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Abstract

In this study, we simplified the Black-Scholes formula to a two-input
version. This simplified formula presents a one-to-one relationship with
one input given that the other input is fixed. With this simplified for-
mula, we created an option-price data grid and showed that the implied
volatility can be obtained by interpolation. This interpolation-based al-
gorithm does not require iteration and has an adjustable accuracy, which
is very useful in computing implied volatilities for a large number of
options in a real-time environment.

1 Introduction

The classical Black-Scholes (BS) formula is the most commonly used formula for
obtaining the fair price of European options in the arbitrage-free framework.
In the recent years, European options have gained popularity among future
exchanges as one of their main products. Other than using the BS formula to
calculate the fair price, one major application of the BS formula is to extract
the volatility that makes the fair price equal to the current market price of
European options. This volatility is also known as the implied volatility.

The exact closed-form formula for the implied volatility has not yet been
found and is likely to remain unfound. To the best of our knowledge, there are
two main methods used to compute the implied volatility. The first method is
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to find the numerical solution using iterative search methods such as the Bisec-
tion method [1], the Newton-Raphson method, and the Dekker-Brent method.
According to Li [2], the Dekker-Brent method is chosen by MATLAB to cal-
culate the implied volatility based on the BS formula. The second method
involves using a Taylor series expansion to obtain the approximate formula for
the implied volatility. There are a number of formulas developed based on
this method, such as the Brenner-Subrahmanyam formula [3], the Corrado and
Miller formula [4], the Chance formula [5], and the Li formula [6]. Furthermore,
other approximating formulas that are not based on a Taylor series expansion
are also available, such as the Li formula [2].

The iterative search method can achieve the highest accuracy, but it may
run into a time complexity problem caused by a large number of iterations. In
contrast, the approximate formula is considered to be faster than the iterative
search method. However, there exists an accuracy issue in the approximate
formula.

In practice, there are many market participants using implied volatility
for various purposes such as pricing options, selecting options, and calculating
Greeks. Therefore, the need for using implied volatility is not only at the end
of day. Professional investors and traders need to know an accurate implied
volatility on a real-time basis for their decision making process. The real-time
implied volatility can be used on a real-time basis to calculate other variables
such as Delta, Gamma, effective gearing, and time decay. For this reason,
accuracy is a preferred choice over speed. Otherwise, other variables that use
the implied volatility as an input will not be accurate. For a large corporation,
it is possible to calculate a real-time implied volatility using a high-performance
platform, but some investors and traders may have only a personal computer
and a basic spreadsheet to calculate the implied volatility, which is fine for a
small number of options. However, in a case when there are a large number
of options to be calculated, the performance of a small platform may not be
sufficient to handle a large number of iterations concurrently.

To respond to the needs of professional investors and traders, our new al-
gorithm aims to achieve both accuracy and computation speed. Our algorithm
starts with grouping variables together to simplify the BS formula. With the
simplified BS formula, we can create a two-dimension table. By using an in-
terpolation technique, the table can easily lead to an implied volatility without
using iterations. Moreover, the accuracy of this algorithm can be adjusted by
changing the intervals of the data grid.

2 Simplified BS formula

The BS formula developed by Black-Scholes [7] and Merton [8] can be used to
calculate the price of European call and put options. Under the BS framework,
the value of a call option for a non-dividend-paying underlying asset is:
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c = SN(d1) − Ke−rT N(d2) (1)

Based on the put-call parity, the value of a put option for a non-dividend-
paying underlying asset is:

p = Ke−rT N(−d2) − SN(−d1) (2)
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For all of the above equations, the cumulative normal distribution function,
the spot price of the underlying asset, the strike price, the risk-free rate, and
the time-to-expiration are denoted as N(·), S, K, r, T , and σ , respectively.

