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Abstract

The clique-chromatic number of a graph is the least number of colors
on the vertices of the graph so that no maximal clique of size at least
two is monochromatic. A well-known result proved by Gravier et al. in
2003 suggests that the family of claw-free graphs has no bounded clique-
chromatic number. Basco et al. explored more in 2004 that the family
of claw-free graphs without odd holes has a bounded clique-chromatic
number, in particular, these graphs are 2-clique-colorable. In this paper,
we study some other subclasses of the family of claw-free graphs with a
bounded clique-chromatic number, namely, claw-free graphs without an
induced paw and claw-free graphs without an induced diamond.

1 Introduction

All graphs considered in this paper are simple. We use terminologies from
West’s textbook [12]. The vertex set of a graph G is denoted by V (G). The
symbols Kn, Pn and Cn denote the complete graph, path, and cycle, with n
vertices, respectively. The neighborhood of a vertex x in a graph G is the set of
vertices adjacent to x, and is denoted by NG(x). A subgraph H of a graph G
is said to be induced if, for any pair of vertices x and y of H , xy is an edge of
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H if and only if xy is an edge of G. If an induced subgraph H is chosen based
on a vertex subset S of V (G), then H can be written as G[S] and is said to be
induced by S. A subset Q of V (G) is a clique of G if any two vertices of Q are
adjacent. A clique is maximal if it is not properly contained in another clique.
A k-coloring of a graph G is a function f : V (G) → {1, 2, ..., k}. A proper
k-coloring of a graph G is a k-coloring of G such that adjacent vertices have
different colors. The chromatic number of a graph G is the smallest positive
integer k such that G has a proper k-coloring, denoted by χ(G). A proper
k-clique-coloring of a graph G is a k-coloring of G such that no maximal clique
of G with size at least two is monochromatic. A graph G is k-clique-colorable
if G has a proper k-clique-coloring. The clique-chromatic number of G is the
smallest k such that G has a proper k-clique-coloring, denoted by χc(G).

Note that χc(G) = 1 if and only if G is an edgeless graph. Throughout
this paper, a graph has at least one edge. Since any proper k-coloring of G is
a proper k-clique-coloring of G, χc(G) ≤ χ(G). Recall that a triangle is the
complete graph K3. If G is a triangle-free graph, then maximal cliques of G
are edges, so χc(G) = χ(G). In 1955, Mycielski [8] showed that the family of
triangle-free graphs has no bounded chromatic number. Consequently, it has
no bounded clique-chromatic number, either. On the other hand, some families
of graphs have bounded clique-chromatic numbers, for example, comparability
graphs, cocomparability graphs, and the k-power of cycles (see [2], [4] and [5]).
In 2004, Bacso et al. [1] showed that almost all perfect graphs are 3-clique-
colorable and conjectured that all perfect graphs are 3-clique-colorable.

For a given graph F , a graph G is F-free if it does not contain F as an
induced subgraph. A graph G is (F1, F2, ..., Fk)-free if it is Fi-free for all
1 ≤ i ≤ k. Many authors explored more results in (F1, F2, ..., Fk)-free graphs.
In 2003, Gravier, Hoang and Maffray [6] gave a significant result that, for any
graph F , the family of F -free graphs has a bounded clique-chromatic number if
and only if F is a vertex-disjoint union of paths. In [7], Gravier and Skrekovski
proved that (P3 + P1)-free graphs unless it is C5, and (P5, C5)-free graphs are
2-clique-colorable.

Recall that a claw is the complete bipartite graph K1,3. A paw is the claw
plus an edge, and a diamond is the complete graph K4 minus an edge. In 2004,
Bacso et al. [1] proved that (claw, odd hole)-free graphs are 2-clique-colorable.
Later, Defossez in 2006 [3] showed that (diamond, odd hole)-free graphs are
4-clique-colorable and (bull, odd hole)-free graphs are 2-clique-colorable.

Since a claw is not a vertex-disjoint union of paths, by the result of Gravier
et al. [6], the family of claw-free graphs has no bounded clique-chromatic
number. In this paper, we focus on some subclasses of the family of claw-free
graphs with a bounded clique-chromatic number.
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2 (Claw, paw)-free graphs

The characterization of paw-free graphs in Theorem 1 proved by Olariu [9]
is useful to prove our main result in Theorem 4.

