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Abstract

We introduce new group theoretic methods for constructing mixed
orthogonal arrays (OAs). In brief, we employ combinatorics, graph and
permutation group theory, together with integer linear formulation as
major engines to provide a framework for constructing and enumerating
mixed OAs of any strength with all feasible factor levels and with run
sizes satisfying the Rao bound. The proposed methods are validated by
constructing a few new strength 3 mixed OAs with run sizes at most 100.

1 Introduction

A comprehensive reference on the use of OAs as factorial design in diverse prob-
lems of Statistical Parameter Optimization was provided by Wu and Hamada
(2000) [27]. Furthermore, Glonek (2004) [23] discussed usages of OAs in fast
developing areas as biostatistics, and Sudhir (2006) [22] proposed new applica-
tions of balanced factorial design in newly emerging areas as bio-informatics.

From the purely mathematical statistics point of view, Bulutoglu and Mar-
got (2006) [4] fully enumerated binary OAs of strength 4 with run size at most
144. Stufken and Tang (2007) [21], more recently provided a complete solution
to enumerating non-isomorphic two-level OAs of strength t with t+2 constraints
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for any t and any run size N = λ 2t. Gupta (2007) [24] listed Hadamard designs
with run-size at most 1000, and most recently, mixed-level OAs of strength 3
with run-size at most 100 together with most Hadamard matrices with run-size
at most 1500 are both online reported at [13].

1.1 Recent relevant works on the Construction of OAs

Algebraic View for computing fractional designs. Following terminologies of
[5, 17], recall that the ring F[x] := F[x1, x2, x3, . . . , xd] consists of multivariate
polynomials over a field F. Given a finite set of polynomials f1, f2, . . . , fs, an
ideal

J = 〈f1, f2, . . . , fs〉 :=
{ s∑

i=1

hifi where hi ∈ F[x]
}

being generated by the {fi}, is called zero-dimensional if its set Z(J) of solutions
is finite. Now let J be an ideal of F[x], written J�F[x] and be zero-dimensional,
and denote by π : F[x] → F[x]/J the canonical surjection. We have a standard
result as follows.

Fact 1. |Z(J)| = dimF(F[x]/J) < ∞. If, moreover G is a Groebner basis of J
with respect to (w.r.t.) a given ordering �, we know that

〈
LT(J)

〉
=

〈
LT(G)

〉
,

and more importantly Z(J) = Z(G), where LT(J) is the set of all leading terms
of polynomials in J w.r.t �.

Concept 1. The followings are crucial for algebraically formulating our prob-
lems.

• A set O of monomials is called an order ideal with respect to the ordering
� if whenever u ∈ O, every monomial v � u is also in O.

• The term xα = xα1
1 xα2

2 · · ·xαd

d has order l if the d-tuple α has exactly l
non-zero components. A term xα of order l (1 ≤ l ≤ d) is called an l-
factor effect. An one-factor effect is just a power of a single factor, called
the main effect of that factor; while the term factor interaction is used
frequently for at least two factors.

• A full factorial design D, composed by finite factor sets Q1, Q2, . . . , Qd,
where factor Qi has ri levels, is considered as a finite subset of Fd.

• Fix a subset F of D. The vanishing ideal I(F ) consists of precisely all
polynomials of the ring F[x] that vanish on F . Denote by

Est(F ) = {xα = xα1
1 xα2

2 . . . xαd

d : xα 	∈ 〈
LT(I(F ))

〉}
the set of estimable terms being associated with the fraction F . The set

O(D) := Est(D) = {xα : αi = 0, 1, . . . , ri − 1, i = 1, . . . , d}
is called the complete set of estimable terms of D.
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For instance, if D = {−1, 1}3, then

O(D) = {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.
Definition 1. A fraction F is said to be a strength t orthogonal array (OA) or
t-balanced fraction if, for each choice of t coordinates (columns) from F , every
combination of coordinate values from those columns occurs equally often; here
t is a natural number.

Write F = OA(N ; r1 · r2 · · ·rd; t) if F has N rows, d factors, the ith factor
has ri levels, and strength t. In [16], we raised the following two problems:

Fundamental Problem 1. Constructing a fraction with given estimable terms.

Input: Given E = {t1, . . . , tμ} ⊂ O(D), a fixed order ideal.

The aim: compute a fraction F of D, such that E = Est(F ), that is, E is a
basis of the quotient ring R = F[x]/ I(F ) as a F-vector space.

Here Est(F ) = {xα : xα 	∈ 〈
LT(I(F ))

〉} can be interpreted as a set of the
factor interactions that could affect the product quality when we conduct the
experiments of F in engineering and technological practices.

Fundamental Problem 2. Constructing strength t orthogonal arrays.

Input: Given a set of factors, take E = {t1, . . . , tμ} ⊂ O(D) be a fixed order
ideal, consisting of the main effects and some factor interactions of interest.

The aim: compute a balanced fraction F of strength t, such that E = Est(F ),
that is, E is a basis of R = F[x]/ I(F ) as a F-vector space.

The first problem was solved by L. Robbiano et al. from 2001, see more details
in Chapter 4, Dickenstein-Emiris (2005) [19]. Based on L. Robbiano’ work, the
second problem has been algebraically solved in [16], and for consistency, we
recall our key results here.

Let M = xα = xα1
1 xα2

2 . . . xαd

d be a monomial. The left action of M induces
an endomorphism of R. Let LM be the matrix of this action with respect to
the basis E. The matrices Lx1 , . . . , Lxd are called the elementary multiplication
matrices. We see, by the standard algebraic Fact 1, if F exists and is finite,
then F[x]/ I(F ) has finite dimension and the multiplication matrices commute
pairwise. So they generate a commutative sub-algebra of the non-commutative
ring of all square matrices.

Theorem 1. Suppose that F has no repeated runs. The characteristic polyno-
mial of LM is ∏

p=(p1,...,pd)∈F

(X − pα1
1 pα2

2 · · · pαd

d ).
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Observation 1. From this theorem, observe that the trace of LM is∑
p∈F pα1

1 pα2
2 · · · pαd

d . We use this result to seek for balanced fractions F , using
the following facts.

• If F is a 1-balanced fraction, then the size of F must be a multiple of the
number of levels of each of the factors which form F .

• If F is a 2-balanced fraction (i.e. strength 2 OA), then the size of F must
be a multiple of the products of each pair of levels, and so on.

Corollary 2. (Necessary conditions for the existence of OA)
Let F be a t-balanced fraction of a full factorial design D in Fd. Assume

that factor xi has levels 0, 1, . . . , ri − 1.

(a) If t ≥ 1 and αi ∈ {0, 1, . . . , ri − 1}, then the left multiplication matrix
Lxi

αi has trace

N

ri

ri−1∑
l=0

lαi .

In particular, Lxi has trace |F |(ri − 1)/2.

(b) If t ≥ 2, αi ∈ {0, 1, . . . , ri − 1} and αj ∈ {0, 1, . . . , rj − 1}, Lxi
αixj

αj has
trace

N

ri rj

ri−1∑
l=0

lαi

rj−1∑
m=0

mαj .

1.2 Enumeration of orthogonal arrays: Literature and our work

After the work of Bulutoglu and Margot (2006) [4], Angelopoulos, Evangelaras,
Koukouvinos and Lappas (2007) [1] proposed a construction and identification
of non-isomorphic binary orthogonal arrays using frequency counting, Ham-
ming distance distribution and D-efciency criteria in a column extension algo-
rithm. Recently Schoen, Eendebak and Nguyen (2009) [7] reported a complete
enumeration of pure-level and mixed-level OAs using backtrack search.

So far we have been mostly focusing on the construction problem. We
now propose new ways of enumerating balanced and mixed fractional factorial
designs in Sections 2, 3, and 4 possibly provide a complete answer for the
construction and enumeration of mixed OAs. Precisely, we solve the following.

Fundamental Problem 3. Enumerating strength t orthogonal arrays (OAs).
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Input: F = OA(N ; r1 · r2 · · ·rd; t), a strength t orthogonal arrays

The aim: combine, in several ways distinct computer-algebraic flavor methods
to provide a complete answer for the enumeration of strength t mixed OAs of
the form OA(N ; r1 ·r2 · · ·rd ·s; t), i.e. we find all non-isomorphic column vectors
X of s levels that makes the extension [F |X] an OA(N ; r1 · r2 · · ·rd · s; t).

Our contribution. In this article, we introduce a few new methods using group
theoretic computation and integer linear formulation as major engines to re-
solve the third fundamental problem formulated above. Specifically the meth-
ods allow enumerating isomorphism classes of almost all mixed OAs of strength
3 with all feasible factor levels, and computationally with run size at most 100.
The proposed methods meaningfully provide a generic framework and could be
easily modified for computing any larger strength OAs.
For convenience, we abbreviate methods used for constructing and enumerat-
ing OAs, and use abbreviations for specific lower bounds and for particular
nonexistence proofs as well; they are listed in Table 1. We could group iden-
tical values in the factor levels T = r1 · r2 · · ·rd to get a new design type
T = sa1

1 · sa2
2 · · · sam

m ; and assume that {sk} is an decreasing sequence.

1.3 Parameter sets of strength 3 OAs with run size 72 ≤ N ≤ 100

The divisibility condition for the run size N of a strength t fractional design F
requests integrality of the fraction N over any product of t factor levels, while
the Rao bound provides a lower bound of N in terms of its parameters. Both
give necessary conditions for the existence of F .

Lemma 3 (Divisibility condition-(Div)). In an OA(N ; r1 · r2 · · ·rd; t), the run
size N must be divisible by the least common multiple (lcm) of all numbers∏

i∈I, |I|=t ri.

Proof. This says that the t times derived design has an integral run size. �
For example, in an OA(N ; 35 ·2; 3), N must be a multiple of lcm(3·3·3, 2·3·3) =
54. By this criterion, there is no strength 3 OA with N greater 64 and less
than 72. In [2], we constructed all orthogonal arrays of strength 3 with run
sizes N at most 64. We extend that to the cases 72 ≤ N ≤ 100 in this paper.

