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Abstract

Let R be an arbitrary ring, M a right R-module and S = EndR(M), the
endomorphism ring of M . A proper fully invariant submodule X of M
is called a prime submodule of M if for any ideal I of S and any fully
invariant submodule U of M, if I(U) ⊂ X , then either I(M) ⊂ X or
U ⊂ X. A submodule X of M is called a semiprime submodule of M
if it is an intersection of prime submodules. The module M is called a
prime module if 0 is a prime submodule of M , and semiprime if 0 is a
semiprime submodule of M . In this paper, we present some results on
the classes of semiprime modules with chain conditions.

1. Introduction and Preliminaries

Throughout this paper, all rings are associative with identity and all mod-
ules are unitary right R-modules. Let M be a right R-module and S =
EndR(M), its endomorphism ring. A submodule X of M is called a fully
invariant submodule of M if for any f ∈ S, we have f(X) ⊂ X. By definition,
the class of all fully invariant submodules of M is nonempty and is closed under
intersections and sums. Especially, a right ideal of R is a fully invariant sub-
module of RR if it is a two-sided ideal of R. A fully invariant proper submodule
X of M is called a prime submodule of M if for any ideal I of S and any fully
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invariant submodule U of M, if I(U) ⊂ X, then either I(M) ⊂ X or U ⊂ X. A
prime submodule X of M is called minimal if it is minimal in the class of prime
submodules of M. A fully invariant submodule X of M is called a semiprime
submodule if it is an intersection of prime submodules of M. The module M is
called a prime module if 0 is a prime submodule of M and semiprime if 0 is a
semiprime submodule of M . A ring R is called a prime ring if RR is a prime
module and semiprime if RR is a semiprime module. By symmetry, the ring
R is a semiprime ring if RR is a semiprime module. A submodule X of M is
called an essential submodule if for any nonzero submodule U of M, X ∩U �= 0.
A nonzero module M is said to be uniform if any two nonzero submodules of
M have nonzero intersection, i.e., if each nonzero submodule of M is essential
in M.

By a complement of X, we mean a submodule Y of M which is maximal with
respect to the property X ∩ Y = 0. A submodule K is called a complement in
M if there exists a submodule L of M such that K is a complement of L in M.
If a module M generates all its submodules, then it is called a self-generator.

For notations not defined here we refer the reader to [2], [5] and [10].

2. Prime submodules and semiprime submodules

Let X be a submodule of M. We denote IX = {f ∈ S | f(M) ⊂ X}. Clearly
IX is a right ideal of S. If X is a fully invariant submodule of M , then IX

is an ideal of S. It had been shown in [7, Theorem 1.10] that if X is a prime
submodule of M, then IX is a prime ideal of S, where IX = {f ∈ S | f(M) ⊂
X}. Conversely, if M is a self-generator and IX is a prime ideal of S, then X
is a prime submodule of M. Furthermore, we have:

Proposition 2.1. Let M be a right R-module which is a self-generator. Then
we have the following:

(1) If X is a minimal prime submodule of M, then IX is a minimal prime
ideal of S.

(2) If P is a minimal prime ideal of S, then X := P (M) is a minimal prime
submodule of M and IX = P.

Proof. (1) Since X is a prime submodule of M, we have IX is a prime ideal
of S. Let J be a prime ideal of S with J ⊂ IX . Since M is a self-generator,
we can write J = IJ(M) and note that J(M) is a prime submodule of M with
J(M) ⊂ X. By the minimality of X, we have J(M) = X. Hence J = IX .

(2) Since M is a self-generator, we can write P = IP(M) = IX . Note that
X := P (M) is a prime submodule of M. Let Y be a prime submodule of M
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such that Y ⊂ P (M). Then IY is a prime ideal of S and IY ⊂ P = IX . By the
minimality of P, we have IY = P, and this implies that Y = P (M). �

In [7] and [8] , we have proved that if M is a semiprime module, then S is a
semiprime ring. Conversely, if MR is a quasi-projective, finitely generated, self-
generator module and S is a semiprime ring, then M is a semiprime module.
Moreover, we have the following:

Proposition 2.2. Let M be a right R-module.

(1) If X is a semiprime submodule of M, then IX is a semiprime ideal of S.

(2) If M is a self-generator and P is a semiprime ideal of S, then X := P (M)
is a semiprime submodule of M and IX = P.