We begin the simplification by defining the time-uncertainty (U), the discount-
moneyness (M), the call-to-spot ratio (cs) the put-to-spot ratio (ps) as follows:
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It is straightforward to show that by substituting (5), (6), (7), and (8) into
(1), (2), (3), and (4), the simplified BS formulas for the call price and the put
price are:
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In fact, the time-uncertainty and the discount-moneyness are not indepen-
dent because both values have the time-to-expiration variable as their common
parameter. The effect of the time-to-expiration on the discount-moneyness is
considered to be insignificant, which allows us to neglect this effect. Nonethe-
less, formulas (9) and (10) are basically the BS formulas for calculating a Eu-
ropean option price in terms of a percentage of the spot price of the underlying
asset, as shown in Figure1 and Figure 2.
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Figure 1: Call-to-spot ratio computed by the simplified BS formula

Figure 2: Put-to-spot ratio computed by the simplified BS formula
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In Figure 1, it can be seen that the relationship between the call-to-spot
ratio and the time-uncertainty is a one-to-one function for a fixed discount-
moneyness. Likewise, the put-to-spot ratio in Figure 2 is a one-to-one function
of the time-uncertainty for a fixed discount-moneyness. Consequently, the call-
to-spot and the put-to-spot ratio will converge to their intrinsic values when the
time-uncertainty approaches zero. The convergence will be even faster when
the discount-moneyness deviates further from unity. In other words, when the
moneyness of the option is more out-of-the-money or more in-the-money, the
option price will converge to its intrinsic value more quickly. As shown in
Figure 1, we can see clearly that there are almost no differences between the
call-to-spot ratios with a discount-moneyness of 0.4 when the time-uncertainty
is lower than 0.250. This is also true for the put-to-spot ratio. Unsurprisingly,
the European option price based on the BS formula has the same effect when
the time-to-maturity or the volatility is close to zero.

3 Numerical methods for computing implied
volatility

Traditionally, the implied volatility can be extracted from the BS formula by
assuming that all of the other variables are known. To compute the implied
volatility numerically, we can employ any root-finding technique such as Bisec-
tion, Newton-Raphson, Secant, and Brent.

Because the simplified BS formula is equivalent to the BS formula, we can
use the same numerical methods that we used to compute the implied volatil-
ity to compute the implied time-uncertainty (Implied U) in the simplified BS
formula. Then, we can divide the implied time-uncertainty by the square root
of the time-to-expiration to obtain the implied volatility.

In this paper, we used the Bisection method to compute the implied volatil-
ity because of its simplicity. First, we assumed that the spot price of the un-
derlying asset, the strike price, the risk-free rate, and the time-to-expiration
are known variables. Furthermore, we defined an arbitrarily chosen volatility,
namely the “actual volatility (Vol)”. Using all of the variables, the European
option price could be calculated by the BS formula. With the European option
price and other variables, it was very straightforward to employ the Bisection
method to obtain the implied volatility from the classical BS formula and the
simplified BS formula. Therefore, we defined IV1 and IV2 as the implied volatil-
ity from the classical BS formula and the simplified BS formula, respectively.
Surely, both of the implied volatilities are not error-free. We do need to specify
the error tolerance (ε) for the root-finding technique as well.

We demonstrated the computing procedure as mentioned above through
three examples of European call options, including at-the-money (spot price
of underlying asset = strike price), out-of-the-money (spot price of underlying
asset < strike price), and in-the-money (spot price of underlying asset > strike
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price). We made the out-of-the-money and the in-the-money cases more ex-
treme by choosing the spot price of the underlying asset to be higher or lower
than the strike price 40%. The examples describing the at-the-money, the out-
of-the-money, and the in-the-money cases are presented in Table 1, Table 2, and
Table 3, respectively. We have to note that the error tolerance (ε) is 0.000001
and that the only two variables that remained unchanged were the strike price
and the risk-free rate. To keep the examples simple, we intentionally chose the
risk-free rate to be zero.