Proposition 4. The nontrivial design types for OAs of strength 3 and run size
at most 100 allowed by (Div) and (Rao) are:

1. run size 8m, type 2a for 4 ≤ a ≤ 4m, with 1 ≤ m ≤ 12;

2. run size 27m, type 3a for 4 ≤ a ≤ 5m, with 1 ≤ m ≤ 2.
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Notation Methods Reference

(A) Arithmetic [14]
(B) Backtrack search for sa

1sb
2 OAs [7]

(C) Colored graphs Section 2.2
(Con) Concatenation [2]
(La) Latin squares [14]
(H) Hadamard construction [2]
(I) Integer linear algebra(ILA) Section 3
(IS) ILA with symmetry Section 4
(J) and (L) Juxtaposition [2]

and Linear code
(M) and (O) Multiplication [2]

and Even sum
(O’), (Br) Brouwer’s construction [3]
(Q) Quasi-multiplication [14]
(S) and (T) Split and [2]

Trivial design
(X), (X6), [2]
(X3), (X4), (X5) explicit constructions [2]
(X1), (X7), (***) mixed additive codes [2]
(35) Hedayat, Seiden, and [9]

Stufken’ construction

(Rao) the generalized Rao bound [18, 9, 2]
(Del) the Delsarte bound [6]
(Div) the divisibility
(5.1) 	 ∃OA(24; 3 · 25; 3) Sec. 5.1, [2]
(5.9) 	 ∃OA(64; 45 · 23; 3) Sec. 5.9, [2]
(5.10) 	 ∃OA(64; 43 · 29; 3) Sec. 5.10 [2]

Table 1: An overview of constructions, lower bounds on run sizes
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N Design type T = sa1
1 · sa2

2 · · ·sam
m Parameters

72 3b · 2a 1 ≤ b ≤ 2, a + 2b ≤ 25
62 · 2a 2 ≤ a ≤ 4
6 · 3b · 2a a + b ≥ 3, a + 2b ≤ 11
9 · 2a 3 ≤ a ≤ 7

80 4 · 2a 3 ≤ a ≤ 19
5 · 4b · 2a a + b ≥ 3, b ≤ 1, a + 3b ≤ 15
10 · 4b · 2a a + b ≥ 3, b ≤ 1, a + 3b ≤ 7

81 9 · 3a 3 ≤ a ≤ 4
84 7 · 3 · 22

88 11 · 2a 3 ≤ a ≤ 7
96 3 · 2a a ≥ 3

4c · 3b · 2a 1 ≤ c ≤ 2, a + b + c ≥ 4,
b ≤ 1, a + 2b + 3c ≤ 26

6 · 4b · 2a a + b ≥ 3, b ≤ 2, a + 3b ≤ 15
8 · 6c · 3b · 2a b + c ≤ 1, a + 2b + 5c ≤ 11
12 · 4b · 2a a + b ≥ 3, b ≤ 1, a + 3b ≤ 7

Table 2: Parameters of strength 3 OAs of with N ≤ 100.

Proof. The nontrivial mixed design types for OAs of strength 3 and run size
at most 100 allowed by (Div) and (Rao) are given in Table 2. We show here
how to get eligible parameters for some options of the most interesting case
N = 96, other results can be similarly obtained. For N = 96, consider the
following options.

• OA(96; 8 · 6b · 2a; 3) with 0 ≤ b ≤ 1 a + b ≥ 3, a ≤ 11: applying (Rao) to
derived designs OA(12; 6b · 2a; 2) gives us a + b ≥ 2, 12 ≥ 1 + 5b + a, or
a + 5b ≤ 11.

If b = 0, a ≤ 11, and if b = 1, a ≤ 6.

• OA(96; 4c · 3b · 2a; 3) with b + c > 0. When c > 0, we use (Rao) for the
derived OA(16; 4c−1·3b·2a; 2); when c = 0, employ (Rao) for OA(32; 3b−1·
2a; 2). Then 0 ≤ b ≤ 1, 0 ≤ c ≤ 2, a+b+c ≥ 4, and 3(c−1)+2b+a ≤ 23.
When c = 2, if b = 1, a ≤ 18; if b = 0, a ≤ 20. When c = 1, if b = 1,
a ≤ 21; if b = 0, a ≤ 20.

�
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The structure of the paper

Firstly in Section 2, we discuss about permutation group and colored graph of
an OA. Specifically part 2.1 defines the full group of isomorphisms of OAs, as
well as the automorphism group of an OA. We, furthermore associate an OA
with a colored graph in part 2.2, that in turn allows us to compute canonical
graphs and find isomorphism classes of orthogonal arrays. These mathematical
ingredients, in Sections 3 and 4 all together make a solid base for efficiently
listing non-isomorphic columns in the column extension problem of a given
balanced fractional factorial design.

More precisely, we combine the concepts of group theoretic and graph theory
with integer linear modeling to construct all non-isomorphic candidates of a new
factor of an OA in Section 3 and 4, the major parts of the article. Section 5
finally lists few newly found arrays and concludes the paper.

2 Permutation group for enumerating of mixed OAs

It is not immediately obvious how to define isomorphisms of a factorial design.
In fact, there is more than one sensible definition that could be made. We give
the definition that is most useful for our purposes in this section.

Notation. The following notations will be used through out the paper.

• Let N be a positive integer and T := r1 · r2 · · ·rd (equivalently T :=
sa1
1 · sa2

2 · · ·sam
m ) be a design type. Denote by OA(N ; T ) the set of all

OAs with given type T and run size N .

• Set U := {(i, j, x) | i = 1, . . . , N, j = 1, . . . , d, x ∈ Qj}, and call it the
underlying set of OA(N ; T ). In other words, U consists of all possible
triples of a row i, a column j, and an entry Fij for any matrix F ∈
OA(N ; T ).

• The k-th column index set Jk ⊆ Nd := {1, 2, · · · , d} precisely consists of
column indices of factors having sk levels, for each k = 1, ..., m.

2.1 Fraction transformations (or isomorphism) of orthogonal ar-
rays

We can now encode any F ∈ OA(N ; T ) by its lookup table

Lt(F ) := {(i, j, Fij) | i = 1, . . . , N, j = 1, . . . , d} ⊆ U.

The encoding map Lt from OA(N ; T ) to the power set of U is clearly injective.
The image of Lt consists of all sets S ⊆ U with the following property:

#{x | (i, j, x) ∈ S} = 1 for all i = 1, . . . , N and j = 1, . . . , d. (1)
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We now define three group actions (see Appendix A for more) on the set U :

• The row permutation group is R := SymN . It acts via φR : R → Sym(U)
defined by

(i, j, x)φR(r) = (ir, j, x).

• The column permutation group is C :=
∏m

k=1 Ck where Ck := Sym(Jk).
It acts via φC : C → Sym(U) defined by

(i, j, x)φC(c) = (i, jc, x).

• The level permutation group is L :=
∏d

j=1 Lj where Lj = Symrj
. This

acts via the map φL : L → Sym(U) defined by

(i, j, x)φL(l) = (i, j, xlj),

where lj is the projection of l onto Lj .

Definition 2. The full group G of fraction transformations of U is defined as

G := φR(R) φC(C) φL(L) ≤ Sym(U). (2)

Using (1) we can prove that, for every F ∈ OA(N ; T ) and g ∈ G, there
exists a unique F ′ ∈ OA(N ; T ) with Lt(F ′) = Lt(F )g. So G acts faithfully on
OA(N ; T ) via the map π : G → Sym(OA(N ; T )) = Sym(U) defined by

F g = F π(g) := Lt−1 (Lt(F )g) .

The newly defined group G is indeed a permutation group acting on the space
OA(N ; T ).
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Proposition 5. The structure of G is described as follows.

1. φR(R) commutes elementwise with both φC(C) and φL(L).

2. φC(Ck1) commutes elementwise with φC(Ck2) for k1 	= k2.

3. φC(Ck) commutes elementwise with φL(Lj) for j /∈ Jk.

4. φL(Lj1) commutes elementwise with φL(Lj2) for j1 	= j2.

5. (Column- Level relation.) φL(
∏

j∈Jk
Lj)φC(Ck) is the wreath product

Symsk
�Ck.

Proof. Items 1 to 2 are obviously true. Item 3 is easily proved by observing
that a vertical move of an entry followed by a horizontal move gives the same
result as the same moves in the reverse order. Item 4 is true as well, since we
get the same fraction if we permute rows first, then switch levels of any column
j in any section k, or do it the other way round. That means r.lkj = lkj .r; this
implies r.lk = lk.r.

To prove the last item, first of all let column permutation be simply a
transposition c = (i, j) inside a section. Let li, lj, lp be level permutations on
columns i, j, p such that p 	= i and p 	= j, (p may belong to the same section as
i, j or another section). Then

c.li 	= li.c and c.lj 	= lj .c, (3)

but c.li = lj.c and c.lj = li.c. However,

c.li.lj = lj .c.lj = lj .li.c = li.lj .c, (4)

and obviously
c.lp = lp.c for all p 	= i, j (5)

then
c.li.lj .lp = li.lj .c.lp = li.lj.lp.c.

Secondly, in generic case, it is well-known that every permutation is a composi-
tion of transpositions. Hence, in the case c is a product of transpositions, then
these rules are applied consecutively for each cycle existing in c. Precisely, we
write c = (i1 , j1).(i2, j2) . . . (iq , jq). Put CI := {i1, j1, i2, j2, . . . , iq, jq} be the
(index) set of columns which are moved by c. Let Lil be a level permutation
on columns il, and LI the set of corresponding indexes. Then it is easily seen
that

i) if |CI ∩ LI| is an even number, Item 5) follows from equations (4) and
(5).
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ii) if |CI ∩LI| is an odd number, then there exists a cycle (ip, jp) in c such
that
ip ∈ CI ∩ LI and jp 	∈ CI ∩ LI, so jp 	∈ LI. Then Item 5) follows from
(3).

�
Hence, we can now identify G with the wreath product R× (C � L) where

C � L =
m∏

k=1

Symsk
�Ck.

Corollary 6. We get the followings.

• The full group or the permutation group acting on the space OA(N ; T )
is

G = R × (C � L). (6)

• As a result, the order of G can be calculated from OA parameters, as

|G| = N ! a1! · · ·am! (s1!)a1 · · · (sm!)am .

The next concept plays a crucial role in the remaining parts.

Definition 3. Let F and F ′ be in OA(N ; T ).

