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Abstract

In this article, we propose some useful notions in manifold with den-
sity: weighted Levi-Civita connection, weighted covariant derivative,
weighted geodesic curve, totally weighted geodesic submanifold, weighted
energy functional and minimal weighted geodesic curves. We proved that
a constant speed curve is a weighted geodesic curve if and only if it is a
critical point of the weighted length functional, a curve γ minimizes the
weighted energy functional if and only if γ is a minimal weighted geodesic
with constant weighted velocity.

1 Introduction

Manifold with density is an n-dimensional Riemannian manifold with a smooth
positive density eϕ(x) used to weight both n-dimensional volume and (n − 1)-
dimensional area. In terms of the underlying Riemannian volume dV , area dA
and length ds, the weighted volume, weighted area and weighted length are
given by

dVϕ = eϕdV, dPϕ = eϕdA, dsϕ = eϕds.

Such a density is not equivalent to scaling the metric conformally by a factor
λ, since volume and area would be scaled by different powers of λ.

Authors are supported in part by the National Foundation for Science and Technology De-
velopment, Vietnam (Grant No. 101.01-2011.26).
Key words: Manifold with density, weighted geodesic, weighted minimal geodesic, totally
weighted geodesic, the shortest weighted length.
2010 AMS Subject Classification: Primary 49Q20; Secondary 53A04, 53A40.

170



Nguyen D. Binh and Tran L. Nam 171

Manifolds with density long have arisen naturally in mathematics. For example,
the area of a surface of revolution equals to the weighted length of its generating
curve, with weight or density 2π|x|. So when we study areas and volumes of
surfaces of revolution, we, in fact, study the weighted lengths and the weighted
areas on upper half-plane with density 2πx. We can consider the upper half-
plane surface with density 2πx as the quotient of R3 modulo rotation about
the y-axis. In general, quotients of Riemannian manifolds are manifolds with
density. Another example of manifold with density is the Gauss space Gn, Rn

with Gaussian probability density (2π)−n/2e−|x|2/2, that has many applications
to probability and statistics. For more details about manifolds with density,
we refer the reader to [3], [5], [7], [9].

In section 3, we propose some useful notions in manifolds with density
such as weighted derivative, weighted length, weighted Levi-Civita connection,
weighted geodesic, totally weighted geodesic submanifold. We proved that

(i) A submanifold K is a totally weighted geodesic submanifold if and only
if any geodesic curve on the submanifold K with induced weighted con-
nection is also a geodesic curve on the Riemannian manifold M ;

(ii) If K is a totally weighted geodesic submanifold, then K is a totally um-
bilical submanifold;

(iii) A curve with constant velocity in a manifold with density is a weighted
geodesic curve if and only if it is a critical point of the weighted length
functional.

In the special case of n = 2, a curve is a weighted geodesic curve if and only if
it has zero weighted curvature. We give some well-known examples of weighted
geodesic curves and prove that in the plane with density that has nonpositive
weighted Gauss curvature, if there exists a weighted geodesic curve joining two
points, then it is unique.

In section 4, we introduce the notions of the minimal weighted geodesics,
the weighted energy functional of a curve. Proposition 12 states that among all
curves joining p to q, γ0 minimizes the weighted energy functional if and only
if γ0 is of constant weighted velocity and minimal weighted geodesic. Theorem
13 gives us a system of equations of minimal weighted geodesic curve.

2 Preliminaries

Following Gromov [5], a generalized mean curvature of a hypersurface Σ on
an n-dimensional manifold with density eϕ, called weighted mean curvature, is
defined as

Hϕ = H − 1
n − 1

dϕ

dn
. (1)
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where H is the Riemannian mean curvature and n is the outward normal vector
field of Σ.
Therefore, in plane with density eϕ, the weighted curvature kϕ of a curve with
unit normal n is given by

kϕ = k − dϕ

dn
, (2)

where k is the Riemannian curvature of the curve.