Proof. (1) Since X is a semiprime submodule of M, we can write X =
⋂

P∈F
P ,

where each P ∈ F is a prime submodule of M . So IX = I ⋂
P⊂M,P∈F

P =
⋂

P⊂M,P∈F
IP . By [7, Theorem 1.10], it is easy to see that IX is a semiprime

ideal of S.
(2) Since M is a self-generator, we can write P = IP(M) = IX , which is a

semiprime ideal of S. Hence
IX =

⋂

K⊂S,K prime
K = Hom(M, (

⋂

K⊂S,K prime
K)(M)).

Let X = P (M), where P is a semiprime ideal of S. Since M is a self-generator,
we have P = IP(M) = IX and by our assumption, P =

⋂
K∈Λ

K, for some set Λ

of prime ideals of S. Thus IX = Hom(M, IX (M)) = Hom(M, (
⋂

K∈Λ

K)(M)).

On the other hand,
⋂

K∈Λ

K =
⋂

K∈Λ

Hom(M, K(M)) = Hom(M,
⋂

K∈Λ

K(M)).

Thus (
⋂

K∈Λ

K)(M) =
⋂

K∈Λ

K(M) and therefore X =
⋂

K∈Λ

K(M). Since K is

a prime ideal of S, K(M) is a prime submodule of M, proving that X is a
semiprime submodule of M. �

Proposition 2.3. Let M be a right R-module which is a self-generator and
X, a fully invariant submodule of M. Then X is a semiprime submodule if and
only if

(�) whenever f ∈ S with fSf(M) ⊂ X, then f(M) ⊂ X.

Proof. Suppose that X is a semiprime submodule. Then X =
⋂

P∈F
P, for

some family F of prime submodules of M. Let f ∈ S with fSf(M) ⊂ X. This
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implies that fSf(M) ⊂ P, for all P ∈ F . By the primeness of P, we have
f(M) ⊂ P, for all P ∈ F . Thus f(M) ⊂ X.

Conversely, suppose that (�) holds. We will show that IX is a semiprime
ideal of S. Let f ∈ S with fSf ⊂ IX . Then fSf(M) ⊂ X and so f(M) ⊂ X,
by (�). Thus f ∈ IX , showing that IX is a semiprime ideal of S. Hence X is a
semiprime submodule of M. �

The following theorem gives some characterizations of semiprime submod-
ules similar to that of semiprime ideals in associative rings and we use it as a
tool for checking the semiprimeness.

Theorem 2.4. Let M be a right R-module which is a self-generator and X, a
fully invariant submodule of M. Then the following conditions are equivalent:

(1) X is a semiprime submodule of M ;

(2) If J is any ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X;

(3) If J is any ideal of S such that J(M) � X, then J2(M) �⊂ X;

(4) If J is any right ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X;

(5) If J is any left ideal of S such that J2(M) ⊂ X, then J(M) ⊂ X.

Proof. (1) ⇒ (4): Suppose that X =
⋂

P∈F
P, where each P ∈ F is prime. If J

is any right ideal of S with J2(M) ⊂ X, then J2(M) ⊂ P, for all P ∈ F . By
the primeness of P, we have J(M) ⊂ P, for all P ∈ F . Thus J(M) ⊂ X.

(4) ⇒ (3): This part is clear.
(3) ⇒ (2): Suppose that J(M) �⊂ X. Then J(M) + X � X. We can write

J(M) + X = J(M) + IX(M) = (J + IX)(M) � X. But (J + IX)2(M) =
(J2 + JIX + IXJ + I2

X)(M) = J2(M) + JIX(M) + IXJ(M) + I2
X(M) ⊂ X, a

contradiction.
(2) ⇒ (1): Let f ∈ S with fSf(M) ⊂ X. Then (SfS)2 (M) = (SfSfS)(M) ⊂

X. So (SfS)(M) ⊂ X, and consequently, f(M) ⊂ X. Thus, by Proposition 2.3,
X is a semiprime submodule of M.

(1) ⇒ (5): Suppose that X =
⋂

P∈F
P and each P ∈ F is prime. If J is any

left ideal of S with J2(M) ⊂ X, then J2(M) ⊂ P, for all P ∈ F . Then we
write J2(M) = J(J(M)) = JS(J(M)) ⊂ P. By the primeness of P, we have
J(M) ⊂ P, P ∈ F . Thus J(M) ⊂ X.