• An isomorphism from F to F ′ is g ∈ G such that F g = F ′.

• The automorphism group of an orthogonal array F ∈ OA(N ; T ) is the
normalizer of F in the group G, i.e., Aut(F ) := {g ∈ G | F g = F }.

• Any subgroup A ≤ Aut(F ) is called a group of automorphisms of F .

See a specific computation of Aut(F ) in Appendix B.

2.2 Orthogonal arrays and colored graphs

Motivation of the approach. It is well known that combinatorial objects can
be encoded as colored graphs. For this reason, a great deal of effort has been
put into efficient computation of graph automorphisms – the program nauty
[15] is extremely effective.

In this section, we show how to encode an array as a colored graph, and how to
decode a graph back to an array. We then show how to use nauty to compute
the automorphism group and a canonical representative of an isomorphism
class of arrays, in particular for OAs having at least three distinct levels. This
part provides a fundamental alternative for computing representatives of OA
isomorphism classes, in comparison with using lex-least arrays introduced in
[7].
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2.2.1 Representation of an orthogonal array

Recall that a colored graph is a triple W = (V, E, γ), where

• V is a finite set; E is a set of subsets of V of size two; and

• γ is a map from V to a fixed set C.

We call the elements of V vertices (or nodes), the elements of E edges, and the
elements of C colors. Denote by V (x) the neighbors of a vertex x ∈ V .

Concept 2. An isomorphism from a colored graph W to another colored graph
W ′ = (V ′, E′, γ′) is a bijection s : V → V ′ such that, for all v, w ∈ V ,

• {v, w} ∈ E if, and only if, {s(v), s(w)} ∈ E′, and

• γ(v) = γ(w) if, and only if, γ′(s(v)) = γ′(s(w)).

Let F = [Fij] be an OA with run size N and design type T = r1 · r2 · · ·rd.

Definition 4. A colored graph GF = (V, E, γ) associated with F is constructed
as follows:

• The vertex set V contains elements ρi, for i = 1, . . . , N , corresponding to
the rows; γj, for j = 1, . . . , d, corresponding to the columns; and σjv, for
j = 1, . . . , d and v ∈ Qj, corresponding to the levels in each column.

• E contains edges E1 = {{ρi, σjv}} and E2 = {{γj , σjv}} whenever Fij =
v.

• The color set is C = {ρ, γ, σj}. All vertices ρi have color ρ; all vertices
γj have color γ; and all vertices σjv have color σj .

GF clearly is a tripartite graph w.r.t the partition of V into row, column
and level nodes:

V = R ∪ S ∪ C; where R = {ρi}, C = {γj}, and S = {σjv}. (7)

Obviously the edge set E = E1 ∪ E2 ⊆ (R × S) ∪ (S × C), and respectively

|V | = N +
d∑
i

ri + d and |E| = dN +
d∑
i

ri.

Now call OA(N ; T ; t) be the class of all mixed OAs of strength t ≥ 1, of type
T and run size N ; we fix a fraction F ∈ OA(N ; T ; t).
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Concept 3. With nS = |S|, we denote the color partition of F (or better of
GF ) by

f :=
[

[1, . . . , N ], [N + 1, . . . , N + nS ], (8)

[N + nS + 1, . . . , N + nS + a1], . . . , [N + nS + 1 +
m−1∑
i=1

ai, . . . , |V |]
]
.

f determines row, symbol and column-vertices in the graph GF , respectively.
Precisely, in GF , the set of column-vertices C is a disjoint union of color classes
C1, . . . , Cm, called the column-color classes, and the total number of colors is
2+m. Also note that each row-vertex is adjacent to precisely d symbol-vertices,
and each symbol-vertex is adjacent to exactly one column-vertex. Remark that
d =

∑m
i=1 |Ci|, however the partition (R, S, C) is not a color partition.

Example 1. Let F = OA(4; 23; 2), then N = 4, nS = 6, d = 3, m = 1.

F =

⎡
⎣ 0 1 0 1

0 0 1 1
0 1 1 0

⎤
⎦

T

.

The vertices V := R ∪S ∪C = {1, 2, 3, 4}∪ {5, 6, 7, 8, 9, 10}∪ {11, 12, 13}, and
the sizes of color classes are [4, 6, 3] with the partition

f :=
{{1, 2, 3, 4}, {5, 6, 7, 8, 9, 10}, {11, 12, 13}}.

Example 2. Let F = OA(6; 31 · 22; 1), so N = 6, nS = 7, d = 3, m = 2.

F =

⎡
⎣ 0 0 1 1 2 2

0 1 1 0 0 1
1 0 0 1 1 0

⎤
⎦

T

.

V = R ∪ S ∪ C = {1, 2, . . . , 6, 7, . . .13, 14, 15, 16}. The color classes have sizes
6, 7, 1, 2, with corresponding vertices

f :=
{{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12, 13}, {14}, {15, 16}}.

The symbol permutation (0,1) on column 2 of array F is performed by its cor-
responding permutation pS = (10, 11) on symbol-vertices 10, 11 of the colored
graph GF . Switching columns 2 and 3 of F has counterpart pC = (15, 16) on
column-vertices. And permuting rows 1 and 2 can be done by the permutations
on row-vertices pR = (1, 2).
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2.2.2 Properties of colored graphs

Let G be the set of all colored graphs, and let Φ : OA(N ; T ; t) → G, F �→
Φ(F ) = GF be the map that takes a design F to the corresponding colored
graph GF (Definition 4).

Lemma 7. The map Φ is an injection.

To characterize clearly the image Φ(OA(N ; T ; t)) ⊆ G, we write v(u) for the
valency of a vertex u ∈ V . Remind that S = Q1∪Q2∪. . .∪Qd, where |Qi| = ri

for i = 1, . . . , d; and C = C1 ∪ . . .∪ Cm, where |Ck| = ak, for k = 1, . . . , m.

Proposition 8. Let F be an OA of strength t ≥ 1 with factors Qi and run size
N .

1. Then GF is tripartite with the vertex partition (R, S, C) given by (7) and
with |R| = N , |S| =

∑m
k=1 aksk, |C| = ∑m

k=1 ak.

2. Every vertex r ∈ R has valency d.

3. The valency of a column-vertex c in C is sk, where k is the unique element
of {1, . . . , m} such that c ∈ Ck.

4. The valency of a symbol-vertex: if s ∈ S then there is a unique c ∈ Ck

such that {s, c} ∈ E for some k ∈ {1, . . . , m}; then

v(s) =
N

v(c)
+ 1 =

N

sk
+ 1

[ since t ≥ 1, there are exactly N
sk

rows in array D which have symbol s

in column c ].

5. Relationship between R and C: if r ∈ R, and c ∈ C, there exists a unique
shortest path of length 2 from r to c through a vertex in S.

Proof. Use the OA definition and properties of its corresponding colored graph.
�

Definition 5. [The set of colored graphs GN;T ;t associated with OA(N ; T ; t)]

(i) Given parameters T, N , the set of colored graphs satisfying properties
(1) − (5) of Proposition 8 are called the colored graphs associated with
OA(N ; T ; t) of type T, N . They form a subset of G, denoted by GN;T ;t.

(ii) By Proposition 8(1.), vertices of R, S, C of a graph in GN;T ;t are called the
row-vertices, the symbol-vertices and the column-vertices respectively.
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2.2.3 Demerging a colored graph back to orthogonal array

Let g ∈ GN;T ;t (the set of colored graphs associated with OA(N ; T ; t)). What
we want to do now is, firstly, to find the column-vertex set C of g. It may
happen that some vertices have the same valency even if they belong to distinct
colors (row and column colors, for instance). This can usually be solved by
computing the intersection of their neighbor sets.

Lemma 9. Suppose that N
sk

∈ N for all k ∈ {1, . . . , m}, in which case N
sk

> 1
for at least one number k. Then, a subset C of the vertex set V of a graph g
in GN;T ;t is the column-vertex set if and only if the valencies of vertices in C
are {s1, s2, . . . , sm} and their neighbor sets are mutually disjoint subsets of V .

Proof. The ‘if’ is clear by the definition of column-vertex set. Indeed, suppose
that C is the column-vertex set of g, for any pair c1 	= c2 ∈ C, we need only
check that their neighbors are disjoint, ie, V (c1) ∩ V (c2) = ∅. If there is a
vertex s ∈ V (c1)∩V (c2), then s 	∈ R since g is tripartite, so s ∈ S; Proposition
8(4.) implies a contradiction.

Next, let us consider the ‘only if’ part. Let C be a set of vertices such that their
valencies are s1, s2, . . . , sm and their neighbors are mutually disjoint subsets.
First they can’t be symbol vertices (having nonempty intersections). If there is
least one number N

sk
> 1, then the neighbors of some pair of row vertices must

intersect in a nonempty set. Therefore, C consists only of column vertices. �

Main Theorem 1. Given parameters T and N , such that N
sk

∈ N for all k ∈
{1, . . . , m}. Suppose further that there is at least one k for which N

sk
> 1, then

Φ(OA(N ; T ; t)) = GN;T ;t.

Proof. Φ(OA(N ; T ; t)) ⊆ GN;T ;t? It is obvious, by Definition 5(i).
GN;T ;t ⊆ Φ(OA(N ; T ; t))? Pick a colored graph g ∈ GN;T ;t, then g fulfills

properties (1) − (5) of Proposition 8. We construct an array Fg ∈ OA(N ; T )
such that Φ(Fg) = g. Constructing Fg starts from column-vertices, then
locates symbol-vertices, and finally determines row-vertices.
Suppose that g = (V, E). We collect vertices in V that have valencies s1,
s2, . . . , sm such that their neighbors are mutually disjoint subsets of V . From
Lemma 9, these vertices are uniquely determined and they form column vertices
of g.
Let C be the set of these column-vertices. For each c ∈ C, using Proposition
8(3.) we track its neighbors: if c ∈ Ck for some k = 1, . . . , m, then c is adjacent
with vertices
V (c) := {v1, . . . , vsk}; where vi ∈ V \ (C ∪ R) since g is tripartite and satisfies
properties (3) and (5) of Proposition 8. So vi are symbol-vertices.
Having obtained symbol-vertices V (c) = {vi}, we determine the neighbors of
each vi. Only one of them is c, the rest must be the row-vertices, and there are
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precisely N
sk

such vertices, by properties (4) and (5) of Proposition 8. Besides,
each of those row-vertices consists of the same symbol vi on column c.