Definition 1. ([3]) The weighted Gauss curvature Gϕ of a Riemannian surface
with density eϕ is given by

Gϕ = G − Δϕ (3)

where G is the Riemannian Gauss curvature.

Proposition 1. ([3]) Given a piecewise-smooth curve enclosing a topological
disc R in a Riemannian surface with density eϕ and inward pointing unit nor-
mal n, then the weighted Gauss curvature Gϕ satisfies∫

R

GϕdA +
∫

∂R

kϕds +
∑

(π − αi) = 2π, (4)

where αi are interior angles and the integrals are with respect to Riemannian
area and arc length.

Theorem 2. ([4], [11]) Let τ : [a, b] −→ [a, b] be a smooth monotone map
taking the endpoints of [a, b] to the endpoints of [a, b]. Then,

∫ b

a

(
dτ

dt

)2

dt ≥ b − a, (5)

with equality holding if and only if
dτ

dt
= 1.

3 The geodesic curves in manifolds with density

Definition 2. Let M be a manifold with smooth density eϕ and f : (a, b) ⊂
R −→ M be a smooth function. We define the weighted derivative

dϕf

dt
of

function f as follows
dϕf

dt
:= eϕ◦f df

dt
, (6)

where
df

dt
is the derivative with respect to the variable t of the function f in

M .

From Definition 2, we immediately obtain
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Corollary 3. Let f : I ⊂ R −→ Rn, t −→ f(t) and τ : J ⊂ R → I, s → τ (s)
be smooth function. Then,

dϕ (f◦τ )
ds

=
((

dϕf

dt

)
◦ τ

)
.
dτ

ds
. (7)

Definition 3. Let (M, g) be a Riemannian manifold with density eϕ and γ :
(a, b) −→ M be a smooth piecewise curve. The weighted length of γ is defined
by

�ϕ(γ) :=
∫ b

a

√
gγ

(dϕγ

dt
,
dϕγ

dt

)
dt =

∫ b

a

eϕ◦γ

√
gγ

(dγ

dt
,
dγ

dt

)
dt. (8)

Definition 4. Let (M, g) be a Riemannian manifold with density eϕ. We
define the weighted connection ∇ϕ in M by

(∇ϕ)Y X := ∇Y (eϕX) − g(Y, Y )eϕ ∇ϕ, (9)

where X, Y are two smooth vector fields on M , ∇ is Levi-Civita connection on
M and ∇ϕ is the gradient of the function f .

From Definition 4, we obtain

(∇ϕ)Y X = eϕ∇Y X + Y (eϕ)X − g(Y, Y )eϕ∇ϕ. (10)

Let α : I ⊂ R −→ M be a smooth curve. The weighted covariant derivative
DϕX

dt
of a vector field X along α is defined by

DϕX

dt
= eϕ◦α

(
DX

dt
+ g (∇ϕ, α′)X − g (α′, α′)∇ϕ

)
, (11)

where
DX

dt
is covariant derivative of X along α.

The curve α is called a weighted geodesic curve if the weighted covariant deriva-
tive of α′ along α is equal to 0. This is equivalent to

α′′(t) + g
(∇ϕ

(
α (t)

)
, α′ (t)

)
α′ (t) − g

(
α′ (t) , α′ (t)

)∇ϕ
(
α (t)

)
= 0, (12)

for all t.

Definition 5. Let (M, g) be a Riemannian manifold with density eϕ and K ⊂
M be a submanifold of M . For all vector fields X, Y on K, let

(
(∇ϕ)Y X

)T

and
(
(∇ϕ)Y X

)N denote the tangential and normal components of (∇ϕ)Y X
to K respectively.
The map ∇ϕ : X (K)×X (K) −→ X (K), (X, Y ) �−→ (

(∇ϕ)Y X
)T is called the

induced weighted connection on K.
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The map IIϕ : X (K)×X (K) −→ B(K), (X, Y ) �−→ (
(∇ϕ)Y X

)N is called the
weighted second fundamental form of K.
The submanifold K is called totally weighted geodesic if its weighted second
fundamental form is equal to 0.