Theorem 1. [9] If G is a paw-free graph, then each component of G is either
triangle-free or complete multipartite.

Lemma 2. Let G be a complete multipartite graph with at least one edge. Then
χc(G) = 2.

Proof. Since each maximal clique of G intersects every partite set of G, labeling
all vertices of one partite set of G by color 1 and the remaining vertices by color
2 provides a proper 2-clique-coloring of G. So χc(G) = 2. �

Lemma 3. Let G be a (claw, triangle)-free graph. Then each component of G
is a path or a cycle.

Proof. Let H be a component of G. If H contains no cycle, then H is a tree.
Since H is claw-free, H is a path. Now, assume that H contains an induced
cycle C. Suppose H �= C. Then there exists a vertex v outside C which
is adjacent to some vertex u in C. Since neighborhoods of u in C are not
adjacent and H is claw-free, one of them, say w, must be adjacent to v. Then
{u, v, w} forms a triangle in H , a contradiction. Hence H is a cycle. �

Recall that a hole in a graph is an induced cycle with at least four vertices.
An odd (even) hole is a hole with an odd (even, respectively) number of vertices.

Theorem 4. Let G be a (claw, paw)-free graph with at least one edge. Then

χc(G) =

{
2 if G has no odd hole component,
3 otherwise.

Proof. Without lost of generality, assume that G is connected. Since G is paw-
free, by Theorem 1, G is either triangle-free or complete multipartite. If G is
complete multipartite, then χc(G) = 2 by Lemma 2. Now, assume that G is
triangle-free. Then G is (claw, triangle)-free. By Lemma 3, G is a path or a
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cycle. If G is an odd cycle with at least five vertices, then χc(G) = χ(G) = 3.
Hence χc(G) = 2 if and only if G is not an odd cycle with at least five vertices.
�

3 (Claw, diamond)-free graphs

It is unknown whether the family of all (claw, diamond)-free graphs has a
bounded clique-chromatic number. In this section, we introduce two subfami-
lies
of (claw, diamond)-free graphs having bounded clique-chromatic numbers, namely,
(claw, diamond)-free graphs without even holes, and (claw, diamond)-free graphs
without maximal cliques of size three.

Lemma 5. Let x be a vertex in a diamond-free graph G. Then NG(x) is a
disjoint union of cliques of G.

Proof. Let H be a component of G[NG(x)]. Suppose that V (H) is not a clique
of G. Then there are non-adjacent vertices a and b in H . Since H is connected,
there is a path P between a and b. It follows that P contains an induced path
P3 of G. Then such induced path P3 and the vertex x form an induced diamond
of G, a contradiction. Hence V (H) is clique of G. �

Lemma 6. Let G be a connected (claw, diamond, even hole)-free graph. If G
has a vertex contained in only one maximal clique of G, then G is 2-clique-
colorable.

Proof. Let x be a vertex contained in only one maximal clique of G. Define
A0 = {x}, A1 = NG(x), and Ai = NG(Ai−1) \ (Ai−1 ∪ Ai−2) for all i ≥ 2.
Then V (G) =

⋃
i Ai. Note that A1 is a clique of G. Define a coloring of G by

labeling the vertices of Ai by color 1 if i is even, and by color 2 if i is odd.
Suppose that this coloring yields a monocolored maximal clique Q of size

at least two. Then Q ⊆ Ai for some i ≥ 2. Let ui, vi ∈ Q. Then there is a
vertex ui−1 in Ai−1 which is adjacent to ui. Suppose that ui−1 is adjacent to
vi. Since Q is a maximal clique of G, there is a vertex w in Q which is not
adjacent to ui−1. Then {ui−1, ui, vi, w} induces a diamond, a contradiction.
So ui−1 is not adjacent to vi. Similarly, there is a vertex vi−1 in Ai−1 which is
adjacent to vi but not to ui.