In this way we can locate all row-vertices together with their neighbors.
Obtaining all row-vertices, we can form the array Fg provided that the neigh-
bors of column-vertices in C have to be numbered increasingly. Hence, g =
Φ(Fg) ∈ Φ(OA(N ; T ; t)), and so GN;T ;t ⊆ Φ(OA(N ; T ; t)). Therefore,
Φ(OA(N ; T ; t)) = GN;T ;t. �

Corollary 10. Provided that N
sk

∈ Z× for all k ∈ {1, . . . , m}, and that there is
at least a number N

sk
> 1. The mapping Φ then is a bijection between the set

OA(N ; T ; t) of strength t arrays with type T, N and the set GN;T ;t of colored
graphs of type T, N .

Proof. Resulting from Lemma 7 and Main Theorem 1. �

Concept 4. The inverse mapping

Φ−1 : GN;T ;t → OA(N ; T ), g �→ Φ−1(g) = Fg

is called the demerging mapping of GN;T ;t.

This inverse mapping returns a unique array Fg from a colored graph g ∈
GN;T ;t. Any array F ∈ OA(N ; T ) of strength t ≥ 2 is, moreover determined
uniquely by its companion graph GF ∈ GN;T ;t, by Corollary 10. Indeed, if
strength t ≥ 2 then N

sisk
≥ 1 for all i, k = 1, . . . , m. So N

sk
> 1 for k = 1, . . . , m.

Theorem 11. Let GF , GK be the two colored graphs which are formed by two
orthogonal arrays F, K ∈ OA(N ; T ). Then F and K are isomorphic arrays if
and only if GF and GK are isomorphic graphs.

Proof. Consider both ways.

• The only if part: If F and K are isomorphic arrays then K = F p for some
permutation p. Now p is a product of a row permutation pr, a symbol
permutation ps and a column permutation pc. These permutations induce
permutations pR, pS and pC respectively on the disjoint sets R, S and C
of vertices of the corresponding graph GF . Putting p∗ = pR pS pC , we
have Gp∗

F = Φ(F p) = Φ(K) = GK. It follows that GF , and GK are two
isomorphic graphs. The ‘only if’ part can be seen as follows.

• The if part: If GF and GK are isomorphic graphs, we can find a permu-
tation q on vertices (of GF ) such that GK = Gq

F . Since GF , GK ∈ GN;T ;t,
the graphs GF , GK satisfy all the conditions in Proposition 8. So they
are tripartite and q is a color-preserving permutation. This permutation
therefore can be factored as a product of three permutations qR, qS, qC
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which act on row, symbol and column vertices of GF independently. Since
the numbering of vertices in GF and GK are the same, the triple qR, qS, qC

induce row, symbol and column permutations qr, qs, qc acting on F . The
composed map qr qs qc takes F to K.

�

Example 3. We construct an OA(6; 3·22; 1) from the colored graph given in Fig-
ure 1. Here m = 2, d = 3, s1 = 3, s2 = 2, the column vertex set C = {14, 15, 16}
since their neighbor sets {7, 8, 9}, {10, 12}, and {11, 13} are mutually disjoint.
Vertices 1, 2, . . .6, for instance, also have valency 3, but they cannot represent
the first column-vertex (3-level column) since their neighbors are not disjoint.
The first column-vertex is 14, its neighbor V (14) = {7, 8, 9} (represent levels
0,1,2 in column 1) lead us to row-vertices 1,2; 3,5 and 4,6 respectively.

The symbol vertices are [[7, 8, 9], [10, 12], [11, 13]], those correspond to levels
0, 1, 2 in column 1; levels 0, 1 in column 2; and levels 0, 1 in column 3 of F .
The array obtained is

F =

⎡
⎣ 0 0 1 2 1 2

0 1 0 0 1 1
0 1 0 0 1 1

⎤
⎦

T

.

2.2.4 Finding the canonical graph and canonical orthogonal array

For any colored graph W , denote by canon(W ) the canonical labeling graph
computed using nauty with the color partition f (as in Formula (8)). It con-
sists of a vertex relabeling permutation, p, say and new adjacencies. Hence,
canon(W ) is fully determined by these adjacencies. The vertex-relabeling p is of
the form p = pR pS pC1 pC2 · · ·pCm , where pR, pS, pC1 , pC2, . . . , pCm are permu-
tations on the subsets R, S, C1, C2, . . . , Cm respectively. But how to compute
non-isomorphic arrays? Theorem 11 gives us a clue, as follows.

Corollary 12. Let GF := Φ(F ) and GK := Φ(K) be the colored graphs of
arrays F and K respectively. Then F and K are isomorphic arrays if and only
if canon(GF ) = canon(GK).

SUMMARY. The following observations are useful later on.

• If W ∈ GN;T ;t then canon(W ) ∈ GN;T ;t.

• Let F ∗ be the canonical labeled orthogonal array of an orthogonal array
F . Then GF ∈ GN;T ;t, and GF∗ ∈ GN;T ;t. If F has strength t ≥ 2, the
canonical array F ∗ is uniquely determined by canon(GF ). Indeed, F ∗

can be constructed using the scheme F → GF → canon(GF ) → F ∗, in
which the first arrow represents the mapping Φ; the second by nauty;
while the third arrow computing F ∗, is done by the demerging map Φ−1.
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Figure 1: The colored graph of a 6 runs OA
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New approaches using integer linear algebra and permutation groups to find
new factor of a known factorial design will be described in next parts, Sections
3 and 4.

3 Integer linear formulation for OA enumeration

In this section, we formulate necessary algebraic conditions for the existence
of a new factor X in Problem 3, the column extension of orthogonal arrays
of strength t. In Section 3.2 we specifically employ the automorphism of each
design to prune solution space.

3.1 An integer linear approach solves the extension problem

3.1.1 Transforming the factor extension to a linear system of equations

Assume that t = 3. Let F = OA(N ; r1 · · · rd; 3) be a known array having
columns S1, . . . , Sd, in which Si has ri levels (i = 1, . . . , d). An s-level factor
X is orthogonal to a pair of Si, Sj, written X ⊥ [Si, Sj], if the frequency of all
tuples (a, b, x) ∈ [Si, Sj, X] is N/(rirjs). Extending F by X means constructing
an OA(N ; r1 · · · rd · s; 3), denoted by [F |X]. By the definition of OAs, [F |X]
exists if and only if X is orthogonal to any pair of columns of F . We can find
a set P of necessary constraints for the existence of array [F |X] in terms of
polynomials in the coordinate indeterminates of X, by the following rules.

Observation 2 (Transformation rules).

(a) Calculate frequencies of 3-tuples, and locate positions of symbol pairs of
(Si, Sj).

(b) Set the sums of coordinate indeterminates of X (corresponding to these
positions) equal to the product of those frequencies with the constant
0 + 1 + 2 + . . . + s − 1 = s(s−1)

2
. The number of equations of the system

P then is
∑d

i �=j rirj, since each pair of factors (Si, Sj) can be coded by a
new factor having rirj levels. When s = 2, the constraints P are in fact
the sufficient conditions for the existence of X.

Example 4. Let F = OA(16; 4 · 22; 3) = [S1|S2|S3]:

F =

⎡
⎣ 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎦

T

.

We form a set P of constraints for the extension of F to D = [F |X] = OA(16; 4·
23; 3), where X := [x1, x2, . . . , x16] is a binary factor (xi = 0, 1).
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• First of all, the system P of linear equations for computing X has∑3
i �=j rirj = 20 equations. The frequency of each tuple (a, b, x) in S1 ×

S2×X and S1×S3×X is λ = 1; that of each tuple (b, c, x) ∈ S2×S3×X
is μ = 2.

• The pair [S1, S2] is coded by an 8-level factor, Y , say; and the pair [S2, S3]
by a 4-level factor, Z, say. The positions of the pair [0, 0] ∈ S1×S2 are 1,2;
. . ., of [3, 1] ∈ S1 ×S2 are 15,16. The positions of the pair [1, 1] ∈ S2 ×S3

are 4,8,12,16 . . .

By transformation rule (b), the sums of coordinates of X corresponding to
the Y symbols and the Z symbols must equal a multiple of the appropriate
frequencies. That means:

X ⊥ [S1, S2] ⇔ X ⊥ Y ⇔ x1 + x2 = x3 + x4 = . . . = x15 + x16 = λ · (0 + 1) = 1, . . . ,

and

X ⊥ [S2, S3] ⇔ X ⊥ Z ⇔ x1 + x5 + x9 + x13 = . . . = x4 + x8 + x12 + x16 = μ · (0 + 1) = 2.

One solution of P is given in the last row of the matrix below:

⎡
⎢⎣

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

⎤
⎥⎦ .

Observe that, although the frequency invariant is a necessary and sufficient
condition for X’s existence, for s > 2, the linear constraints P found using the
rules of Observation 2 form a set of necessary conditions only.
We now consider extending strength 3 OAs. The set P of linear constraints
with integer coefficients is described by the matrix equation AX = b, in which
A ∈ Matm1,N(N),

X = (x1, . . . , xN) ∈ {0, 1, . . . , s− 1}N ⊆ NN (9)

is a vector of unknowns, b ∈ Nm1 , and m1 :=
∑d

i �=j rirj = |P |. The vector b
is formed by counting frequencies of triples involving two known columns in F
and the unknown column X as in Observation 2. Since each orthogonal array
is isomorphic to an array having the first row zero, we let x1 = 0 throughout.
By Gaussian elimination, we get the reduced system

M X = c, (10)

where M ∈ Matm,N (Z), the set of all m × N (m ≤ m1) matrices with integral
entries, c ∈ Zm, and the vector of unknowns X = (0, x2, . . . , xN) ∈ ZN .
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3.1.2 Solving the obtained integer linear system

We solve the factor extension problem by the following 3-step approach.

1. Build the system (10) using rules (a) and (b) of Observation 2.

2. Find all solutions X = (x1, . . . , xN) in the product set { 0, 1, 2, . . . , s −
1 }N .

3. Collect non-isomorphic, canonical OAs of the set of all arrays of the form
[F |X] into a set L. There are two possibilities: a) if L is empty, conclude
F has no extension; and otherwise b) go back to Step 1 for each OA in
L until the number of factors meets the number of columns required.

