CLIQUE-CHROMATIC NUMBERS OF CLAW-FREE GRAPHS

Tanawat Wichianpaisarn ${ }^{\dagger}$ and Chariya Uiyyasathian*

Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University
Bangkok, 10330, Thailand
e-mail: ${ }^{\dagger}$ tanawat.wp@gmail.com, * chariya.u@chula.ac.th

Abstract

The clique-chromatic number of a graph is the least number of colors on the vertices of the graph so that no maximal clique of size at least two is monochromatic. A well-known result proved by Gravier et al. in 2003 suggests that the family of claw-free graphs has no bounded cliquechromatic number. Basco et al. explored more in 2004 that the family of claw-free graphs without odd holes has a bounded clique-chromatic number, in particular, these graphs are 2-clique-colorable. In this paper, we study some other subclasses of the family of claw-free graphs with a bounded clique-chromatic number, namely, claw-free graphs without an induced paw and claw-free graphs without an induced diamond.

1 Introduction

All graphs considered in this paper are simple. We use terminologies from West's textbook [12]. The vertex set of a graph G is denoted by $V(G)$. The symbols K_{n}, P_{n} and C_{n} denote the complete graph, path, and cycle, with n vertices, respectively. The neighborhood of a vertex x in a graph G is the set of vertices adjacent to x, and is denoted by $N_{G}(x)$. A subgraph H of a graph G is said to be induced if, for any pair of vertices x and y of $H, x y$ is an edge of

* Corresponding author
${ }^{\dagger}$ Partially supported by His Royal Highness Crown Prince Maha Vajiralongkorn Fund Key words: clique-chromatic number, clique-coloring, claw-free graph.
2010 Mathematics Subject Classification: 05C15
H if and only if $x y$ is an edge of G. If an induced subgraph H is chosen based on a vertex subset S of $V(G)$, then H can be written as $G[S]$ and is said to be induced by S. A subset Q of $V(G)$ is a clique of G if any two vertices of Q are adjacent. A clique is maximal if it is not properly contained in another clique. A k-coloring of a graph G is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$. A proper k-coloring of a graph G is a k-coloring of G such that adjacent vertices have different colors. The chromatic number of a graph G is the smallest positive integer k such that G has a proper k-coloring, denoted by $\chi(G)$. A proper k-clique-coloring of a graph G is a k-coloring of G such that no maximal clique of G with size at least two is monochromatic. A graph G is k-clique-colorable if G has a proper k-clique-coloring. The clique-chromatic number of G is the smallest k such that G has a proper k-clique-coloring, denoted by $\chi_{c}(G)$.

Note that $\chi_{c}(G)=1$ if and only if G is an edgeless graph. Throughout this paper, a graph has at least one edge. Since any proper k-coloring of G is a proper k-clique-coloring of $G, \chi_{c}(G) \leq \chi(G)$. Recall that a triangle is the complete graph K_{3}. If G is a triangle-free graph, then maximal cliques of G are edges, so $\chi_{c}(G)=\chi(G)$. In 1955, Mycielski [8] showed that the family of triangle-free graphs has no bounded chromatic number. Consequently, it has no bounded clique-chromatic number, either. On the other hand, some families of graphs have bounded clique-chromatic numbers, for example, comparability graphs, cocomparability graphs, and the k-power of cycles (see [2], [4] and [5]). In 2004, Bacso et al. [1] showed that almost all perfect graphs are 3 -cliquecolorable and conjectured that all perfect graphs are 3-clique-colorable.

For a given graph F, a graph G is F-free if it does not contain F as an induced subgraph. A graph G is $\left(F_{1}, F_{2}, \ldots, F_{k}\right)$-free if it is F_{i}-free for all $1 \leq i \leq k$. Many authors explored more results in $\left(F_{1}, F_{2}, \ldots, F_{k}\right)$-free graphs. In 2003, Gravier, Hoang and Maffray [6] gave a significant result that, for any graph F, the family of F-free graphs has a bounded clique-chromatic number if and only if F is a vertex-disjoint union of paths. In [7], Gravier and Skrekovski proved that $\left(P_{3}+P_{1}\right)$-free graphs unless it is C_{5}, and $\left(P_{5}, C_{5}\right)$-free graphs are 2-clique-colorable.

