), 1 ≤ p < ∞. Currently, we cannot
provide a result for the Lp(R)-closure of a linear span of the set of functions
{Hj,k : j ∈ Z, k ∈ N} which is analogous to the Curry-Schoenberg theorem for
the space Sk(T). We leave this issue as an interesting open problem.
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Finally, for the third issue, we refer to [1] where it was shown that the
functions in the set {Hj,k : j ∈ Z, k ∈ N} satisfy for t ∈ R the recurrence
relation

Hj,k+1(t) = pj,k(t)Hj,k(t) + qj+1,k(t)Hj+1,k(t), (1.14)

which is identical to the recurrence relation for the B-splines (1.7). However, it
is important to realize that this recurrence relation has an initialization given in
(1.11), which is different from the initialization for the B-spline recurrence rela-
tion given in equation (1.3). This subject was investigated in the multivariate
case in [4].

Since the B-splines and their Hilbert transform satisfy the same recurrence
relation with different initialization, we ask whether or not there are other
sets of functions which satisfy the same recurrence relation? To this end, we
begin with a function g : R \ {0} → R which satisfies the condition that
limt→0 tg(t) = a for some a ∈ R and define the function Gj,1 for t ∈ R\{tj, tj+1}
by the equation Gj,1(t) = g(tj+1 − t) − g(tj − t). Now we generate a set of
functions {Gj,k : j ∈ Z, k ∈ N} by the same recurrence relation. That is, for
t ∈ R, j ∈ Z, k ∈ N, we define

Gj,k+1(t) = pj,k(t)Gj,k(t) + qj+1,k(t)Gj+1,k(t), (1.15)

where pj,k, qj,k are defined as in equation (1.8).
Although the function Gj,1 may be not well defined at the points {tj, tj+1},

the function Gj,k is well defined on R for all k ≥ 2. To see this, we only need to
pay particular attention to the definition of Gj,2 at the points {tj , tj+1, tj+2}.
Actually, an easy computation shows that

Gj,2(t) =
tj − t

tj+1 − tj
g(tj − t) +

(
t − tj

tj+1 − tj
− tj+2 − t

tj+2 − tj+1

)
g(tj+1 − t)

+
tj+2 − t

tj+2 − tj+1
g(tj+2 − t).

Since limt→0 tg(t) = a for some a ∈ R, the limit of Gj,2 always exist when
t tends to tj, tj+1 and tj+2 respectively. Therefore, as asserted, Gj,k are well
defined on R for all j ∈ Z, k ≥ 2. We now provide an explicit formula for the
function in the set {Gj,k : j ∈ Z, k ∈ N}.

2 Main results

Our first task is to give a divided difference representation for the function
Gj,k. For this purpose, we define functions g1 to be g at R \ {0} and gk to be
gk(t) = tk−1g(t) at t ∈ R for k ≥ 2. For each k ∈ N, the function gk yields a
biinfinite set of functions {Dj,k : j ∈ Z, k ∈ N} defined as

Dj,k(t) = (tj+k − tj)[tj − t, . . . , tj+k − t]gk. (2.1)
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Notice, although the function Dj,1 may be not well defined at {tj, tj+1}, nonethe-
less, for k ≥ 2 the function Dj,k is well defined on R because limt→0 tg(t) = a
for some a ∈ R. Moreover, it is interesting to observe that Dj,1(t) = Gj,1(t)
for all t ∈ R \ {tj, tj+1} and both sides of this equation are finite. Further-
more, when t ∈ {tj, tj+1}, this equation remains valid, with the caveat, that
the function values can be ±∞. This fact leads us to the following result.

Theorem 2.1. For t ∈ R, j ∈ Z, k ∈ N, we have that

Gj,k(t) = Dj,k(t). (2.2)

Proof. The initialization of Gj,1 = Dj,1 has been discussed in the first para-
graph of this section. Now, we are going to prove the set of functions {Dj,k :
j ∈ Z, k ∈ N} satisfies the same recurrence relation as in definition of Gj,k.
Since the elements in T are distinct, the definition of the divided difference
ensures for any function h in C(R) that

[tj − t, . . . , tj+k+1 − t]h =
[tj+1 − t, . . . , tj+k+1 − t]h − [tj − t, . . . , tj+k − t]h

tj+k+1 − tj
.