Observation 3.

a/ The first step is already done. The method to solve the last step was
given in Section 2.2. What we need to find in Step 2, in fact, are the
non-isomorphic vectors X (under row-index permutations) in the whole
solution set. We show how to find them in the next sections, then discuss
how to combine the automorphism group Aut(F ) of F (Definition 3) for
finding non-isomorphic vectors X. Observe that, when extending OAs,
the group size tends to grow proportionally with the number of solutions.

b/ The system P described by (10) can be solved over the naturals N≥0

by depth-first branching at the variables xi (i = 2, . . . , N). If P has
no solution, then F is not extendable; we try another array having the
same parameters as F but not isomorphic to F . We identify P with its
polynomials, ie, set P = { f1, f2, f3, . . .}, in which the fi are linear
polynomials in the indeterminates x2, . . . , xN . Particularly, when the xis
are binary, we use the following fact.

Proposition 13 (Finding binary solutions of an integral polynomial.).
Let f be an arbitrary polynomial in P , and put the polynomial p = f mod2.

Denote by Vf , Vp the sets of indeterminates occurring in f and p, respectively.
Put

C = Vf \ Vp, nf = |Vf |, np = |Vp|, nC = |C|.
Let Sf be the set of solutions of the equation f = 0, and Sp the set of solutions
of the equation p = 0 mod 2. Let Si

p be the solution set of the equation p = i
for each i = 0, . . . , np.

• Then Sf ⊆ Sp, and Sp is a disjoint union of np

2 sets Si
p, for odd (even)

integers i = 0, . . . , np if the constant coefficient of f is odd (even).

• Moreover, the maximum number of solutions of equation f = 0 is 2nf−1.
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Proof. The first statement is clear. The last follows from the fact that each set
Si

p is precisely the vectors having weight i in the Hamming space H(np, 2). �
Therefore, enumerating of strength 3 OAs of the form [F |X] can be solved

if there are few arrays F having one column less. But if N is large, and the
system P is symmetric, the branching approach is not strong enough, since
there are so many isomorphic vector solutions X in each extension. Pruning
techniques using the automorphism group associated with F will be exploited
to deal with these difficulties in the next part.

3.2 The row permutation group for efficiently computing X in
[F |X]

The extension K := [F |X] = OA(N ; r1 · · · rd · s; t) depends on solving the
integer linear system (10) M.X = c in terms of X = (xj) ∈ { 0, 1, . . . , s −
1 }N for j = 1, . . . , N . This approach is useful if a few constraints, structures
or pruning techniques would be found and used to delete out some (not all)
isomorphic vectors in each isomorphic class, and we then retain isomorph-
free vectors. From that point, the search for all isomorph-free designs becomes
feasible. We show how to reduce calculating (xj) ∈ { 0, 1, . . . , s−1 }N to finding
all integral (pivotal) tuples (yi) ∈ Zn or better (yi) ∈ Zn0, for n0 ≤ n as being
described by Eq. (16) in section 3.2.2. Fix an array F ∈ OA(N ; T ; t), recall
that Aut(F ) := {g ∈ G | F g = F }, with G is the full group of isomorphisms,
see Eq. (2).

3.2.1 The row permutation group acting on an orthogonal array

We first define the row permutation group of F . Let g ∈ Aut(F ). Then g
induces a permutation g1 in the full group GK of K, see Formula (6). Let gR

be the row permutation component of g, then gR is also the row permutation
component of g1. Due to Definition 3, we have

Theorem 14. For g ∈ Aut(F ), g induces g1 ∈ GK and generates the image Kg1

which is isomorphic to K.

Proof. Formula (2) says any permutation g acting on F has the decomposition
g = gR gC gS where gC and gS are the column and symbol permutations acting
on F , respectively. Besides, the row permutation gR induces a row permutation
g1 ∈ GK, we furthermore have

Kg1 = [F |X]g1 = [F g|XgR ] = [F |XgR ] (11)

since g already fixes F , and only gR acts on the column X by moving its
coordinates. As a result, Kg1 = [F |XgR ] is isomorphic to K := [F |X]. �
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Definition 6. Let H := Row(Aut(F )) be the group of all row permutations gR

extracted from the group Aut(F ). We call H the row permutation group of F .

The direct product of H and τ is very useful for pruning later on, given by

σ := H × τ, (12)

where τ := Syms is the group of symbol permutations acting on the coordinates
of X. We might impose some extra constraints on the system, due to the
following.

Observation 4.

For each generator p of H = Row(Aut(F )) such that at least one of its
cycles has even length, we extract those even length cycles into a set Ec. We
do not use odd length cycles of p. Then, for each h ∈ Ec, we form an extra
inequality whose left hand side is the sum of X’s coordinates with odd indices,
and the right hand side is the sum of X’s coordinates with even indices of the
cycles in h. In more details, we have

Lemma 15. If Ec 	= [], for each h ∈ Ec having the form

h =
∏

i

(i1, i2)
∏
j

(j1, j2, j3, j4) . . .

where 1 ≤ i1 	= i2 	= j1 	= j2 	= j3 	= j4, . . . ≤ N , we can add the following
inequality

xi1 + xj1 + xj3 + . . . ≤ xi2 + xj2 + xj4 + . . . (13)

into the original system P without missing any non-isomorphic vector solution
X.

Proof. Suppose h =
∏

i(i1, i2)
∏

j(j1, j2, j3, j4) . . . ∈ Ec, and Z = [z1, z2, z3,
. . . , zN ] is a solution so that zi1 + zj1 + zj3 + · · · ≥ zi2 + zj2 + zj4 + · · · We
prove that Z is isomorphic with a solution X = [x1, x2, x3, . . . , xN ] which fulfills
xi1 +xj1 +xj3 + · · · ≤ xi2 +xj2 +xj4 + · · · The vector X := Zh indeed satisfies
Condition (13). �

For example, let h = (1, 2)(7, 8, 9, 10)(13, 16) ∈ Ec, then
h−1 = (1, 2)(7, 10, 9, 8)(13, 16), we can impose the following inequality x1 +
x7 + x9 + x13 ≤ x2 + x8 + x10 + x16 into the original set P . Indeed, suppose
Z = [z1, z2, z3, . . . , z16] is a solution, and

(∗) . . . z1 + z7 + z9 + z13 ≥ z2 + z8 + z10 + z16.

The image

X = Zh = (zih−1 ) = (z2, z1, z3, z4, z5, z6, z10, z7, z8, z9, z11, z12, z16, z14, z15, z13)

satisfies (13), since (*) means x2 + x8 + x10 + x16 ≥ x1 + x9 + x7 + x13.
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3.2.2 Combining linear spaces with symmetries

Now we denote by QN the vector space of dimension N over the rationals. For
any solution X, we view X ∈ S, where S is the solution set of Eq. (10) over
Q. The set S in fact is an affine space in QN ; and obviously

Z(P ) = S ∩ { 0, 1, . . . , s − 1 }N .

Moreover, Z(P ) is a subset of
⋂

h∈H Sh, with Sh := {Xh : h ∈ H}. Indeed,
because Z(P )h = Z(P ) for all h ∈ H , we have Z(P ) ⊆ Sh , for all h ∈ H .

Definition 7. We call the intersection
⋂

h∈H Sh the H-invariant core of Z(P ).

By definition it is the maximal H-invariant subset of S. The H-invariant core⋂
h∈H Sh of Z(P ) is still an affine space since the image Sh of S is an affine

space, and intersecting two affine spaces results in again an affine space. The
idea is that even though S has large dimension, it is likely that the H-invariant
core of Z(P ) could have smaller dimension.

Example 5. Consider extending array OA(72; 6 · 3 · 22; 3) to OA(72; 6 · 3 · 23; 3).
The solution space has dimension 36, using H we can reduce it to dimension
20.

How to compute the H-invariant core of the solution set Z(P )? First we com-
pute the intersection of two affine spaces. We identify S with the pair [v, B],
where v is a specific vector in S and B is a basis of S (over the field Q). Let
n := N − rank(M) be the dimension of S, then |B| = n, and

S = v + 〈B〉 = v +
∑

i=1..n

biBi, where indeterminates bi ∈ Q. (14)

Observation 5. Let p ∈ H , the affine image Sp can be determined by the vector
vp and the basis Bp := {up : u ∈ B}. In other words,

Sp = vp + 〈Bp〉 = vp +
∑

i=1..n

ciB
p
i , where ci ∈ Q. (15)

Furthermore, S ∩ Sp 	= ∅ if and only if the system

vp − v =
∑

i=1..n

biBi −
∑

i=1..n

ciB
p
i , or equivalently

vp − v =
[
B1|B2| . . . |Bn| − Bp

1 | − Bp
2 | . . . | − Bp

n

]
[b1, . . . , bn, c1, . . . , cn]T

has solution b1, . . . , bn, c1, . . . , cn. Hence, if S ∩ Sp 	= ∅, its basis and the specific
vector v can be found by substituting b1, . . . , bn back into (14), (or c1, . . . , cn

into (15)). We may prune the integral solution set Z(P ) by computing its
H-invariant core.

Let HG be a set of generators of H , we compute
⋂

h∈H Sh using the following
procedure.
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Algorithm 1 Computing H-invariant core
Find-H-invariant-core(S, HG )

Input the affine solution space S of (10), and the generators HG;

Output the affine space
⋂

h∈H Sh.

Set Y := S;
Repeat

• W := Y ;

• Update Y := (
⋂

p∈HG
Y p) ∩ Y ;

Until Y = W ;
Return Y .

Proof. Let Y0 be the output of the procedure, we show that Y0 =
⋂

h∈H Sh.
The space Y0 has property that Y0 =

⋂
p∈HG

Y p
0 ∩ Y0. Therefore, Y0 = Y p

0 for
all p ∈ HG. Since any permutation h ∈ H is a product of p ∈ HG, we get
Y0 = Y h

0 . �

SUMMARY.