Recall that a claw is the complete bipartite graph $K_{1,3}$. A paw is the claw plus an edge, and a diamond is the complete graph K_{4} minus an edge. In 2004, Bacso et al. [1] proved that (claw, odd hole)-free graphs are 2-clique-colorable. Later, Defossez in 2006 [3] showed that (diamond, odd hole)-free graphs are 4-clique-colorable and (bull, odd hole)-free graphs are 2-clique-colorable.

Since a claw is not a vertex-disjoint union of paths, by the result of Gravier et al. [6], the family of claw-free graphs has no bounded clique-chromatic number. In this paper, we focus on some subclasses of the family of claw-free graphs with a bounded clique-chromatic number.

2 (Claw, paw)-free graphs

The characterization of paw-free graphs in Theorem 1 proved by Olariu [9] is useful to prove our main result in Theorem 4.

Theorem 1. [9] If G is a paw-free graph, then each component of G is either triangle-free or complete multipartite.

Lemma 2. Let G be a complete multipartite graph with at least one edge. Then $\chi_{c}(G)=2$.

Proof. Since each maximal clique of G intersects every partite set of G, labeling all vertices of one partite set of G by color 1 and the remaining vertices by color 2 provides a proper 2-clique-coloring of G. So $\chi_{c}(G)=2$.

Lemma 3. Let G be a (claw, triangle)-free graph. Then each component of G is a path or a cycle.

Proof. Let H be a component of G. If H contains no cycle, then H is a tree. Since H is claw-free, H is a path. Now, assume that H contains an induced cycle C. Suppose $H \neq C$. Then there exists a vertex v outside C which is adjacent to some vertex u in C. Since neighborhoods of u in C are not adjacent and H is claw-free, one of them, say w, must be adjacent to v. Then $\{u, v, w\}$ forms a triangle in H, a contradiction. Hence H is a cycle.

Recall that a hole in a graph is an induced cycle with at least four vertices. An odd (even) hole is a hole with an odd (even, respectively) number of vertices.

Theorem 4. Let G be a (claw, paw)-free graph with at least one edge. Then

$$
\chi_{c}(G)= \begin{cases}2 & \text { if } G \text { has no odd hole component } \\ 3 & \text { otherwise }\end{cases}
$$

Proof. Without lost of generality, assume that G is connected. Since G is pawfree, by Theorem $1, G$ is either triangle-free or complete multipartite. If G is complete multipartite, then $\chi_{c}(G)=2$ by Lemma 2. Now, assume that G is triangle-free. Then G is (claw, triangle)-free. By Lemma 3, G is a path or a
cycle. If G is an odd cycle with at least five vertices, then $\chi_{c}(G)=\chi(G)=3$. Hence $\chi_{c}(G)=2$ if and only if G is not an odd cycle with at least five vertices.

3 (Claw, diamond)-free graphs

It is unknown whether the family of all (claw, diamond)-free graphs has a bounded clique-chromatic number. In this section, we introduce two subfamilies
of (claw, diamond)-free graphs having bounded clique-chromatic numbers, namely, (claw, diamond)-free graphs without even holes, and (claw, diamond)-free graphs without maximal cliques of size three.

Lemma 5. Let x be a vertex in a diamond-free graph G. Then $N_{G}(x)$ is a disjoint union of cliques of G.

Proof. Let H be a component of $G\left[N_{G}(x)\right]$. Suppose that $V(H)$ is not a clique of G. Then there are non-adjacent vertices a and b in H. Since H is connected, there is a path P between a and b. It follows that P contains an induced path P_{3} of G. Then such induced path P_{3} and the vertex x form an induced diamond of G, a contradiction. Hence $V(H)$ is clique of G.

Lemma 6. Let G be a connected (claw, diamond, even hole)-free graph. If G has a vertex contained in only one maximal clique of G, then G is 2-cliquecolorable.