Table 1: Implied volatilities computed by the Bisection method (at-the-money)
Assumption : S = 100, X = 100, r = 0, actual volatility (Vol) = 60%

BS Formula Simplified BS Formula Absolute Error
T c IV1 M cs Implied U IV2 |Vol-IV1| |Vol-IV2||IV1-IV2|

0.100 7.5581 60.0000% 1.0 0.075581 18.9737% 60.0000% 0.0000% 0.0000% 0.0000%

0.090 7.1713 60.0000% 1.0 0.071713 18.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.080 6.7622 60.0000% 1.0 0.067622 16.9706% 60.0000% 0.0000% 0.0000% 0.0000%
0.070 6.3264 60.0000% 1.0 0.063264 15.8745% 60.0000% 0.0000% 0.0000% 0.0000%
0.060 5.8580 60.0000% 1.0 0.058580 14.6969% 60.0000% 0.0000% 0.0000% 0.0000%
0.050 5.3484 60.0000% 1.0 0.053484 13.4164% 60.0000% 0.0000% 0.0000% 0.0000%
0.040 4.7844 60.0000% 1.0 0.047844 12.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.030 4.1441 60.0000% 1.0 0.041441 10.3923% 60.0000% 0.0000% 0.0000% 0.0000%
0.020 3.3841 60.0000% 1.0 0.033841 8.4853% 60.0000% 0.0000% 0.0000% 0.0000%
0.018 3.2106 60.0000% 1.0 0.032106 8.0498% 60.0000% 0.0000% 0.0000% 0.0000%
0.016 3.0270 60.0000% 1.0 0.030270 7.5895% 60.0000% 0.0000% 0.0000% 0.0000%

0.014 2.8316 60.0000% 1.0 0.028316 7.0993% 60.0000% 0.0000% 0.0000% 0.0000%
0.012 2.6216 60.0000% 1.0 0.026216 6.5727% 60.0000% 0.0000% 0.0000% 0.0000%
0.010 2.3933 60.0000% 1.0 0.023933 6.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.008 2.1407 60.0000% 1.0 0.021407 5.3666% 60.0000% 0.0000% 0.0000% 0.0000%
0.006 1.8539 60.0000% 1.0 0.018539 4.6476% 60.0000% 0.0000% 0.0000% 0.0000%
0.004 1.5138 60.0000% 1.0 0.015138 3.7947% 60.0000% 0.0000% 0.0000% 0.0000%
0.002 1.0704 60.0000% 1.0 0.010704 2.6833% 60.0000% 0.0000% 0.0000% 0.0000%

Maximum Absolute Error 0.0000% 0.0000% 0.0000%

From the three tables 1, 2 and 3, we can see that the absolute errors of the
implied volatilities are very low for the at-the-money and the out-of-the-money
cases. However, the absolute errors are clearly evident for in-the-money case,
especially when the time-to-expiration is lower than 0.006. In Table 3 (time-to-
expiration = 0.002), the implied volatilities from the classical BS formula and
the simplified BS formula are significantly different from the actual volatil-
ity. Even without using any approximating formula to compute the implied
volatility, it is unavoidable to encounter a significant error.
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Table 2: Implied volatilities computed by the Bisection method (out-of-the-
money)

Assumption : S = 60, X = 100, r = 0, actual volatility (Vol) = 60%
BS Formula Simplified BS Formula Absolute Error

T c IV1 M cs Implied U IV2 |Vol-IV1| |Vol-IV2||IV1-IV2|
0.100 0.0159 60.0000% 0.6 0.000265 18.9737% 60.0000% 0.0000% 0.0000% 0.0000%