Having obtained the H-invariant core Y0 =: [u, C] of Z(P ), we update S :=
Y0, and update the dimension n to a possibly smaller dimension n0 = dim(Y0).
The integral vector solution X (viewed as column vector) then is computed by:

XT = (0, x2, x3, . . . , xN)T = u +
∑

i=1..n0

yi C[i], (16)

where pivotal variables yi ∈ Z. In brief, solving the linear system P in terms of
natural vector (xj) ∈ { 0, 1, . . . , s−1 }N (j = 1, . . . , N) therefore is reduced to
finding all integral pivotal tuples (yi) ∈ Zn for i = 1, . . . , n, or better, to finding
shorter integral pivotal tuples (yi) ∈ Zn0 for i = 1, . . . , n0 (if there exists the
H-invariant core).

3.2.3 Solving efficiently the linear system MX = c

We show how to find pivotal variables yi by depth-first and breath-first schemes.
Let ExtraS be the set of these extra inequalities found from Lemma 15. Let
Y be the set of coordinates of X in terms of (yi)i=1,...,n. We split Y into 3
subsets:

Y1 := { monomials},
Y2 := { monomials with constant, and be grouped with respect to yi},
Y3 := { polynomials with at least two indeterminates yi}.

(17)
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For t = 2 we cut vector X into r1 sub-vectors

LX :=
[(

x1, . . . , x N
r1

)
, . . . ,

(
x (r1−1)N

r1

, . . . , xN

)]
,

and for t = 3 cut X into r1r2 sub-vectors

LX :=
[(

x1, . . . , x N
r1r2

)
, . . . ,

(
x (r1r2−1)N

r1r2

, . . . , xN

)]
.

We use ExtraS and LX as certificates to prune vector solutions during the
search. That is, whenever we find a sub-vector (or partial vector) by using Y ,
we substitute it into ExtraS to check whether ExtraS ≤ 0 (ie, each polynomial
p in ExtraS must be less than or equal 0), and to LX to see whether all of
its components have strength 1. A combination of depth-first and breath-first
schemes to find all solutions (yi) ∈ Zn is presented in Algorithm 2.

Example 6. Extending F = OA(16; 23; 3) to [F X] = OA(16; 23 · 4; 3). The
group
H = Row(Aut(F )) has size 768, generated by the following permutations:[

(15, 16), (13, 14), (11, 12), (9, 10), (7, 8), (5, 6), (3, 4), (3, 6)(4, 5)

(9, 10)(11, 14)(12, 13), (3, 10, 5, 4, 9, 6)(7, 11, 14)(8, 12, 13)
]
,

from which we find a set ExtraS of 169 extra inequalities by Lemma 15. The
solution vector X ∈ {0, 1, 2, 3}16 (N = 16) in terms of (yi) ∈ Z8 (n = 8) is
X = (xj) =

=(0, y1 + 6, y2 + 6,−y1 − y2 − 6, y3,−y1 − y3, y4, y1 − y4 + 6,

y5,−y1 − y5, y6 + 6, y1 − y6, y7 + 6, y1 − y7, y8,−y1 − y8)

We want to find all (y1, . . . , y8) ∈ Z8 so that X ∈ { 0, 1, 2, 3 }16 by splitting

Y = {y1 + 2, y2 + 2,−y1 − y2 − 2, y3,−y1 − y3, y4, y1 − y4 + 2,

y5,−y1 − y5, y6 + 2, y1 − y6, y7 + 2, y1 − y7, y8,−y1 − y8}
into Y1 = {y3, y4, y5, y8}; Y2 =

{
[y1 + 6], [y6 + 6, y2 + 6], [y7 + 6]

}
; and

Y3 = {−y1 − y8,−y1 − y5,−y1 − y3,−y1 − y2 − 6, y1 − y7, y1 − y6, y1 − y4 + 6}.
We form all partial solutions from Y1, pruning at each those sub-vectors (having
length 4) by using ExtraS, and employing the fact that each of the four vectors
having strength 1: (0, y1 +6, y2 +6,−y1−y2 −6), (y3,−y1−y3, y4, y1−y4 +6),

(y5,−y1 − y5, y6 + 6, y1 − y6), (y7 + 6, y1 − y7, y8,−y1 − y8).

At each iteration, whenever Y1 = ∅, we generate all valid partial solutions
from Y2, concatenate them with partial solutions of y3, y4, y5, y8, and prune
again. This results in 35 vectors (yi) ∈ Z8, of these only one forms an unique
OA(16; 23 · 4; 3).
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Algorithm 2 Recursive computing of (yi) ∈ Zn

COMPUTE-PIVOTALS(Y , ExtraS, LX )

Input Y ; ExtraS and LX

Output All vectors (yi)i=1,...,n ∈ Zn, and all isomorph-free
(xj) ∈ { 0, 1, . . . , s− 1 }N

STEP 1:
Repeat

• split Y = Y1 ∪ Y2 ∪ Y3 by (17)

• form all partial vectors by making the hypercube from variables of Y1

• prune them using ExtraS ≤ 0, and LX

• substitute each valid partial vector back to Y

Until Y1 = ∅
Comment: only keep intermediate valid nodes in the search tree;

� Since Y = Y2 ∪ Y3,
STEP 2: Extend the valid partial vectors made above by all possible vectors
of Y2

STEP 3: Collect the full vector solutions (yi)i=1,...,n ∈ Zn, then
(xj) ∈ { 0, 1, . . . , s− 1 }N

Comment: always certificate newly extended nodes using ExtraS and LX

STEP 4: Return the representatives in the σ := H × τ -orbits [see Eq. (12)] of
Z(P ).

Comment: The final step can be much efficiently developed in Section 4.
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4 Row permutation subgroups for pruning

solution spaces

It is now obvious that, by recursion, the process of building X can be brought
back to strength 1 derived designs. We can effectively prune Z(P ) from those
smallest sub-designs by finding some subgroups of H = Row(Aut(F )) acting
on strength 1 derived designs. Those subgroups, discussed in next parts, must
have the property that they act separately on the row-index sets corresponding
to the derived designs.

Fix IN := [1, 2, . . . , N ] the row-index list of F , and recall that r1 ≥ r2 ≥ . . . ≥
rd. We explicitly distinguish the list IN with {1, 2, . . . , N} in this section. Then
H acts naturally on X’ indices. Furthermore, we employ the following.

Concept 5. We say a row permutation gR ∈ H acts fixed-point free, or globally
on X if it moves every index. Otherwise, if the moved points of gR form a
proper subset J of {1, . . . , N}, i.e., it fixes point-wise the complement ‘list’ of
J in IN , we say gR acts locally at that subset.

The first step is to localize the formation of a vector X of the form (9) by
taking the derived designs of strength t − 1. We get the r1 derived designs
F1, . . . , Fr1, each of which is an OA(r−1

1 N ; r2 · · ·rd; t−1). Clearly, if a solution
vector X exists, then it is formed by r1 sub-vectors ui of length N

r1
:

X = [u1; u2; . . . ; ur1 ], where ui =
(

x (i−1)N
r1

+1
, . . . , x iN

r1

)
. (18)

Denote by Vi the set of all sub-vectors ui which can be added to the ith derived
design Fi to form an OA(r−1

1 N ; r2 · · · rd · s; t− 1). Let V = V1 ×V2 × . . .×Vr1 .
We propose a simple scheme, Algorithm 3 to find all non isomorphic solution
vectors X ∈ V .

4.1 Forming permutation subgroups of the derived designs

Remind that we view F ∈ OA(N ; r1 · r2 · · · rd; 3) as an N × d-matrix with
the [l, j]-entry is written as F [l, j]. For each derived design Fi with respect
to the first column of F , the row-index set of Fi, denoted by RowInd(Fi) for
1 ≤ i ≤ r1, is defined as

RowInd(Fi) :=
{
l ∈ {1, 2, . . . , N} : F [l, 1] = i − 1

}
.

Define the stabilizer in H of Fi by

NH(Fi) := Normalizer
(
H,RowInd(Fi)

)
=

{
h ∈ H : RowInd(Fi)

h = RowInd(Fi)
}
. (19)
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Algorithm 3 Find all non isomorphic vectors X in [F |X]

EXTEND-ONE-FACTOR(F )

Input F is a strength t design;

Output All non-isomorphic extensions of F to [F |X]

a/ Find all candidate sub-vectors ui ∈ Vi, i = 1, . . . , r1.

b/ Discard (prune) them as many as possible by using subgroups of H .

c/ Plug those uis together, then compute the representatives of the σ =
H × τ -orbits in V , the solution space Z(P ) of P .

In this way, we find r1 subgroups of H corresponding to the derived designs
Fi. But it can happen that RowInd(Fl)h 	= RowInd(Fl) for some h ∈ NH(Fi)
and 1 ≤ l 	= i ≤ r1.
To make sure that the row permutations act independently on the Fi, we define
the group of row permutations acting locally on each Fi as:

L(Fi) := Centralizer
(
NH(Fi), J(Fi)

)
, (20)

where J(Fi) := IN \RowInd(Fi) is the sublist of IN consisting of elements not
in RowInd(Fi). The group L(Fi) acts locally at RowInd(Fi), i.e. acts on the
row-indices of Fi and fixes pointwise any row-index outside Fi.

Definition 8. We call these subgroups Li (of H) the row permutation subgroups
associated with strength 2 derived designs .

These subgroups can be determined further as follows. For an integer m =
1, 2, . . . , t − 1 and for j = 1, 2, . . .m, denote by

Fi1,...,im := OA
(

N

r1r2 · · ·rm
; rm+1 · · · rd; t− m

)
(21)

the derived designs of F taken with respect to symbols i1, . . . , im, where symbol
ij in column j and ij = 1, . . . , rj. Define the row-index set of Fi1,...,im by

RowInd(Fi1,...,im) :=
m⋂

j=1

{
l ∈ {1, 2, . . . , N} : F [l, j] = ij − 1

}
. (22)

Let J(Fi1,...,im) := IN \ RowInd(Fi1,...,im). Generalizing (19) and (20) gives:

NH(Fi1,...,im) := Normalizer
(
H, RowInd(Fi1,...,im)

)
,

L(Fi1,...,im) := Centralizer
(
NH(Fi1,...,im), J(Fi)

)
, for 1 ≤ ij ≤ rj.