Let α be a smooth curve on a submanifold K ⊂ M and Y be a vector field
along α. Then, by Definition 5

DϕY

dt
=

DϕY

dt
+ IIϕ (α′, Y ) ,

IIϕ (α′, Y ) = eϕ◦α
(
II (α′, Y ) − g (α′, α′)α∇ϕN

)
,

where
DϕY

dt
is the covariant derivative of Y along α and II is the second

fundamental form of K. Therefore,

Proposition 4.

(i) Let K be a submanifold of a Riemannian manifold M . K is totally
weighted geodesic if and only if any geodesic curve on K with induced
weighted connection ∇ϕ is also a geodesic curve on M .

(ii) If K is totally weighted geodesic, then K is totally umbilical.

We have known that geodesics with constant velocities are locally length-
minimizing, Studying this property for weighted geodesic curves on a manifold
with density led us to the following.

Lemma 5. A curve with constant velocity in manifold with density M is a
weighted geodesic curve if and only if it is a critical point of the weighted length
functional.

Proof. Without loss of generality, we can assume that α : (a, b) −→ M has
a natural parametrization. We consider a family of parameter curves αλ :
(a, b) �−→ M , where λ ∈ (−ε, ε), ε > 0, satisfying α0(t) = α(t) for all t ∈ (a, b),
αλ(a) = α(a) and αλ(b) = α(b) for all λ ∈ (−ε, ε). We get,

�ϕ(αλ) =
∫ b

a

|α′
λ(s)|eϕ(αλ(s))ds.
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Therefore,

�ϕ(αλ)
dλ

∣∣∣
λ=0

=
∫ b

a

dα′
λ(s)
dλ

∣∣∣
λ=0

α′
0(s)

|α′
0(s)|

eϕ(α0(s))ds +
∫ b

a

|α′
λ(s)|d

(
eϕ(αλ(s))

)
dλ

∣∣∣
λ=0

ds

= −
∫ b

a

dαλ(s)
dλ

∣∣∣
λ=0

(
α′

0(s)e
ϕ(α0(s))

)′
ds +

∫ b

a

d
(
eϕ(αλ(s))

)
dλ

∣∣∣
λ=0

ds

= −
∫ b

a

dαλ(s)
dλ

∣∣∣
λ=0

(
α′′

0(s) + α′
0(s)g

(∇ϕ(α0(s)), α′
0(s)

)
−∇ϕ

(
α0(s)

))
eϕ(α0(s))ds

= −
∫ b

a

dαλ(s)
dλ

∣∣∣
λ=0

Dϕα′(s)ds. (13)

By the Bois-Reymond lemma, α is a critical point of the weighted length func-
tional if and only if Dϕα′(s) = 0. This is equivalent to that α is weighted
geodesic.

Now, we study some properties of weighted geodesic curves in the case of
n = 2.

Lemma 6. Let α be a curve in the plan R2 with density eϕ. Then, α is weighted
geodesic if and only if its weighted curvature is equal to 0.

Proof. Let α : [a, b] −→ R
2 be a parametric curve with arc-length parameter.

For any smooth function η : [a, b] −→ R2 satisfying η(a) = η(b) = 0, we obtain,
for all ε > 0,

d�ϕ(α + εη)
dε

∣∣∣
ε=0

=
∫ b

a

(α′.η′)eϕds +
∫ b

a

(
η.∇ϕ

)
eϕds

= −
∫ b

a

η.
(
α′′ + ∇ϕ − (∇ϕ.n)n

)
eϕds +

∫ b

a

(
η.∇ϕ

)
eϕds

= −
∫ b

a

η.
(
α′′ − (∇ϕ.n)n

)
eϕds. (14)

where n is normal vector of α. From equations (13) and (14), we conclude that

∫ b

a

η.Dϕα′ds =
∫ b

a

kϕ(η.n)eϕds. (15)

Applying the Bois-Reymond lemma, we obtain the desired result.
The following examples show us some weighted geodesic curves by using

Lemma 6.
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Example 7. ([1]) In the plane R2 with density e
−x2−y2

2 .