0.090 0.0093 60.0000% 0.6 0.000155 18.0000% 60.0000% 0.0000% 0.0000% 0.0000%

0.080 0.0048 60.0000% 0.6 0.000081 16.9706% 60.0000% 0.0000% 0.0000% 0.0000%

0.070 0.0021 60.0000% 0.6 0.000035 15.8745% 60.0000% 0.0000% 0.0000% 0.0000%

0.060 0.0007 60.0000% 0.6 0.000012 14.6969% 60.0000% 0.0000% 0.0000% 0.0000%

0.050 0.0002 60.0000% 0.6 0.000003 13.4164% 60.0000% 0.0000% 0.0000% 0.0000%

0.040 0.0000 60.0000% 0.6 0.000000 12.0000% 60.0000% 0.0000% 0.0000% 0.0000%

0.030 0.0000 60.0002% 0.6 0.000000 10.3923% 60.0002% 0.0002% 0.0002% 0.0000%

0.020 0.0000 60.0000% 0.6 0.000000 8.4853% 60.0000% 0.0000% 0.0000% 0.0000%

0.018 0.0000 60.0000% 0.6 0.000000 8.0498% 60.0000% 0.0000% 0.0000% 0.0000%

0.016 0.0000 60.0000% 0.6 0.000000 7.5895% 60.0000% 0.0000% 0.0000% 0.0000%

0.014 0.0000 60.0000% 0.6 0.000000 7.0993% 60.0000% 0.0000% 0.0000% 0.0000%

0.012 0.0000 60.0000% 0.6 0.000000 6.5727% 60.0000% 0.0000% 0.0000% 0.0000%

0.010 0.0000 60.0000% 0.6 0.000000 6.0000% 60.0000% 0.0000% 0.0000% 0.0000%

0.008 0.0000 60.0000% 0.6 0.000000 5.3666% 60.0000% 0.0000% 0.0000% 0.0000%

0.006 0.0000 60.0000% 0.6 0.000000 4.6476% 60.0000% 0.0000% 0.0000% 0.0000%

0.004 0.0000 60.0000% 0.6 0.000000 3.7947% 60.0000% 0.0000% 0.0000% 0.0000%

0.002 0.0000 60.0000% 0.6 0.000000 2.6833% 60.0000% 0.0000% 0.0000% 0.0000%

Maximum Absolute Error 0.0002% 0.0002% 0.0000%

Table 3: Implied volatilities computed by the Bisection method (in-the-money)
Assumption : S = 140, X = 100, r = 0, actual volatility (Vol) = 60%

BS Formula Simplified BS Formula Absolute Error
T c IV1 M cs Implied U IV2 |Vol-IV1| |Vol-IV2| |IV1-IV2|

0.100 40.3414 60.0000% 1.4 0.288153 18.9737% 60.0000% 0.0000% 0.0000% 0.0000%
0.090 40.2541 60.0000% 1.4 0.287529 18.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.080 40.1781 60.0000% 1.4 0.286986 16.9706% 60.0000% 0.0000% 0.0000% 0.0000%
0.070 40.1148 60.0000% 1.4 0.286534 15.8745% 60.0000% 0.0000% 0.0000% 0.0000%
0.060 40.0655 60.0000% 1.4 0.286182 14.6969% 60.0000% 0.0000% 0.0000% 0.0000%
0.050 40.0310 60.0000% 1.4 0.285936 13.4164% 60.0000% 0.0000% 0.0000% 0.0000%
0.040 40.0106 60.0000% 1.4 0.285790 12.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.030 40.0020 60.0000% 1.4 0.285728 10.3923% 60.0000% 0.0000% 0.0000% 0.0000%
0.020 40.0001 60.0000% 1.4 0.285715 8.4853% 60.0000% 0.0000% 0.0000% 0.0000%

0.018 40.0000 60.0000% 1.4 0.285715 8.0498% 60.0000% 0.0000% 0.0000% 0.0000%
0.016 40.0000 60.0000% 1.4 0.285714 7.5895% 60.0000% 0.0000% 0.0000% 0.0000%
0.014 40.0000 60.0000% 1.4 0.285714 7.0993% 60.0000% 0.0000% 0.0000% 0.0000%
0.012 40.0000 60.0000% 1.4 0.285714 6.5727% 60.0000% 0.0000% 0.0000% 0.0000%
0.010 40.0000 60.0000% 1.4 0.285714 6.0000% 60.0000% 0.0000% 0.0000% 0.0000%
0.008 40.0000 59.9999% 1.4 0.285714 5.3666% 59.9999% 0.0001% 0.0001% 0.0000%
0.006 40.0000 60.1243% 1.4 0.285714 4.6605% 60.1669% 0.1243% 0.1669% 0.0426%
0.004 40.0000 70.3325% 1.4 0.285714 4.3857% 69.3448% 10.3325% 9.3448% 0.9878%
0.002 40.0000 97.0939% 1.4 0.285714 4.3857% 98.0683% 37.0939% 38.0683% 0.9744%

Maximum Absolute Error 37.0939% 38.0683% 0.9878%
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4 New algorithm based on simplified BS

formula

Compared to the classical BS formula, the simplified BS formula reduces the
number of inputs from six variables to two variables. To compute the call-
to-spot ratio or the put-to-spot ratio, the simplified BS formula requires only
discount-moneyness and time-uncertainty, as shown in Table 4 and Table 5. We
can obtain the implied time-uncertainty from Table 4 and Table 5 given that
the discount-moneyness and the call-to-spot (or put-to-spot) ratio are known.