N. V. Minh Man 211

Definition 9. L(Fi1,...,im) is called the subgroup associated with the derived
design Fi1,...,im , for 1 ≤ ij ≤ rj, j = 1, 2, . . .m. We say L(Fi1,...,im) acts
locally on the derived design Fi1,...,im , and write Li1,...im := L(Fi1,...,im) if no
ambiguity occurs.

For t = 3, we compute these subgroups for m = 1 and m = 2. For m = 1,
we have s1 subgroups L(Fi) acting locally on strength 2 derived designs; and
for m = 2, we have s1s2 subgroups L(Fi,j) acting locally on strength 1 derived
designs.

4.2 Using permutation subgroups of the derived designs

We now show how to use the subgroups Li1,...,im . Recall that Z(P ) is the set
of all natural solutions X. From Eq. (11) in Theorem 14, Kg is an isomorphic
array of K = [F |X], hence the vector Xg can be pruned from Z(P ), for any
solution X and any permutation g ∈ Aut(F ).

Notation. These notations will be used for the remaining parts of the paper.

For a fixed m-tuple of symbols i1, . . . , im, let Vi1,...,im be the set of solutions of
fraction

Fi1,...,im = OA((r1r2 · · ·rm)−1N ; rm+1 · · ·rd; t − m), for 1 ≤ m ≤ t − 1.

For any sub-vector u ∈ Vi1,...,im , from (22) and (18), let

I(u) := RowInd(Fi1,...,im); J(u) := IN \ I(u); and

Z(u) :=
{
(xj) : j ∈ J(u) and ∃X ∈ Z(P ) s.t. X[I(u)] = u

}
,

here X[I(u)] := (xi : i ∈ I(u)). For instance, if m = 1 and u ∈ V1 then

Z(u) =
{

[u2; . . . ; ur1 ] : X = [u; u2; . . . ; ur1 ] ∈ Z(P )
}
.

We have

Main Theorem 2. For any pair of sub-vectors u, v ∈ Vi1,...,im , if v = ugR for
some row permutation gR ∈ Li1,...,im , we have Z(u) = Z(v).

We prove this key theorem in the next two claims. In Lemma 16, without loss
of generality, it suffices to give the proof for the first strength 2 derived array.
Its generalization, i.e. the induction step then will be presented in Theorem
17.
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Lemma 16 (Case m = 1). Let u1 and v1 be two arbitrary sub-solutions in V1, ie,
they form strength 2 OAs [F1|u1] and [F1|v1] of the form OA(r−1

1 N ; r2 · · · rd ·
s; 2). Let

ZX(u1) =
{

[u2; . . . ; ur1 ] : X = [u1; u2; . . . ; ur1 ] ∈ Z(P )
}
,

ZY (v1) =
{

[v2; . . . ; vr1 ] : Y = [v1; v2; . . . ; vr1 ] ∈ Z(P )
}
.

Suppose that there exists a nontrivial subgroup, say L(F1), and if v1 = uh
1 for

some h ∈ L1, we have ZX(u1) = ZY (v1).

Proof. Pick up a nontrivial permutation h in L(F1). Then it acts locally on
RowInd(F1). By symmetry, we only check that ZX(u1) ⊆ ZY (v1). We choose
any sub-vector

u∗ := [u2; . . . ; ur1 ] ∈ ZX(u1)

then X = [u1; u2; . . . ; ur1] is in Z(P ). We view h ∈ Aut(F ), so

Kh = [F |X]h =
[
F h|Xh

]
=

[
F |Xh

]
=

[
F | [u1; u2; . . . ; ur1 ]

h
]

=
[
F | [uh

1 ; u2; . . . ; ur1 ]
]

=
[
F | [v1; u2; . . . ; ur1 ]

]
.

This implies that [v1; u2; . . . ; ur1 ] is a solution, hence u∗ ∈ ZY (v1). �
As a result, we can wipe out all solutions Y = [v1; v2; . . . ; vr1 ] ∈ Z(P ) if

v1 ∈ uL1
1 , the L1- orbit of u1 in V1. In other words, if we get V1 	= ∅, then it

suffices to find the first sub-vector of vector X by selecting |V1|/|L1| representa-
tives u1 from the L1- orbits in V1. Furthermore, the above proof is independent
of the original choice of derived design. Hence it can be done simultaneously
at all solution sets V1, V2, . . . , Vr1 , using the subgroups L1, . . . , Lr1 .

Concept 6. We call this procedure, that results from Main Theorem 2, the local
pruning process using strength 2 derived designs.

Next, if t ≥ 3 we extend the proof of Lemma 16 to cases 2 ≤ m ≤ t − 1.

Theorem 17 (Case m > 1.). For any pair of sub-vectors u, v ∈ Vi1,i2 , if v = ugR

for some gR ∈ Li1,i2 , we have Z(u) = Z(v).

Proof. We prove this result for t = 3 and m = 2 only. For arbitrary t > 3, and
m > 2, the proof is a straightforward generalization.

• Similar to the proof of Lemma 16, without loss of generality, we consider
the first derived design F1 = OA(n; r2 · · ·rd; 2) where n = N/r1.

• Taking derived designs of F1 with respect to the second column (having
r2 levels), we get r2 strength 1 arrays, denoted by f1 := F1,1, f2 :=
F1,2, . . . , fr2 := F1,r2 , each is OA(r−1

2 n; r3 · · · rd; 1). Any u1 in V1 can be
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written as u1 = [u1,1; u1,2; . . . ; u1,r2], a concatenation of r2 sub-vectors
u1,j of length n

r2
, where

u1,j =
(

x (j−1)n
r2

+1
, . . . , x jn

r2

)
for j = 1, . . . , r2.

• Known that the subgroup L(fj) := Centralizer
(
NH(fj), J(fj)

)
(see from

(22) and Definition 9) consists of row permutations acting locally on

RowInd(fj) =
{

(j − 1)n
r2

+ 1, . . . ,
jn

r2

}
, for j = 1, . . . , r2.

Hence the subgroup L(fj ) fixes J(fj) = [1, . . . , N ]\RowInd(fj) pointwise.
Since V1 is the Cartesian product of the subsets V1,j := { u1,j }, we prune
V1,j using L(fj), for all j = 1, . . . , r2.

• Start with j = 1. Let u1,1, v1,1 be two arbitrary sub-vectors in V1,1, they
can be used to make strength 1 orthogonal arrays [f1|u1,1] and [f1|v1,1]
being of the form OA(r−1

2 n; r3 · · · rd · s; 1). Let

ZX(u1,1) :=

{ [
[u1,2 ; . . . ; u1,r2 ];u2; . . . ;ur1

]
: for X = [u1; u2; . . . ; ur1 ] ∈ Z(P )

}
,

ZY (v1,1) :=

{[
[v1,2; . . . ; v1,r2 ]; v2; . . . ; vr1

]
: for Y = [v1; v2; . . . ; vr1 ] ∈ Z(P )

}
,

where v1 = [v1,1; v1,2; . . . ; v1,r2 ] ∈ V1.

• We prove that if v1,1 = uh
1,1 for some h ∈ L(f1), then we have ZX(u1,1) =

ZY (v1,1). In fact, we only need to have ZX(u1,1) ⊆ ZY (v1,1). Let any
sub-vector

u∗ :=
[

[u1,2; . . . ; u1,r2]; u2; . . . ; ur1

] ∈ ZX(u1,1),

and h ∈ L(f1). Then we have X = [u1; u2; . . . ; ur1 ] ∈ Z(P ), and

Kh = [F |X]h = F h|Xh = F |Xh

= F | [ uh
1 ; u2; . . . ; ur1 ]

= F | [ [uh
1,1; u1,2; . . . ; u1,r2]; u2; . . . ; ur1

]
= F | [ [v1,1; u1,2; . . . ; u1,r2]; u2; . . . ; ur1

]
.

• Hence, Y =
[
[v1,1; u1,2; . . . ; u1,r2]; u2; . . . ; ur1

]
is a solution and

u∗ ∈ ZY (v1,1). In F1, the choice of fj does not affect to the proof, so the
pruning process can be applied at the same time for all fj , j = 1, . . . , r2.

�
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4.3 Operations on derived designs- An agent-based localization

The above-proposed localizing idea can be enhanced further when we consider
each derived design as an agent that receives data from its lower strength
derived designs, make some appropriate operations, then pass the result to its
parent design. Specifically, notice that strength 1 and strength t designs require
special operations. To be precise, at the global scale of strength t design, it
suffices to find only the representatives of the H × τ -orbits [see Formula (12)]
in the solution space Z(P ) of P .

We now formalize our new agent-based localization. Recall from (21) that
the symbols i1, . . . , im (1 ≤ ij ≤ rj) indicate the derived design having symbol
ij in column j, for j = 1, . . . , m. From Definition 9, Li1,...,im are the subgroups
associated with the derived designs Fi1,...,im having strength t − m. When
m = t − 1, write Li1,...,it−1 for the subgroup associated with the strength 1
derived design Fi1,...,it−1 . The agents of derived designs can be described as
follows.

At initial designs Fi1,...,it−1 (Initial step when m = t − 1):

Input: Fi1,...,it−1 ;

Operation:
• form Vi1,...,it−1 , the set of all strength 1 vectors of length (r1r2 · · · rt−1)−1N)

being appended to Fi1 ,...,it−1 ,

• compute Li1 ,...,it−1 , and

• find the representatives of Li1 ,...,it−1 - orbits in the set Vi1,...,it−1 ;

Output: these representatives, ie, solutions of Fi1,...,it−1 .

At strength k derived designs (1 < k ≤ t − 1): let m := t − k, we have

Input: the vector solutions having length (r1r2 · · ·rm·rm+1)−1N of strength
k − 1 sub-designs; and the subgroup Li1,...,im ;

Operation:

• form sub-vector solutions having length (r1r2 · · · rm)−1N) of
Fi1,...,im ,

• prune these solutions by Li1,...,im ;

Output: representatives of the Li1,...,im- orbits in the set Vi1,...,im .

At the (global) design F :

Input: the sub-vectors from strength t − 1 derived designs;

Operation: find the representatives of σ-orbits in the Cartesian product
V = V1 × V2 × . . .× Vr1 , where Vi had been already pruned by the
subgroup Li (i = 1, 2, . . . , m);
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Output: Two steps

a/ (Isomorph-free test 1) returns solution vectors X which are non-
isomorphic up to σ = H × τ ,

b/ (Isomorph-free test 2) forms orthogonal arrays K = [F |X] of the
same strength t, then select only non-isomorphic arrays, by comput-
ing their canonical arrays, as suggested in Section 2.2.