(5) ⇒ (3): It is clear.
(3) ⇒ (2) by the same argument as that given in (2) ⇒ (1). �

Corollary 2.5. Let M be a right R-module which is a self-generator and let
X be a semiprime submodule of M. If J is a right or left ideal of S such that
Jn(M) ⊂ X for some positive integer n, then J(M) ⊂ X.
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Proof. We prove the statement by induction on n. The case for n = 1 is always
true. Let n > 1 and assume that the statement holds for lower powers. Since
n ≥ 2, we have 2n−2 ≥ n, so (Jn−1)2(M) = (J2n−2)(M) ⊂ (Jn)(M) ⊂ X. By
Theorem 2.4, Jn−1(M) ⊂ X and so J(M) ⊂ X, by the induction hypothesis.
This completes the proof. �

3. Semiprime modules and chain conditions

Recall that a submodule U of a right R-module M is called an M -annihilator
if X = Ker(I) =

⋂
f∈I

Ker(f) for some subset I of S. Before introducing a new

notion related to M - annihilators, we first prove the following results.

Lemma 3.1. Let M be a right R-module and U, a submodule of M. If U =
Ker(I) for some right ideal I of S, then U is a fully invariant submodule of
M.

Proof. Take any ϕ ∈ S. Let y ∈ ϕ(U). Then y = ϕ(x), for some x ∈ U. For
any f ∈ I, we have f(y) = f(ϕ(x)) = fϕ(x) = 0, since fϕ ∈ I. This shows
that y ∈ Ker(I) = U, proving that U is a fully invariant submodule of M. �

Theorem 3.2. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Suppose that M is a semiprime module and X, a
fully invariant submodule of M. Then X has the unique complement Ker(IX )
and hence X ⊕ Ker(IX) ⊂∗>M.

Proof. Since M is a semiprime module, S is a semiprime ring. Put U =
Ker(IX ). Then IX(U) = 0. Since M is a self-generator, it follows that
IX(IU (M)) = IXIU (M) = 0. It follows that IXIU = 0. By [10, Proposition
3.13], we can see that IX∩IU = 0. Since M is quasi-projective and finitely gener-
ated, we have IX = Hom(M, X) and IU = Hom(M, U) = Hom(M, Ker(IX )).
Thus 0 = IX ∩ IU = Hom(M, X ∩ Ker(IX )). Since M is a self-generator, we
have X ∩ Ker(IX) = 0. Note that IX is a two-sided ideal of S. Let Y be any
complement of X in M. Then IX ∩ IY = IX∩Y = 0, and so IY IX = 0. Since
S is a semiprime ring, we get IXIY = 0 by [2, page 12]. This implies that
IXIY (M) = 0. So Y = IY (M) ⊂ Ker(IX ). Since Y is maximal with respect
to the property that X ∩ Y = 0, we have Y = Ker(IX ). Thus Ker(IX) is a
unique complement of X and therefore, X ⊕ Ker(IX) ⊂∗>M. �

Lemma 3.3. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and X, a proper fully invariant submodule of M. If M
is a semiprime module, then Ker(IX ) �= 0.

Proof. From the fact that M is a semiprime module, it implies that S is a
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semiprime ring. Since X is a fully invariant submodule of M , IX is a two-sided
ideal of S. Put N = Ker(IX). Then N is the unique complement of X, by
Theorem 3.2. If N = 0, then X is essential in M. This implies that IX is
an essential ideal of S. Indeed, if J is any ideal of S with IX ∩ J = 0, then
0 = IX ∩ J = Hom(M, X) ∩ Hom(M, J(M)) = Hom(M, X ∩ J(M)). Since
M is a self-generator, X ∩ J(M) = 0, and we have J(M) = 0 because X is
essential in M. It follows that J = 0, showing that IX is an essential ideal of S.
Since IX ∩r(IX) = 0 and IX is an essential ideal of S, we have r(IX) = 0. Thus
IX = l(r(IX)) = l(0) = S. It implies that X = S(M) = M, a contradiction.
Therefore, Ker(IX ) �= 0. �

In [7], we introduced the notion of minimal prime submodules and we proved
that if X is a prime submodule of a module M, then X contains a minimal
prime submodule of M. Moreover, we have the following proposition on minimal
prime submodules of a semiprime module M. This fact can be considered as a
generalization of [5, 11.40].