For example, one can obtain the implied time-uncertainty given that the
call-to-spot ratio and the discount moneyness are 0.01 and 1, respectively. By
interpolating the data in Table 4, it is very straightforward to show that the
implied time-uncertainty is equal to 0.02506702. Providing that M = 1 and
the call-to-spot ratio = 0.01, the implied time-uncertainty computed by the
Bisection method is equal to 0.02506694. The absolute error of the implied
time-uncertainty from our interpolation method and the Bisection method is
approximately 0.00000008. Assuming that the time-to-expiration is 0.0001
(0.0365 calendar days), the absolute error of the implied volatility from a linear
interpolation will be approximately 0.000008, or 0.0008

As mentioned earlier, the implied volatility calculated by the Bisection
method may have a large error when it is close to maturity. The interpo-
lated implied volatility is also expected to introduce a similar error. To check
the accuracy of the linearly interpolated implied volatility, we created Tables
6-8 by comparing the implied volatility based on the Bisection method of the
BS formula (IV1) with the interpolated implied volatility based on the Bisec-
tion method of the simplified BS formula (IV3). In this case, the interval of U
in the data grid is 0.00001

As presented in Tables 6-8, the interpolated implied volatility generally has
a greater absolute error compared to that from the Bisection method, but this
is not true for the last two scenarios in Table 8 (in-the-money). When the time-
to-expiration is less than 0.006, the absolute error of the interpolated implied
volatility is obviously lower than for any other method. In general, the absolute
errors of the interpolated implied volatility in Tables 6-8 are lower than 0.01%,
which is practically useful.

5 Conclusion

With the classical BS formula, the implied volatility of the European options can be easily
obtained using iterative search methods. However, computing the implied volatility with iter-
ative search methods can present a time complexity when it comes to a real-time calculation
for a large number of options. In addition to iterative search methods, the approximating
formulas for the implied volatility are also available, but the accuracy of these approximating
formulas is not widely accepted among professional investors and traders. For this reason, we
are interested in finding an algorithm that can quickly and accurately compute the implied
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Table 4: Call-to-spot ratio computed by the simplified BS formula
Discount-moneyness (M)

Time-uncertainty (U) 0.60 0.80 1.00 1.20 1.40

0.000010 0.000000 0.000000 0.000004 0.166667 0.285714

0.000100 0.000000 0.000000 0.000040 0.166667 0.285714
0.001000 0.000000 0.000000 0.000399 0.166667 0.285714
0.002000 0.000000 0.000000 0.000798 0.166667 0.285714
0.003000 0.000000 0.000000 0.001197 0.166667 0.285714
0.004000 0.000000 0.000000 0.001596 0.166667 0.285714
0.005000 0.000000 0.000000 0.001995 0.166667 0.285714
0.006000 0.000000 0.000000 0.002394 0.166667 0.285714
0.007000 0.000000 0.000000 0.002793 0.166667 0.285714
0.008000 0.000000 0.000000 0.003192 0.166667 0.285714
0.009000 0.000000 0.000000 0.003590 0.166667 0.285714

0.010000 0.000000 0.000000 0.003989 0.166667 0.285714
0.020000 0.000000 0.000000 0.007979 0.166667 0.285714
0.030000 0.000000 0.000000 0.011968 0.166667 0.285714
0.040000 0.000000 0.000000 0.015957 0.166667 0.285714
0.050000 0.000000 0.000000 0.019945 0.166668 0.285714
0.100000 0.000000 0.000499 0.039878 0.167894 0.285723
0.150000 0.000016 0.005045 0.059785 0.174094 0.286261
0.200000 0.000435 0.014824 0.079656 0.184561 0.288929
0.250000 0.002423 0.028320 0.099476 0.197549 0.294385
0.300000 0.006976 0.044180 0.119235 0.212005 0.302260

Table 5: Put-to-spot ratio computed by the simplified BS formula
Discount-moneyness (M)