Since G is C4-free, ui−1 cannot be adjacent to vi−1. So i ≥ 3. Let
ui−2, vi−2 ∈ Ai−2 such that ui−2 is adjacent to ui−1 and vi−2 is adjacent
to vi−1. If ui−2 = vi−2, then there is a vertex ui−3 in Ai−3 which is adjacent
to ui−2, and it follows that {ui−3, ui−2, ui−1, vi−1} induces a claw, a contra-
diction. Thus ui−2 �= vi−2. Since G is claw-free, ui−2 is not adjacent to vi−1

and vi−2 is not adjacent to ui−1. Since G is C6-free, ui−2 is not adjacent to
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vi−2. Continue this way until we have u1, v1 ∈ A1. Since A1 is a clique, we
eventually have an even hole, a contradiction. Hence this coloring is a proper
2-clique-coloring of G. �

Theorem 7. Every (claw, diamond, even hole)-free graph is 3-clique-colorable.

Proof. Let G be a (claw, diamond, even hole)-free graph. Without lost of
generality, assume that G is connected. Let x ∈ V (G). By Lemma 5, NG(x) is
a disjoint union of r cliques of G for some integer r. Since G is claw-free, r ≤ 2.
If r = 1, then the theorem is proved by Lemma 6. Now, let NG(x) = A1 ∪ B1

where A1 and B1 are cliques of G. Define Ai = NG(Ai−1) \ (Ai−1 ∪Ai−2) and
Bi = NG(Bi−1) \ (Bi−1 ∪ Bi−2) for all i ≥ 2. Then V (G) = {x} ∪ (

⋃
i Ai) ∪

(
⋃

j Bj).
Case 1: (

⋃
i Ai) ∩ (

⋃
j Bj) = φ. By Lemma 6, both of G[(

⋃
i Ai) ∪ {x}]

and G[(
⋃

j Bj) ∪ {x}] have a proper 2-clique-coloring. Combining these two
colorings by identifying the color of x yields a proper 2-clique-coloring of G, so
G is 2-clique-colorable.

Case 2: (
⋃

i Ai) ∩ (
⋃

j Bj) �= φ. Let G′ be the subgraph of G obtained by
deleting all vertices of B1. Then G′ is a connected (claw, diamond, even hole)-
free graph with x satisfying the condition in Lemma 6. Thus G′ has a proper
2-clique-coloring. We can extend this coloring to a proper 3-clique-coloring of
G by labeling color 3 to all vertices of B1, and hence G is 3-clique-colorable. �

Note that all odd cycles C2n+1 (n ≥ 2) are (claw, diamond, even hole)-free
and χc(C2n+1) = 3. Thus the upper bound in Theorem 7 is sharp.

Now, we focus on (claw, diamond)-free graphs without maximal cliques of
size three. The line graph of a graph G, written L(G), is the graph whose
vertices are the edges of G; and for any edges e and f in G, ef is an edge in
L(G) if and only if e and f have a common endpoint in G. A graph G is a line
graph if there is a simple graph H such that L(H) = G. Let T be a triangle in a
graph G. We say that T is odd if |NG(v)∩ V (T )| is odd for some v ∈ V (G). In
[10], van Rooij and Wilf proved that a graph G is a line graph if and only if G is
claw-free and no induced diamond of G has two odd triangles. Hence all (claw,
diamond)-free graphs are line graphs. Moreover, the clique-chromatic numbers
of line graphs of triangle-free graphs is characterized in [11], as follows:

Theorem 8. [11] Let H be a triangle-free graph. Then χc(L(H)) ≤ 3. Further-
more, L(H) is 2-clique-colorable if and only if H has no odd hole component.

The next corollary gives the characterization of the clique-chromatic
numbers of (claw, diamond)-free graphs without maximal cliques of size three.
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Corollary 9. Let G be a (claw, diamond)-free graph with at least one edge. If
G has no maximal clique of size three, then

χc(G) =

{
2 if G has no odd hole component,
3 otherwise.

Proof. Since G is a line graph, there is a simple graph H such that G = L(H).
If H has a triangle T , then T corresponds to a maximal clique of size three in
L(H) = G, a contradiction. Thus H is triangle-free. Then the corollary follows
directly from Theorem 8 and the fact that G has an odd hole component if and
only if H has an odd hole component. �
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