(2.3)
We specialize the above formula by choosing the function h to be gk+1 to obtain
that

Dj,k+1(t) = [tj+1 − t, . . . , tj+k+1 − t]gk+1 − [tj − t, . . . , tj+k − t]gk+1. (2.4)

Next, we appeal to the Leibniz formula for the divided difference of a product
of two functions to observe that the first expression on the right hand side of
equation (2.4) is given as

[tj+1 − t, . . . , tj+k+1 − t]gk+1 = qj+1,k(t)Dj+1,k(t) + [tj+1 − t, . . . , tj+k − t]gk.

Similarly, for the second expression on the right hand side of equation (2.4) we
have that

[tj − t, . . . , tj+k − t]gk+1 = −pj,k(t)Dj,k(t) + [tj+1 − t, . . . , tj+k − t]gk.

Using these two formulas we rewrite the equation (2.4) to obtain the recurrence
relation for the sequence of functions {Dj,k : j ∈ Z}, which is the same as
the sequence of functions {Gj,k : j ∈ Z} with the same initialization. These
remarks complete the proof. �

Remark 2.2. The recurrence relation in Theorem 2.1 is initialized with the
function Gj,1 defined at t ∈ R\{tj, tj+1} by the equation Gj,1(t) = g(tj+1− t)−
g(tj − t) . Therefore, if we choose g to be the function T+ which is defined at
t ∈ R as

T+ =
{

1, t > 0
0, t ≤ 0 ,
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then we get the B-spline recurrence relation with initialization (1.3). On the
other hand, if g is chosen to be the function L1 then we get the same recurrence
relation for HB-functions with initialization (1.11). In both cases we have that
limt→0 tg(t) = 0. Moreover, since Gj,k satisfies the recurrence relation (1.15),
it is easy to develop a recursive algorithm for the evaluation of the function∑

j∈Z
cjGj,k when the cardinality of the set {j : cj �= 0} is finite.

Next, we will develop an integral representation for Gj,k. To this end, we
first focus on the functions which are smooth, except the origin. Namely, we
assume g ∈ Ck(R\{0}). For the description of the integral representation of
Gj,k it is convenient to introduce the following linear operator.

Definition 2.3. If g ∈ Ck(R\{0}) then we define a linear operator Vk :
Ck(R\{0}) → C(R) on g at t ∈ R\{0} by the equation

(Vkg)(t) =
1

(k − 1)!
[gk(t)](k). (2.5)

Note that the null space of the operator Vk consists of the constant functions.
This linear operator is useful to us because it leads us to the following integral
representation of Gj,k.

Proposition 2.4. If gk ∈ Ck(R\{0}) then Gj,k at t ∈ R\T can be expressed
as

Gj,k(t) =
∫

R

Bj,k(x)(Vkgk)(x − t)dx. (2.6)

Proof. By Theorem 2.1, we only need to show for t ∈ R that

Dj,k(t) =
∫

R

Bj,k(x)(Vkgk)(x − t)dx.

This equation is equivalent to the formula

(k − 1)!(tj+k − tj)[tj − t, . . . , tj+k − t]gk =
∫

R

Bj,k(x)g(k)
k (x − t)dx.

But by the Peano kernel representation for the B-spline, (1.4), the above equa-
tion is readily verified. �

Remark 2.5. There are two cases of Proposition 2.4 which are of special
interest. The first one concerns the B-spline itself. To explain what we have in
mind, we first extend the range of the validity of equation (2.6). Specifically,
for functions gk ∈ Ck−l(R \ {0}) with l < k − 1 we have that

Gj,k(t) =
(−1)l

(k − 1)!

∫
R

B
(l)
j,k(x)g(k−l)

k (x − t)dx. (2.7)
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For example, when l = 1 and gk := Tk we see in this case that Gj,k is given at
t ∈ R as

Gj,k(t) = −
∫ ∞

t

B′
j,k(x)dx.

Hence, we have established that Gj,k = Bj,k. The second example is concerned
with the HB-functions. In this case, we choose gk = Lk and conclude for any
k ∈ N that Gj,k is the Hilbert transform of B-splines, namely,

Hj,k(t) = −p.v.
1
π

∫
R

Bj,k(x)
x − t

dx. (2.8)

Remark 2.6. If g ∈ Ck(R\{0}) then Leibniz formula provides, for t ∈ R\{0},
the equation

(Vkgk)(t) =
∑
l∈Zk

k!
l!(k − l)!(k − 1 − l)!

tk−l−1g(k−l)(t). (2.9)

Corresponding to the function Vkgk is the linear operator Vk defined for all
real-valued function f on R at t ∈ R as

(Vkf)(t) =
∫

R

f(x)(Vkgk)(x − t)dx,

whenever the integral exists. Therefore, if our numerical task is to compute
the function Vkf we may proceed by approximating f by a linear combination
of B-splines

∑
j∈Z

cjBj,k and observe that its image under Vk is
∑

j∈Z
cjGj,k.