(i) The unit circle is the unique closed geodesic curve.

(ii) The straight lines passing through the origin are geodesic curves.

Theorem 8. ([1]) In the plane R2 with density eϕ and Gϕ ≤ 0, if there exists
a weighted geodesic α joining two points, then it is unique.

Proof.
Let α and β be two distinct geodesics joining two points p and q. Begin at

one point, which we will call p, let q1 be the first intersection point of α and β.
Now since we are in the plane and the bounded region is a disc, we can apply
Gauss-Bonnet to the region bounded by α and β from p to q1, with θ1 and θ2

the angles formed where the two geodesics meet. Thus,∫∫
R

Kϕ +
∫

α

kϕ(α) +
∫

β

kϕ(β) +
∑

(π − θi) = 2π.

Because α and β are both geodesics, the
∫

kϕ terms vanish so that,∫∫
R

Kϕ = θ1 + θ2.

Since Gϕ ≤ 0, θ1 = θ2, and the geodesics must coincide.

Theorem 9. In the plane R2 with density ex, the weighted geodesic curves are
either a straight line, parallel to the x-axis, or the Grim-Reaper curve whose
equation is

x = − ln(cos y), y ∈ R. (16)

Proof. We can suppose that α has the parametrization α(s) =
(
x(s), y(s)

)
with {

x′ = cos (2ξ) ,

y′ = sin (2ξ) ,

where ξ is a function of variable s. Then,

kϕ = k − dϕ

dn
= 2ξ′ + sin (2ξ) . (17)

Thus, α is weighted geodesic if and only if

2ξ′ + sin (2ξ) = 0. (18)

If there exists s0 satisfying sin
(
2ξ(s0)

)
= 0, then ξ(s) = π/2 is the unique

solution of the ODE (17) in the interval (0; π), since the sin function is Lipschitz.
In this case, (α) is a straight line parallel to the x-axis.
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Consider Equation (17) in the interval (0, π/2). In this case, sin(2ξ) > 0, for
all s. Solving Equation (5), we obtain

−s + b = ln
∣∣ tan ξ

∣∣ = ln tan ξ (since tan ξ > 0).

Thus, e−s+b = tan ξ. We can suppose that b = 0 because two curves α(−s) and
α(−s + b) have the same trace. Therefore,⎧⎪⎪⎨

⎪⎪⎩
x (s) =

∫
1 − e−2s

1 + e−2s
ds = ln

(
es + e−s

)
+ c1,

y (s) =
∫

2e−s

1 + e−2s
ds = 2 arctan (es) + c2.

(19)

Similarly, the equation (17) in the interval (π/2, π) has the solution⎧⎪⎪⎨
⎪⎪⎩

x (s) =
∫

1 − e−2s

1 + e−2s
ds = ln

(
es + e−s

)
+ c1,

y (s) =
∫ −2e−s

1 + e−2s
ds = −2 arctan (es) + c2.

(20)

The curve defined by (20) is just the image of the one defined by (19) under
the reflection across the x-axis. From equation (19), we have

x = − ln
(
sin(y − c2)

)
+ c1 + ln2. (21)

By changing the coordinate system{
x = x − ln 2 − c1

y = −y +
π

2
+ c2

equation (21) become the equation

x = − ln(cos y).

We can realize that the curve α is the Grim-Reaper curve.

4 The minimal geodesic in manifolds with den-

sity

Definition 6. Let (M, g) be a manifold with density eϕ, the weighted distance
dϕ(x, y) between two points x and y of M is the infimum of the set of weighted
lengths of all smooth piecewise curves joining x to y.
If there exists a curve γ joining x to y such that its weighted length equals to
dϕ(x, y), then γ is called a minimal weighted geodesic on manifold with density.
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Sharing some interesting properties with its counterpart in Riemannian
manifolds, manifolds with density allow us to generalize some results from
the classical setting. In particular, the following lemma is true.