Proof. Let x be a vertex contained in only one maximal clique of G. Define $A_{0}=\{x\}, A_{1}=N_{G}(x)$, and $A_{i}=N_{G}\left(A_{i-1}\right) \backslash\left(A_{i-1} \cup A_{i-2}\right)$ for all $i \geq 2$. Then $V(G)=\bigcup_{i} A_{i}$. Note that A_{1} is a clique of G. Define a coloring of G by labeling the vertices of A_{i} by color 1 if i is even, and by color 2 if i is odd.

Suppose that this coloring yields a monocolored maximal clique Q of size at least two. Then $Q \subseteq A_{i}$ for some $i \geq 2$. Let $u_{i}, v_{i} \in Q$. Then there is a vertex u_{i-1} in A_{i-1} which is adjacent to u_{i}. Suppose that u_{i-1} is adjacent to v_{i}. Since Q is a maximal clique of G, there is a vertex w in Q which is not adjacent to u_{i-1}. Then $\left\{u_{i-1}, u_{i}, v_{i}, w\right\}$ induces a diamond, a contradiction. So u_{i-1} is not adjacent to v_{i}. Similarly, there is a vertex v_{i-1} in A_{i-1} which is adjacent to v_{i} but not to u_{i}.

Since G is C_{4}-free, u_{i-1} cannot be adjacent to v_{i-1}. So $i \geq 3$. Let $u_{i-2}, v_{i-2} \in A_{i-2}$ such that u_{i-2} is adjacent to u_{i-1} and v_{i-2} is adjacent to v_{i-1}. If $u_{i-2}=v_{i-2}$, then there is a vertex u_{i-3} in A_{i-3} which is adjacent to u_{i-2}, and it follows that $\left\{u_{i-3}, u_{i-2}, u_{i-1}, v_{i-1}\right\}$ induces a claw, a contradiction. Thus $u_{i-2} \neq v_{i-2}$. Since G is claw-free, u_{i-2} is not adjacent to v_{i-1} and v_{i-2} is not adjacent to u_{i-1}. Since G is C_{6}-free, u_{i-2} is not adjacent to
v_{i-2}. Continue this way until we have $u_{1}, v_{1} \in A_{1}$. Since A_{1} is a clique, we eventually have an even hole, a contradiction. Hence this coloring is a proper 2-clique-coloring of G.

Theorem 7. Every (claw, diamond, even hole)-free graph is 3-clique-colorable.
Proof. Let G be a (claw, diamond, even hole)-free graph. Without lost of generality, assume that G is connected. Let $x \in V(G)$. By Lemma $5, N_{G}(x)$ is a disjoint union of r cliques of G for some integer r. Since G is claw-free, $r \leq 2$. If $r=1$, then the theorem is proved by Lemma 6 . Now, let $N_{G}(x)=A_{1} \cup B_{1}$ where A_{1} and B_{1} are cliques of G. Define $A_{i}=N_{G}\left(A_{i-1}\right) \backslash\left(A_{i-1} \cup A_{i-2}\right)$ and $B_{i}=N_{G}\left(B_{i-1}\right) \backslash\left(B_{i-1} \cup B_{i-2}\right)$ for all $i \geq 2$. Then $V(G)=\{x\} \cup\left(\cup_{i} A_{i}\right) \cup$ $\left(\bigcup_{j} B_{j}\right)$.

Case 1: $\left(\bigcup_{i} A_{i}\right) \cap\left(\bigcup_{j} B_{j}\right)=\phi$. By Lemma 6, both of $G\left[\left(\bigcup_{i} A_{i}\right) \cup\{x\}\right]$ and $G\left[\left(\bigcup_{j} B_{j}\right) \cup\{x\}\right]$ have a proper 2-clique-coloring. Combining these two colorings by identifying the color of x yields a proper 2-clique-coloring of G, so G is 2 -clique-colorable.

Case 2: $\left(\bigcup_{i} A_{i}\right) \cap\left(\bigcup_{j} B_{j}\right) \neq \phi$. Let G^{\prime} be the subgraph of G obtained by deleting all vertices of B_{1}. Then G^{\prime} is a connected (claw, diamond, even hole)free graph with x satisfying the condition in Lemma 6 . Thus G^{\prime} has a proper 2 -clique-coloring. We can extend this coloring to a proper 3 -clique-coloring of G by labeling color 3 to all vertices of B_{1}, and hence G is 3 -clique-colorable.