We can then efficiently compute this function by the recurrence relation (1.15).
To make best use of this observation we start with a function h and seek a
function gk such that Vkgk = h. In doing so, the linear operator Vk simplifies
to the equation

(Vkf)(t) =
∫

R

f(x)h(x − t)dx.

So, to compute the function Vkf , we choose gk such that Vkgk = h and use
our previous remarks. Given the function h, the corresponding choice of g is
answered in the following theorem.

Theorem 2.7. If h ∈ L1(R) then the function gk defined at t ∈ R by

gk(t) = t

∫ 1

0

(1 − s)k−1h(ts)ds + c, (2.10)

where c is a constant, satisfies equation Vkgk = h.

Proof. The proof easily follows by induction on k. �
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Remark 2.8. Obviously, in general h depends on k. However, for the special
choice that gk = Lk we get, for t ∈ R \ {0}, that (VkLk)(t) = − 1

π t−1.

Remark 2.9. An interesting special choice for Theorem 2.7 is the function hα

defined for t ∈ R \ {0} as hα(t) = t−α where 0 < α < 1. According to Theorem
2.7, the corresponding gk is given at t ∈ R as gk(t) = t1−αB(k, 1 − α), where
B(·, ·) is the Beta function. Therefore, our method for this special case gives
a procedure for computing the convolution transform of a function f with the
function hα, where 0 < α < 1, by using a B-spline approximation to f.

Finally, we end this paper with some comments about the special case of
our previous discussion when the knots of the B-spline are equally spaced, that
is, T = Z. In other words, for each j ∈ Z we have that tj = j. In this
important case all the B-splines Bj,k are the integer translates of the forward
B-spline B0,k. For notational simplicity we merely denote this B-spline by B.
A direct computation confirms that its Fourier transform is given at w ∈ R by
the equation

B̂(w) :=
∫

R

e−iwtB(t)dt =
(

1 − e−iw

iw

)k

. (2.11)

Another direct computation yields the Fourier transform of G0,k given at w ∈ R

by the equation

Ĝ0,k(w) =
(−1)k

(k − 1)!
(1 − e−iw)k

∫
R

tk−1g(t)eiwtdt, (2.12)

which reduces to (2.11) when g = T+. From equation (2.11) we get the refine-
ment equation for the B-spline,

B = 2−k+1
∑
j∈Zk

(
k

j

)
B(2 · −j). (2.13)

Likewise, when the function gk satisfies a refinement equation of the form

gk =
∑
l∈Z

blgk(2 · −l)

for some biinfinite vector (bl : l ∈ Z) where the cardinality of the set {l : l ∈
Z, bl �= 0} is finite then G0,k satisfies the refinement equation

G0,k =
∑
l∈Z

dlG0,k(2 · −l),

where the coefficient vector (dl : l ∈ Z) is defined by the equation, valid for
w ∈ R, ∑

l∈Z

dle
−ilw = (1 + e−iw)k

∑
l∈Z

ble
ilw. (2.14)



C. A. Micchelli and Bo Yu 229

For example, when gk = Tk, then bl =
{

2−k+1, l = 0
0, l ∈ Z \ {0} , and equation

(2.14) yields equation (2.13).
Moreover, it is easy to see, but nonetheless surprising, that the Hilbert

transform of B-spline satisfies the same refinement equation. That is, for C :=
HRB, we conclude that

C = 2−k+1
∑
j∈Zk

(
k

j

)
C(2 · −j). (2.15)

For example, it is amusing to note, when k = 1 and t ∈ R \ {0, 1
2 , 1}, that

ln
∣∣∣∣ t

t − 1

∣∣∣∣ = ln
∣∣∣∣ 2t

2t − 1

∣∣∣∣ + ln
∣∣∣∣2t − 1
2t − 2

∣∣∣∣ .

The proof of equation (2.15) is straightforward because the Cauchy kernel de-
fined at x, t ∈ R, x �= t as K(x, t) = 1

x−t , appearing in the definition of the
Hilbert transform, has the property that

K(x,
t

2
) = 2K(2x, t).

Similarly, whenever φ is refinable, that is, satisfies the equation

φ =
∑
j∈Z

ajφ(2 · −j), (2.16)

where {j ∈ Z : aj �= 0} is finite and φ is in the domain of the Hilbert transform,
then Hφ satisfies the same equation. Indeed, the Hilbert transform is the
unique integral operator with this property.
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