Lemma 10. Let (M, g) be a manifold with density eϕ, γ : [a, b] −→ M be a
smooth curve.

(i) The weighted length of γ is independent on the parametrization of γ, i.e.
if τ : [a′, b′] −→ [a, b] is a change of parameter, then γ = γ ◦ τ and γ have
the same weighted length.

(ii) If γ is regular, then there is a change of parameter τ : [a, b] −→ [a, b] such

that
∣∣∣dϕ(γ ◦ τ )

dt
(t)

∣∣∣ is independent on t.

Definition 7. In a Riemannian manifold M with density eϕ let γ : [a, b] −→ M

be a smooth curve. The functional A(γ) :=
∫ b

a

∣∣∣dϕγ

dt

∣∣∣2dt is called the weighted

energy functional of γ.

We will study some properties of the weighted energy functional.

Proposition 11. Let M be a Riemannian manifold with density eϕ and γ :
[a, b] −→ M be a smooth curve. Suppose that, as s goes from a to b, its image
γ(s) moves at constant weighted velocity. Let γ = γ ◦ τ : [a, b] −→ M be a
reparametrization of γ. Then A(γ) ≥ A(γ), the equality holds if and only if
τ (t) = t for all t ∈ [a, b].

Proof. Suppose that
∣∣∣dϕγ

ds
(s)

∣∣∣ = c, for all s ∈ [a, b]. Then,

A(γ) =
∫ b

a

∣∣∣dϕγ

ds

∣∣∣2ds = c2(b − a).

Otherwise,

A(γ) =
∫ b

a

∣∣∣dϕ(γ ◦ τ )
dt

∣∣∣2dt = c2

∫ b

a

(dτ

dt

)2

dt.

Hence A(γ) ≥ A(γ) by Theorem 2. Moveover, it is clear that A(γ) = A(γ) if
and only if τ (t) = t for all t ∈ [a, b].

Proposition 12. Let p, q be two points on a Riemannian manifold with den-
sity eϕ. Then, among all curves joining p to q, γ0 minimizes the weighted
energy functional if and only if γ0 is a minimal weighted geodesic with constant
weighted velocity.
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Proof. Suppose that γ0 minimizes weighted energy functional. Let γ0 be a
reparametrization of γ0 with constant weighted velocity. Then, by Proposition
11 we obtain

A(γ0) ≤ A(γ0) ≤ A(γ0).

This implies that A(γ0) = A(γ0) and γ0 ≡ γ0.
For any smooth curve γ on M joins two points p and q with constant weighted
velocity, ∣∣∣dϕγ

dt

∣∣∣2(b − a) = A(γ) ≥ A(γ0) =
∣∣∣dϕγ0

dt

∣∣∣2(b − a).

Therefore, ∣∣∣dϕγ

dt

∣∣∣ ≥ ∣∣∣dϕγ0

dt

∣∣∣. (22)

Otherwise,

�ϕ(γ) =
∣∣∣dϕγ

dt

∣∣∣(b − a), (23)

�ϕ(γ0) =
∣∣∣dϕγ0

dt

∣∣∣(b − a). (24)

By (22), (23), (24), we conclude that γ0 is a minimal weighted geodesic.
Conversely, if γ0 has a constant weighted velocity and is a minimizing

weighted length, we easily check that γ0 minimizes the weighted energy func-
tional by Proposition 11 and equations (23), (24).