Proposition 3.4. Let M be a semiprime right R-module which is a self-
generator. Let X be a fully invariant submodule of M and Ω, the set of minimal
prime submodules of M which do not contain X. Then Ker(IX) = ∩{P : P ∈
Ω}.
Proof. Let B = ∩{P : P ∈ Ω}. Then any element in X∩B is in the intersection
of all minimal prime submodules of M and this intersection is 0 because M
is a semiprime module. Thus X ∩ B = 0. Note that IX and IB are two-
sided ideals of S. We have IX ∩ IB = IX∩B = 0. Since S is a semiprime
ring, by [10, 3.13], we get IXIB = 0, and consequently, IXIB(M) = 0. It
follows that IX(B) = 0. So B ⊂ Ker(IX). On the other hand, for any P ∈ Ω,
we have IX(Ker(IX)) = 0 ⊂ P. Since P is a prime submodule of M and
X = IX(M) �⊂ P, we must have Ker(IX ) ⊂ P. This implies that Ker(IX) ⊂ B.
Therefore, Ker(IX ) = B, proving our proposition. �

Definition 3.5. A fully invariant submodule X of a right R-module M is
called a full M -annihilator if X = Ker(I) for some ideal I of S. A full M -
annihilator X of a right R-module M is said to be maximal if X �= M and
there are no full M -annihilators strictly between X and M.

As an immediate consequence of Proposition 3.3 is the following character-
ization of full M -annihilators in a semiprime module M.

Lemma 3.6. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and U, a full M -annihilator of M. If M is a semiprime
module and N = Ker(IU ), then U = Ker(IN ).

Proof. Since U is a full M -annihilator of M, we can write U = Ker(K) for
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some ideal K of S. Then U = Ker(K) = Ker(IK(M)) is a unique complement of
X = K(M), by Theorem 3.2. Since N = Ker(IU ) is a unique complement of U,
we have X ⊂ N. This implies that IX ⊂ IN . So U = Ker(IX) ⊃ Ker(IN ). Since
Ker(IN ) is a unique complement of N and U ∩N = 0, we have U = Ker(IN ),
proving our lemma. �

Proposition 3.7. Let M be a quasi-projective, finitely generated right R-
module which is a self-generator and X, a fully invariant submodule of M. If
M is a semiprime module, then X is a full M -annihilator if and only if X is
a complement of Y for some fully invariant submodule Y of M.

Proof. Suppose that X is a full M -annihilator. Then X = Ker(K) for some
ideal K of S. Since M is a self-generator, we can write K = IK(M). It follows
that X = Ker(IK(M)) is a unique complement of Y = K(M), by Theorem 3.2.

Conversely, suppose that X is a complement of Y, where Y is a fully in-
variant submodule of M. Since Y has a unique complement Ker(IY ), we have
X = Ker(IY ), proving that X is a full M -annihilator. �

Note that, if we consider the bimodule SMR, then X is a fully invariant
submodule of a right R-module M if and only if X is a bi-submodule of SMR.
For convenience, we use the terminology "bi-submodule". To avoid some confu-
sions, we will use roughly the terminology bi-essential submodules, bi-uniform
submodules, bi-uniform dimensions, and bi-complements in the following defi-
nitions.

Definition 3.8. Consider the bimodule SMR and a bi-submodule X of SMR.
We say that X is a bi-essential submodule of SMR (or X is bi-essential in
SMR) if for any bi-submodule U of SMR, X ∩ U = 0 implies U = 0. If X is
bi-essential in SMR, we denote X ⊂∗>SMR. A bi-submodule X of SMR is called
a bi-uniform submodule if every nonzero bi-submodule of X is bi-essential in X.
The bimodule SMR is called a uniform bimodule if every nonzero bi-submodule
of SMR is bi-essential in SMR.

Note that, by Theorem 3.2, for a semiprime right R-module M , and for any
bi-submodule X of SMR, Ker(IX ) is the unique complement of X and it is fully
invariant too. Therefore, in the context of semiprime modules, bi-essential is
essenatial and bi-complements are complements as the usual definitions. From
the above definitions, we can prove the following results.

Proposition 3.9. Let M be a quasi-projective, finitely generated right R-
module which is a self-generator and X, a fully invariant submodule of M.
Suppose that M is a semiprime module. Then we have the following:

(1) X is a bi-essential submodule of SMR if and only if Ker(IX) = 0;

(2) If X is not contained in any minimal prime submodule of M, then X is
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a bi-essential submodule of SMR.