Time-uncertainty (U) 0.60 0.80 1.00 1.20 1.40

0.000010 0.666667 0.250000 0.000004 0.000000 0.000000
0.000100 0.666667 0.250000 0.000040 0.000000 0.000000
0.001000 0.666667 0.250000 0.000399 0.000000 0.000000
0.002000 0.666667 0.250000 0.000798 0.000000 0.000000
0.003000 0.666667 0.250000 0.001197 0.000000 0.000000
0.004000 0.666667 0.250000 0.001596 0.000000 0.000000
0.005000 0.666667 0.250000 0.001995 0.000000 0.000000
0.006000 0.666667 0.250000 0.002394 0.000000 0.000000
0.007000 0.666667 0.250000 0.002793 0.000000 0.000000
0.008000 0.666667 0.250000 0.003192 0.000000 0.000000

0.009000 0.666667 0.250000 0.003590 0.000000 0.000000
0.010000 0.666667 0.250000 0.003989 0.000000 0.000000
0.020000 0.666667 0.250000 0.007979 0.000000 0.000000
0.030000 0.666667 0.250000 0.011968 0.000000 0.000000
0.040000 0.666667 0.250000 0.015957 0.000000 0.000000
0.050000 0.666667 0.250000 0.019945 0.000001 0.000000
0.100000 0.666667 0.250499 0.039878 0.001228 0.000008
0.150000 0.666683 0.255045 0.059785 0.007427 0.000546
0.200000 0.667102 0.264824 0.079656 0.017894 0.003215
0.250000 0.669090 0.278320 0.099476 0.030882 0.008671
0.300000 0.673643 0.294180 0.119235 0.045338 0.016546
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Table 6: Implied volatilities computed by the Bisection method and the inter-
polation method (at-the-money)
Assumption : S = 100, X = 100, r = 0, actual volatility (Vol) = 60%

BS Formula Simplified BS Formula Absolute Error
T c IV1 M cs Implied U IV3 |Vol-IV1| |Vol-IV3||IV1-IV3|

0.100 7.5581 60.0000% 1.0 0.075581 18.9747% 60.0032% 0.0000% 0.0032% 0.0032%
0.090 7.1713 60.0000% 1.0 0.071713 18.0010% 60.0033% 0.0000% 0.0033% 0.0033%
0.080 6.7622 60.0000% 1.0 0.067622 16.9716% 60.0035% 0.0000% 0.0035% 0.0035%
0.070 6.3264 60.0000% 1.0 0.063264 15.8755% 60.0038% 0.0000% 0.0038% 0.0038%
0.060 5.8580 60.0000% 1.0 0.058580 14.6979% 60.0041% 0.0000% 0.0041% 0.0041%
0.050 5.3484 60.0000% 1.0 0.053484 13.4174% 60.0045% 0.0000% 0.0045% 0.0045%
0.040 4.7844 60.0000% 1.0 0.047844 12.0010% 60.0050% 0.0000% 0.0050% 0.0050%
0.030 4.1441 60.0000% 1.0 0.041441 10.3933% 60.0058% 0.0000% 0.0058% 0.0058%
0.020 3.3841 60.0000% 1.0 0.033841 8.4863% 60.0071% 0.0000% 0.0071% 0.0071%

0.018 3.2106 60.0000% 1.0 0.032106 8.0508% 60.0075% 0.0000% 0.0075% 0.0075%
0.016 3.0270 60.0000% 1.0 0.030270 7.5905% 60.0079% 0.0000% 0.0079% 0.0079%
0.014 2.8316 60.0000% 1.0 0.028316 7.1003% 60.0085% 0.0000% 0.0085% 0.0085%
0.012 2.6216 60.0000% 1.0 0.026216 6.5737% 60.0091% 0.0000% 0.0091% 0.0091%
0.010 2.3933 60.0000% 1.0 0.023933 6.0010% 60.0100% 0.0000% 0.0100% 0.0100%
0.008 2.1407 60.0000% 1.0 0.021407 5.3676% 60.0112% 0.0000% 0.0112% 0.0112%
0.006 1.8539 60.0000% 1.0 0.018539 4.6486% 60.0129% 0.0000% 0.0129% 0.0129%
0.004 1.5138 60.0000% 1.0 0.015138 3.7957% 60.0158% 0.0000% 0.0158% 0.0158%
0.002 1.0704 60.0000% 1.0 0.010704 2.6843% 60.0224% 0.0000% 0.0224% 0.0224%