Theorem 13. Let γ : (a, b) −→ M be a smooth curve with constant weighted
velocity on a Riemannian manifold with density eϕ. If γ is a minimal weighted
geodesic, then on a coordinate chart (U , x1, . . . , xn)

d2γk

dt2
+

n∑
i,j=1

(
Γk

ij + Γk
ϕ;ij

)dγi

dt

dγj

dt
= 0, k = 1, . . . , n, (25)

where γ = (γ1, . . . , γn), Γk
ij are Christoffel symbols and Γk

ϕ;ij are defined in
terms of the coefficients of the Riemannian metric by

Γk
ij =

1
2

n∑
l=1

glk

(
∂gli

∂xj
+

∂glj

∂xi
− ∂gij

∂xl

)

Γk
ϕ;ij =

n∑
l=1

glk

(
gli

∂ϕ

∂xj
+ glj

∂ϕ

∂xi
− gij

∂ϕ

∂xl

)
,

here (gij) is the inverse matrix of (gij).
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Proof. We consider the functional F defined by

F
(
γ(t),

dγ

dt
(t)

)
=

n∑
i,j=1

e2ϕ
(
γ(t)

)
gij

(
γ(t)

)dγi

dt
(t)

dγj

dt
(t).

Then, A(γ) =
∫ b

a

F
(
γ(t),

dγ

dt
(t)

)
dt. Hence if γ is a minimal weighted geodesic,

then it must satisfy the Euler-Lagrange equations for functional F . Therefore,

∂F

∂xk

(
γ(t),

dγ

dt
(t)

)
=

d

dt

∂F

∂vk

(
γ(t),

dγ

dt
(t)

)
, k = 1, . . . , n. (26)

Now, we compute left-hand side and right-hand side of equations (26).

∂F

∂xk

(
γ,

dγ

dt

)
= e2ϕ

n∑
i,j=1

(
∂gij

∂xk
+ 2gij

∂ϕ

∂xk

)
dγi

dt

dγj

dt
,

d

dt

∂F

∂vk

(
γ,

dγ

dt

)
= 2e2ϕ

⎡
⎣ n∑

i=1

gik
d2γi

dt2
+

⎛
⎝ n∑

i,j=1

∂gik

∂xj
+ 2

n∑
i,j=1

gik
∂ϕ

∂xj

⎞
⎠ dγi

dt

dγj

dt

⎤
⎦ .

Therefore, we derive

n∑
i=1

gik
d2γi

dt2
+

n∑
i,j=1

∂gik

∂xj

dγi

dt

dγj

dt
− 1

2

n∑
i,j=1

∂gij

∂xk

dγi

dt

dγj

dt

+

⎛
⎝ n∑

i,j=1

2gik
∂ϕ

∂xj
− gij

∂ϕ

∂xk

⎞
⎠ dγi

dt

dγj

dt
= 0.

Thus,
d2γk

dt2
+

n∑
i,j=1

(
Γk

ij + Γϕ
k
ij

)dγi

dt

dγj

dt
= 0, k = 1, . . . , n.

Example 14. In the plane R2 with density e
−x2−y2

2 , the functional F is defined
by

F (x, y, x′, y′) = e−x2−y2
(x′2 + y′2),

and therefore system of equations (25) become{
x′′ − xx′2 − 2yx′y′ + xy′2 = 0,

y′′ + yx′2 − 2xx′y′ − yy′2 = 0.
(27)

It is easy to see that circle arcs with parametrization c(t) = (cos t, sin t) ,
t ∈ (a, b) ⊆ (0, 2π) satisfying equation system (27).
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Moreover, with the x, y variables are fixed, the function (x′, y′) �−→ F (x, y, x′, y′)
is strictly convex since its hessian matrix is

e−x2−y2
(

2 0
0 2

)
, ∀x, y ∈ (a, b) .

Hence, circle arcs (C) locally minimizes the weighted energy functional.
However, globally they do not minimize the weighted energy functional. In

fact, consider the semicircle (C) : c(t) = (cos t, sin t), t ∈ [0, π] and the segment
(d) : α(t) = (t, 0), t ∈ [−1, 1], joining two points p(−1, 0), q(1, 0). We have

A(C) =
π

e
>

2
e

= A(d).

Therefore (C) is not the shortest weighted length joining two points p, q.
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