Proof. (1) It is clear because Ker(IX) is the unique complement of X, by
Theorem 3.2.

(2) Since X is not contained in any minimal prime submodule of M, Ker(IX)
is the intersection of all minimal prime submodules of M, by Proposition 3.4.
Therefore, Ker(IX) = 0 because M is semiprime and the result follows from
(1). �

Lemma 3.10.

(1) Let A, B, X, N be bi-submodules of SMR with A ⊂ B ⊂ X ⊂ N. If A is
bi-essential in SNR, then B is bi-essential in SXR;

(2) If A1, . . . , An are bi-essential submodules of SMR, then
n⋂

i=1

Ai is bi-essential

in SMR;

(3) If A, B are bi-submodules of SMR such that A is bi-essential in SBR and
B is bi-essential in SMR, then A is bi-essential in SMR.

Proof. The proof of this lemma is a routine and we present here for the sake
of completeness.

(1) Let U be a bi-submodule of SXR and B ∩ U = 0. Then U is a bi-
submodule of SNR and A ∩ U = 0. Since A is bi-essential in SNR, we have
U = 0, and consequently, B is bi-essential in SXR.

(2) We prove the statement by induction on n. The case n = 1 is trivial

by assumption. Suppose that A =
n−1⋂
i=1

Ai is bi-essential in SMR. Let U be a

bi-submodule of SMR and A ∩ An ∩ U = 0. Then An ∩ U = 0 because A is
bi-essential in SMR. Since An is bi-essential in SMR, we have U = 0. Thus the
result follows.

(3) Let X be a bi-submodule of SMR and X ∩A = 0. Then (X ∩B)∩A = 0
and since A is bi-essential in SBR, we have X ∩B = 0. Thus X = 0 because B
is bi-essential in SMR. �

Lemma 3.11. Let A be a bi-submodule of SMR. Then A is bi-essential in
SMR if and only if for any m ∈ M with m �= 0, there exist f1, . . . , fn ∈ S and

r1, . . . , rn ∈ R such that
n∑

i=1

fi(mri) �= 0 and
n∑

i=1

fi(mri) ∈ A.

Proof. Suppose that A is bi-essential in SMR. Since m �= 0, we have SmR �= 0
and so A ∩ SmR �= 0. We can find f1, . . . , fn ∈ S and r1, . . . , rn ∈ R such that
n∑

i=1

fi(mri) �= 0 and
n∑

i=1

fi(mri) ∈ A.
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Conversely, suppose that for any m ∈ M with m �= 0, there exist f1, . . . , fn

∈ S and r1, . . . , rn ∈ R such that
n∑

i=1
fi(mri) �= 0 and

n∑
i=1

fi(mri) ∈ A. Let B

be a nonzero bi-submodule of SMR. Then there exists 0 �= m ∈ B such that
n∑

i=1
fi(mri) ∈ B. Hence A ∩ B �= 0. This completes the proof. �

Lemma 3.12. Let A, B, C, U be bi-submodules of SMR with A ⊂∗
>SBR and

C ⊂∗>SUR. If the sums A + C and B + U are direct, then A ⊕ C is bi-essential
in B ⊕ U as a bi-submodule.

Proof. Let m = b + u ∈ B ⊕ U with b ∈ B, u ∈ U and m �= 0. If b = 0, then
u �= 0. So SuR �= 0 and SuR ∩ C �= 0 because C ⊂∗

>SUR. This implies that
SmR ∩ (A + C) �= 0, so we are done. Let therefore b �= 0. Since A ⊂∗

>SBR,

there exist f1, . . . , fn ∈ S and r1, . . . , rn ∈ R such that 0 �=
n∑

i=1
fi(bri) ∈ A.