We brief ours ideas in Algorithm 4, PRUNING-USES-SYMMETRY(F , d).

Example 7. Let U :=
[
[3, 1], [2, 3]

]
, F = OA(24; 3.23; 3),

F =
[

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1

]T

.

Aut(F ) has order 12288. Compute H = Row(Aut(F )), and update it by
H = Stabilizer(H, [1]), which is a permutation group of size 768. The three
strength 2 derived designs give 8, 8, and 16 candidates respectively, so we have
to check 8.8.16 = |V | = 1024 possibilities.

The row permutation subgroups of the three strength 2 derived designs are

L0 = [(), (7, 8), (5, 6), (5, 6)(7, 8), (3, 4), (3, 4)(7, 8), (3, 4)(5, 6), (3, 4)(5, 6)(7, 8)],
L1 = [()], and
L2 = [(), (23, 24), (21, 22), (21, 22)(23, 24), (19, 20), (19, 20)(23, 24),

(19, 20)(21, 22), (19, 20)(21, 22)(23, 24), (17, 18), (17, 18)(23, 24),
(17, 18)(21, 22), (17, 18)(21, 22)(23, 24), (17, 18)(19, 20),
(17, 18)(19, 20)(23, 24), (17, 18)(19, 20)(21, 22), (17, 18)(19, 20)(21, 22)(23, 24)]

with corresponding orders 8,1,16. And the subspaces are pruned to 1,8, and 1
vectors respectively. That is we need to check 8 cases now.

Observation 6.

Note that Aut(F ) decomposes the rows of F into row-orbits O1, . . . , Ol.
If Aut(F ) acts intransitively on the rows of F , then l > 1. For each Oj,
let RowInd(Oj) ⊆ {1, . . . , N} be the row indices of Oj in F . We can define
the normalizers and the centralizers of Oj as in (19) and in (20). But the
subgroups found in this way help reducing isomorphic vectors only when the
group H = Row(Aut(F )) has very large size. When array F already has many
columns, H ’s size usually declines.
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Algorithm 4 Pruning uses subgroups of derived designs

PRUNING-USES-SYMMETRY(F , d)

Input F is a strength t design; d is the number of columns required

Output All non-isomorphic extensions of F

� STEP 1: Local pruning at strength k derived designs.

1a) Find sub-vectors of Fi1,...,im , for m := t − k, and k = 1, . . . , t − 1,

1b) prune these sub-vectors locally and simultaneously by using Li1,...,im ,

1c) concatenate these sub-vectors to get sub-vectors in Vi1,...,im−1 .

Comment: For strength t = 3, in Step 1), we form subvectors ui,j ∈ Vi,j

simultaneously at the r1r2 sets Vi,j, then concatenate ui,j (1 ≤ i ≤ r1, 1 ≤ j ≤
r2) to get ui ∈ Vi.

� STEP 2: Pruning at strength t design F .

2a) Select the representative vectors X from the σ = H × τ -orbits of V ,
V = {vectors of length N}

Comment: Each vector in V is formed by sub-vectors found from Step 1

2b) append non-isomorphic vectors X to F to get strength t OAs [F |X],

2c) compute and store only their distinct canonical graphs/ arrays, [Section
2.2]

2d) get back non-isomorphic orthogonal arrays into a list Lf , return Lf .

� STEP 3: Repeating step.

If # current columns < d Call PRUNING-USES-SYMMETRY( f, d ) for each
f ∈ Lf
Else Return Lf EndIf
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5 Summary and conclusion

New 3-balanced fractions obtained by using the combined approach

Some new and very difficult-to-construct arrays that previous well-known meth-
ods failed to compute, found by our approach, are listed in Table 3. In the table
we have used multiplicity notation for automorphism group orders. The (IS)
construction means a combination of integer linear formulation and employing
symmetries of automorphism groups of OAs, all were introduced in part 2.1,
and fully developed in Section 3 and 4 above.

N Type; Strength t # Size of the auto-
morphism

Methods

group Aut(F )
80 5 · 4 · 25; t = 3 ≥ 1 (IS), colored graph
80 5 · 4 · 26; t = 3 ≥ 5 22, 43 (IS), colored graph
96 6 · 42 · 25; t = 3 ≥ 1199 1411, 2370, 4250,

8137, 12, 1629, 48
,,

96 6 · 42 · 26; t = 3 ≥ 8 22, 42, 84 ,,

Table 3: Hard-to-construct strength 3 and 4 OAs of sizes N ≤ 100.

In [14], only one OA(80; 5 · 4 · 26; 3) and one OA(96; 6 · 42 · 25; 3) were found,
however. For the most interesting one with size at most 100, OA(96; 6 · 42 ·
26; 3), we currently obtain at least 8 non-isomorphic OAs, and theirs distinct
automorphism group sizes are 2,4 and 8.

Conclusion and potential future work

We have discussed mathematical and computational aspects of factor enlarging
problem of mixed OAs with strength at least 2, provided a fix number of
experiments. Our approach combining permutation groups and integer linear
formulation provides a generic framework for enumerating mixed OAs of any
strength with all feasible factor levels and with run sizes satisfying the Rao
bound. The dual of the problem, namely fixing the factors and the strength,
and try to find better lower bounds of the run sizes also is very interesting and
challenging. Some techniques from Bose-Mesner or Terwilliger algebras, see
Schrijver (2004) [20], and other approaches as semidefinite programming [see
Laurent (2004) [11] and Vandenberghe-Boyd (1999) [25]] could be promising
leads to go.
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Appendix A: Permutation group

Given a set X, a permutation of X is a bijection from X to itself. We write
Sym(X) for the symmetric group on X, ie, the group of all permutations of X.
We denote SymN instead of Sym({1, 2, . . . , N}), for a natural number N . We
write elements of SymN in cycle notation, so the permutation p = (1, 2, 3)(4, 5)
is defined by 1p = 2, 2p = 3, 3p = 1, 4p = 5, 5p = 4. We say a group K acts on
a set X if we have a group homomorphism φ : K → Sym(X). We abbreviate
xφ(g) by xg. Let p ∈ SymN . The action of p on a subset B ⊆ {1, 2, . . . , N} is
given by Bp := {xp : x ∈ B}. The action of p on a list of length N is given by

[y1, y2, . . . , yN ]p := [y1p−1 , y2p−1 , . . . , yNp−1 ].

In other words, we compute the ith position of Y p by Y p[i] = yip−1 = Y [ip
−1

].

Appendix B: Investigate the full group of a specific OA

To clarify the concepts involved, we compute of the automorphism group in
G. A. P. Note that such computations can usually be carried out more effi-
ciently with the techniques of Section 2.2. When applying permutations to a
particular fraction F , we find it convenient to apply the level permutations first,
then permute the columns in each sections independently, and finally permute
the rows. Consider the design F with N = 4 runs and design type T = 24,
giving the underlying set U :

F :=

⎡
⎢⎢⎣

1 1 1 1
1 2 1 2
1 1 2 2
1 2 2 1

⎤
⎥⎥⎦

U = { (1,1,1), (1,1,2), (1,2, 1), (1,2,2), (1,3, 1), (1,3,2), (1,4,1), (1, 4,2),

(2,1,1), (2,1,2), (2,2, 1), (2,2,2), (2,3, 1), (2,3,2), (2,4,1), (2, 4,2),

(3,1,1), (3,1,2), (3,2, 1), (3,2,2), (3,3, 1), (3,3,2), (3,4,1), (3, 4,2),

(4,1,1), (4,1,2), (4,2, 1), (4,2,2), (4,3, 1), (4,3,2), (4,4,1), (4, 4,2) }.

Note that the 32 elements of this set have been placed in lexicographic order.
We use this order to identify the triples with the integers 1 to 32.
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We have R = Sym4, C = Sym4, L = (Sym2)4. Using the Action command
in G.A.P [8], we can find the homomorphic images in Sym32:

φR(R) = 〈(1,9,17,25)(2,10,18,26)(3,11,19,27)(4,12,20,28)(5,13,21,29)(6,14,22,30)

(7,15,23,31)(8,16,24,32), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)〉,
φC(C) = 〈(1,3,5, 7)(2,4,6, 8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)

(25,27,29,31)(26,28,30,32), (1,3)(2,4)(9,11)(10,12)(17,19)(18,20)(25,27)(26,28)〉,
φL(L) = 〈(1,2)(9,10)(17,18)(25,26)〉.

Here |T | = 32 and G is a permutation group of order 9216 with a generating
set consisting of the union of the generators of φR(R), φC(C), φL(L). Now

t(F ) =
{
[1, 1, 1], [1, 2, 1], [1, 3, 1], [1, 4, 1], [2, 1, 1], [2, 2, 2], [2, 3, 1], [2, 4, 2], [3, 1, 1],

[3, 2, 1], [3, 3, 2], [3, 4, 2], [4, 1, 1], [4, 2, 2], [4, 3, 2], [4, 4, 1]
}
,

which we identify with {1, 3, 5, 7, 9, 12, 13, 16, 17, 19, 22, 24, 25, 28, 30, 31}. So
Aut(F ) can now be computed as a stabilizer. It has order 24 and generators

g1 = (3,5)(4,6)(9,17)(10,18)(11,21)(12,22)(13,19)(14,20)(15,23)(16,24)(27,29)(28,30),

g2 = (3,5,7)(4,6, 8)(9,25,17)(10,26,18)(11,29,23)(12,30,24)(13,31,19)

(14,32,20)(15,27,21)(16,28,22),

g3 = (1,9,17)(2,10,18)(3,13,24)(4,14,23)(5,16,19)(6,15,20)(7,12,22)

(8,11,21)(27,29,32)(28,30,31).

Possibly convert these back to a product of level, column and row permuta-
tions, e.g., the last generator decomposes into the level permutations
(1, 1, (1, 2), (1, 2)), the column permutation (2, 3, 4) and the row permutation
(1, 2, 3). The number of OAs isomorphic to F is |G|/|Aut(F )| = 9216/24 = 384,
by the Orbit Theorem.
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