Maximum Absolute Error 0.0000% 0.0224% 0.0224%

Table 7: Implied volatilities computed by the Bisection method and the inter-
polation method (out-of-the-money)

Assumption : S = 60, X = 100, r = 0, actual volatility (Vol) = 60%
BS Formula Simplified BS Formula Absolute Error

T c IV1 M cs Implied U IV3 |Vol-IV1| |Vol-IV3||IV1-IV3|
0.100 0.0159 60.0000% 0.6 0.000265 18.9747% 60.0032% 0.0000% 0.0032% 0.0032%
0.090 0.0093 60.0000% 0.6 0.000155 18.0010% 60.0033% 0.0000% 0.0033% 0.0033%
0.080 0.0048 60.0000% 0.6 0.000081 16.9716% 60.0035% 0.0000% 0.0035% 0.0035%

0.070 0.0021 60.0000% 0.6 0.000035 15.8755% 60.0038% 0.0000% 0.0038% 0.0038%
0.060 0.0007 60.0000% 0.6 0.000012 14.6979% 60.0041% 0.0000% 0.0041% 0.0041%
0.050 0.0002 60.0000% 0.6 0.000003 13.4174% 60.0045% 0.0000% 0.0045% 0.0045%
0.040 0.0000 60.0000% 0.6 0.000000 12.0010% 60.0050% 0.0000% 0.0050% 0.0050%
0.030 0.0000 60.0002% 0.6 0.000000 10.3933% 60.0059% 0.0002% 0.0059% 0.0057%
0.020 0.0000 60.0000% 0.6 0.000000 8.4863% 60.0071% 0.0000% 0.0071% 0.0071%
0.018 0.0000 60.0000% 0.6 0.000000 8.0508% 60.0075% 0.0000% 0.0075% 0.0075%
0.016 0.0000 60.0000% 0.6 0.000000 7.5905% 60.0079% 0.0000% 0.0079% 0.0079%
0.014 0.0000 60.0000% 0.6 0.000000 7.1003% 60.0084% 0.0000% 0.0084% 0.0084%
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Table 7 contd.: Implied volatilities computed by the Bisection method and
the interpolation method (out-of-the-money) Assumption : S = 60, X = 100,

r = 0, actual volatility (Vol) = 60%
BS Formula Simplified BS Formula Absolute Error

T c IV1 M cs Implied U IV3 |Vol-IV1| |Vol-IV3||IV1-IV3|
0.012 0.0000 60.0000% 0.6 0.000000 6.5737% 60.0091% 0.0000% 0.0091% 0.0091%
0.010 0.0000 60.0000% 0.6 0.000000 6.0010% 60.0100% 0.0000% 0.0100% 0.0100%
0.008 0.0000 60.0000% 0.6 0.000000 5.3676% 60.0112% 0.0000% 0.0112% 0.0112%
0.006 0.0000 60.0000% 0.6 0.000000 4.6486% 60.0129% 0.0000% 0.0129% 0.0129%
0.004 0.0000 60.0000% 0.6 0.000000 3.7957% 60.0157% 0.0000% 0.0157% 0.0157%
0.002 0.0000 60.0000% 0.6 0.000000 2.6843% 60.0221% 0.0000% 0.0221% 0.0221%

Maximum Absolute Error 0.0002% 0.0221% 0.0221%

Table 8: Implied volatilities computed by the Bisection method and the inter-
polation method (in-the-money)
Assumption : S = 140, X = 100, r = 0, actual volatility (Vol) = 60%

BS Formula Simplified BS Formula Absolute Error
T c IV1 M cs Implied U IV3 |Vol-IV1| |Vol-IV3| |IV1-IV3|