If
n∑

i=1
fi(uri) = 0, then

n∑
i=1

fi(mri) =
n∑

i=1
fi((b + u)ri) =

n∑
i=1

fi(bri) �= 0 and
n∑

i=1
fi(mri) ∈ A + C. Then we are done. If

n∑
i=1

fi(uri) �= 0, then there ex-

ist g1, . . . , gk ∈ S and t1, . . . , tk ∈ R such that 0 �=
k∑

j=1

gj(
n∑

i=1

fi(uri))tj ∈ C

since C ⊂∗>SUR. Consider the element
∑

i=1,n;j=1,k

gjfi(mritj) =
∑

i=1,n;j=1,k

gjfi(britj)+

∑

i=1,n;j=1,k

gjfi(uritj) =
k∑

j=1

gj(
n∑

i=1

fi(bri))tj +
k∑

j=1

gj(
n∑

i=1

fi(uri))tj ∈ A + C. If

∑

i=1,n;j=1,k

gjfi(mritj) = 0, then
k∑

j=1

gj(
n∑

i=1

fi(uri))tj ∈ A ∩ C = 0, a contradic-

tion. Thus
∑

i=1,n;j=1,k

gjfi(mritj) �= 0. It follows that A ⊕ C is bi-essential in

B ⊕ U as a bi-submodule, by Lemma 3.11. �

Since Lemma 3.11 and Lemma 3.12 hold, so by induction, we can conclude
that the following also holds.

Proposition 3.13. Let Ai, Bi for i = 1, . . . , n, be bi-submodules of SMR. If

Ai is bi-essential in SBiR, for all i = 1, . . . , n and the sums
n∑

i=1
Ai,

n∑
i=1

Bi are

direct, then
n⊕

i=1
Ai is bi-essential in

n⊕
i=1

Bi as a bi-submodule.

The following theorem gives some characterizations of maximal full M -
annihilators in a semiprime module M similar to that of maximal annihilators
in a semiprime ring R.



144 On semiprime modules with chain conditions

Theorem 3.14. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and X, a proper fully invariant submodule of M. If M
is a semiprime module, then the following conditions are equivalent:

(1) X is a maximal full M -annihilator;
(2) X is a minimal prime submodule and a full M -annihilator;
(3) X is a prime submodule and a full M -annihilator;
(4) X = Ker(IU ) for some bi-uniform submodule U of SMR.

Moreover, if M has only finitely many minimal prime submodules, then the
above conditions are equivalent to:

(5) X is a minimal prime submodule.

Proof. Since M is a semiprime module, we see that S is a semiprime ring.
(1) ⇒ (2): Assume that X is a full M -annihilator. So we can write X =

Ker(K) for some nonzero ideal K of S. Let I be an ideal of S and U, a fully
invariant submodule of M such that I(U) ⊂ X and I(M) �⊂ X. We must
show that U ⊂ X. Since I(M) �⊂ X, then KI(M) �= 0 and so 0 �= KI ⊂ K.
Therefore, M �= Ker(KI) ⊃ Ker(K) = X. By the maximality of X, we have
Ker(KI) = Ker(K). Now I(U) ⊂ X implies K(I(U)) = KI(U) = 0. It follows
that U ⊂ Ker(KI) = Ker(K). Thus, X is a prime submodule of M.

We now suppose that P is a prime submodule of M and P � X. Then
K(X) = 0 ⊂ P. Since P is prime and X �⊂ P, we must have K(M) ⊂ P � X.
So 0 = K(K(M)) = K2(M) implies that K2 = 0, a contradiction to S being a
semiprime ring.

(2) ⇒ (3): Obvious.
(3) ⇒ (4): Put U = Ker(IX ). Then X = Ker(IU ), by Lemma 3.6. We now

show that U is a bi-uniform submodule of SMR. Suppose U is not a bi-uniform
submodule of SMR. Then there are nonzero fully invariant submodules X1, X2

with X1 ⊕ X2 ⊂ U. Since all minimal prime submodules intersect at 0, so
X1 �⊂ P for some minimal prime submodule P. Then IX1(Ker(IX1 )) = 0 ⊂ P.
Since P is prime and X1 = IX1 (M) �⊂ P , we must have Ker(IX1 ) ⊂ P.
Since Ker(IX1 ) is the unique complement of X1, we have IX1 (X2) = 0 and
IU (X2) �= 0. This implies that Ker(IX1 ) � Ker(IU ) = X. So P � X, a
contradiction to the fact that P is a minimal prime submodule of M.