Note that all odd cycles $C_{2 n+1}(n \geq 2)$ are (claw, diamond, even hole)-free and $\chi_{c}\left(C_{2 n+1}\right)=3$. Thus the upper bound in Theorem 7 is sharp.

Now, we focus on (claw, diamond)-free graphs without maximal cliques of size three. The line graph of a graph G, written $L(G)$, is the graph whose vertices are the edges of G; and for any edges e and f in G, ef is an edge in $L(G)$ if and only if e and f have a common endpoint in G. A graph G is a line graph if there is a simple graph H such that $L(H)=G$. Let T be a triangle in a graph G. We say that T is odd if $\left|N_{G}(v) \cap V(T)\right|$ is odd for some $v \in V(G)$. In [10], van Rooij and Wilf proved that a graph G is a line graph if and only if G is claw-free and no induced diamond of G has two odd triangles. Hence all (claw, diamond)-free graphs are line graphs. Moreover, the clique-chromatic numbers of line graphs of triangle-free graphs is characterized in [11], as follows:

Theorem 8. [11] Let H be a triangle-free graph. Then $\chi_{c}(L(H)) \leq 3$. Furthermore, $L(H)$ is 2-clique-colorable if and only if H has no odd hole component.

The next corollary gives the characterization of the clique-chromatic numbers of (claw, diamond)-free graphs without maximal cliques of size three.

Corollary 9. Let G be a (claw, diamond)-free graph with at least one edge. If G has no maximal clique of size three, then

$$
\chi_{c}(G)= \begin{cases}2 & \text { if } G \text { has no odd hole component }, \\ 3 & \text { otherwise } .\end{cases}
$$

Proof. Since G is a line graph, there is a simple graph H such that $G=L(H)$. If H has a triangle T, then T corresponds to a maximal clique of size three in $L(H)=G$, a contradiction. Thus H is triangle-free. Then the corollary follows directly from Theorem 8 and the fact that G has an odd hole component if and only if H has an odd hole component.

Acknowledgement The authors would like to thank Prof. Narong Punnim for his valuable suggestions and comments.

References

[1] G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann and A. Sebő, Coloring the maximal cliques of graphs, SIAM J. Discrete Math., 17 (2004), 361-376.
[2] C. N. Campos, S. Dantasa and C. P. de Mello, Colouring clique-hypergraphs of circulant graphs, Electron. Notes Discrete Math., 30 (2008), 189-194.
[3] D. Defossez, Clique-coloring some classes of odd-hole-free, J. Graph Theory, $\mathbf{5 3}$ (2006), 233-249.
[4] D. Duffus, B. Sands, N. Sauer and R. E. Woodrow, Two-coloring all two-element maximal antichains, J. Comb. Theory Ser. A, 57 (1991), 109-116.
[5] D. Duffus, H. A. Kierstead and W. T. Trotter, Fibres and ordered set coloring, J. Comb. Theory Ser. A, 58 (1991), 158-164.
[6] S. Gravier, C. T. Hoáng and F. Maffray, Coloring the hypergraph of maximal cliques of a graph with no long path, Discrete Math., 272 (2003), 285-290.
[7] S. Gravier and R. S̆krekovski, Coloring the clique hypergraph of graphs without forbidden structure, Les cahiers du laboratoire Leibniz, 83 (2003) (http://wwwleibniz.imag.fr/LesCahiers/).
[8] J. Mycielski, Sur le coloriage des graphes, Colloq. Math., 3 (1955), 161-162.
[9] S. Olariu, Paw-free graphs, Information Processing Letters, 28 (1988), 53-54.
[10] A. van Rooij and H. S. Wilf, The interchange graphs of a finte graph, Acta Math. Acad. Sci. Hung., 16 (1965), 263-269.
[11] T. Wichianpaisarn and C. Uiyyasathian, Clique-chromatic numbers of line graphs, Submitted.
[12] D. B. West, Introduction to graph theory, Prentice Hall, New Jersey, (2001).