0.100 40.3414 60.0000% 1.4 0.288153 18.9747% 60.0032% 0.0000% 0.0032% 0.0032%
0.090 40.2541 60.0000% 1.4 0.287529 18.0010% 60.0033% 0.0000% 0.0033% 0.0033%
0.080 40.1781 60.0000% 1.4 0.286986 16.9716% 60.0035% 0.0000% 0.0035% 0.0035%

0.070 40.1148 60.0000% 1.4 0.286534 15.8755% 60.0038% 0.0000% 0.0038% 0.0038%
0.060 40.0655 60.0000% 1.4 0.286182 14.6979% 60.0041% 0.0000% 0.0041% 0.0041%
0.050 40.0310 60.0000% 1.4 0.285936 13.4174% 60.0045% 0.0000% 0.0045% 0.0045%
0.040 40.0106 60.0000% 1.4 0.285790 12.0010% 60.0050% 0.0000% 0.0050% 0.0050%
0.030 40.0020 60.0000% 1.4 0.285728 10.3933% 60.0058% 0.0000% 0.0058% 0.0058%
0.020 40.0001 60.0000% 1.4 0.285715 8.4863% 60.0071% 0.0000% 0.0071% 0.0071%
0.018 40.0000 60.0000% 1.4 0.285715 8.0508% 60.0075% 0.0000% 0.0075% 0.0075%
0.016 40.0000 60.0000% 1.4 0.285714 7.5905% 60.0079% 0.0000% 0.0079% 0.0079%
0.014 40.0000 60.0000% 1.4 0.285714 7.1003% 60.0085% 0.0000% 0.0085% 0.0085%
0.012 40.0000 60.0000% 1.4 0.285714 6.5737% 60.0091% 0.0000% 0.0091% 0.0091%

0.010 40.0000 60.0000% 1.4 0.285714 6.0010% 60.0100% 0.0000% 0.0100% 0.0100%
0.008 40.0000 59.9999% 1.4 0.285714 5.3676% 60.0112% 0.0001% 0.0112% 0.0112%
0.006 40.0000 60.1243% 1.4 0.285714 4.6570% 60.1216% 0.1243% 0.1216% 0.0027%
0.004 40.0000 70.3325% 1.4 0.285714 4.0480% 64.0045% 10.3325% 4.0045% 6.3280%
0.002 40.0000 97.0939% 1.4 0.285714 4.0480% 90.5160% 37.0939% 30.5160% 6.5778%

Maximum Absolute Error 37.0939% 30.5160% 6.5778%
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volatility for a large number of options on a real-time basis to accommodate the needs of
professional investors and traders.

The new algorithm presented in this paper starts by simplifying the BS formula to a
two-input version of the BS formula, called the simplified BS formula. With the simplified
BS formula, the option-price data grid can be generated based on only two variables, which
are the discount-moneyness and the time-uncertainty. Then, we showed that the implied
volatility could be extracted from the option-price data grid generated from the simplified
BS formula by a linear interpolation. With the time-uncertainty interval of 0.00001, the
absolute errors in most cases are considered to be acceptable for professional investors and
traders. Relating to the speed of computation, creating an option-price data grid is definitely
a time-consuming procedure in this algorithm. However, the option-price data grid needs
to be generated only once at the beginning; for an ongoing process, we are not required to
regenerate the option-price data grid. The interpolation process, which is the only ongoing
process, requires no iterations at all. As a result, the speed of interpolating the implied
volatility should be much faster than the iterative search methods, especially for a large
real-time system.

In this paper, we intentionally used a linear interpolation to calculate the implied volatil-
ity to simplify the examples. For an industrial application, the interpolation techniques used
in this algorithm must be able to handle a two-dimensional regular grid, such as a bilinear
interpolation [9] or a bicubic interpolation [9]. Moreover, the accuracy of the interpolated
implied volatility could be further improved by reducing the time-uncertainty interval and
the discount-moneyness interval used in the option-price data grid.

With this algorithm, the implied volatility can be computed quickly, while the accuracy
can be adjusted to meet the requirements of sophisticated investors. The advantage of this
algorithm is amplified when there are many options to be calculated on a real-time basis.
However, there are cases in which it is better to stick with an implied volatility calculated
from the classical BS formula, such as for a small number of options or for a low-frequency
calculation.
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