(4) ⇒ (1): Suppose that X = Ker(IU ) for some bi-uniform submodule
U of SMR and that X � B, where B is a full M -annihilator. Since X =
Ker(IU ) is the unique complement of U, we have B ∩ U �= 0. This implies
that B ∩ U is a nonzero bi-submodule of SMR and so B ∩ U is an essential
submodule of U. Therefore, (B ∩U)⊕Ker(IU ) is essential in U ⊕Ker(IU ) and
U ⊕Ker(IU ) is essential in SMR, i.e., (B ∩U)⊕Ker(IU ) is essential in SMR.
Since (B ∩ U) ⊕ Ker(IU ) is contained in B, we see that so B is essential in
M . It follows that IB is an essential ideal of S. Since IB ∩ r(IB) = 0, we have
r(IB) = 0. Thus IB = l(r(IB)) = S and so B = M. Therefore, X � B = M.
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Finally, suppose that M has only finitely many minimal prime submodules
P1, . . . , Pt. Using P1∩· · ·∩Pt = 0, we see by Proposition 3.4 that Pi = Ker(IQi ),
where Qi =

⋂
k �=i

Pk. In this case, (2) ⇔ (5). �

Proposition 3.15. Let U = U1⊕· · ·⊕Um and V = V1⊕· · ·⊕Vn be bi-essential
submodules of SMR, where the Ui’s and Vj’s are bi-uniform submodules. Then
m = n.

Proof. We may assume that n ≥ m. We claim that U := U2⊕· · ·⊕Um intersects
trivially with some Vj . If otherwise, U ∩ Vj �= 0, for all j = 1, . . . , n; then we
would have U∩Vj ⊂∗>Vj , since Vj is bi-uniform, and we get (U∩V1)⊕· · ·⊕(U∩Vn)
is bi-essential in V1⊕· · ·⊕Vn = V and hence also U∩V ⊂∗>SVR as a bi-submodule
and V ⊂∗

>SMR. This implies that U ∩ V ⊂∗
>SMR, and consequently, U is bi-

essential in SMR, a contradiction. Therefore, U ∩ Vj = 0 for some j. After
relabelling the Vj’s, we may assume that U ∩ V1 = 0. Let U ′ = U ⊕ V1. We
must then have U ′ ∩U1 �= 0. If otherwise, U1 + · · ·+Um +V1 would be a direct
sum, a contradiction to the fact that U ⊂∗>SMR. So (U ′ ∩ U1) ⊕ U2 ⊕ · · · ⊕ Um

is bi-essential in U1 ⊕ U2 ⊕ · · · ⊕ Um = U as a bi-submodule and U ⊂∗>SMR.
Since the left hand side is contained in U ′, it follows that U ′ ⊂∗>SMR. We have
thus replaced the summand U1 by V1 when going from U to U ′. Repeating the
process, we can pass from U ′ to some bi-essential submodule U ′′ = V1⊕V2⊕U3⊕
· · ·⊕Um . After m steps, we have a bi-essential submodule U (m) = V1⊕· · ·⊕Vm.
But V = V1 ⊕ · · · ⊕ Vn ⊂∗>SMR, so we must have m = n. �

Definition 3.16. We say that the bimodule SMR has bi-uniform dimension
n (denote dim(SMR) = n) if there is a bi-essential submodule V of SMR

such that V is a direct sum of n bi-uniform submodules. By Proposition 3.15,
dim(SMR) is well-defined. If no such integer exists, we write dim(SMR) = ∞.
We can check that dim(SMR) = 0 if and only if SMR = 0, and dim(SMR) = 1
if and only if SMR is a uniform bimodule.

Theorem 3.17. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Suppose that dim(SMR) = n < ∞. Then dim(SSS) =
n.

Proof. We first show that if U is a bi-uniform submodule of SMR, then IU is
a uniform ideal of SSS . Let J, K be nonzero ideals of S and J, K ⊂ IU . Then
0 �= J(M), K(M) ⊂ U. So J(M)∩K(M) �= 0 since U is a bi-uniform submodule
of SMR. But J ∩ K = Hom(M, J(M)) ∩ Hom(M, K(M) = Hom(M, J(M) ∩
K(M)). Therefore, J ∩ K �= 0. It follows that IU is a uniform ideal of S.

Since dim(SMR) = n < ∞, there exist n bi-uniform submodules U1, . . . , Un

such that the sum U1 + · · · + Un is direct and is bi-essential in SMR. Then
IU1 , . . . , IUn are uniform ideals of S. It is easy to check that IUi ∩

∑
j �=i

IUj = 0,
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so the sum IU1 + · · · + IUn is direct. We will show that IU1 + · · · + IUn is
essential in S. Let K be an ideal of S with (IU1 + · · · + IUn) ∩ K = 0. Then
K(M) is a bi-submodule of SMR and we can write 0 = (IU1 + · · ·+ IUn)∩K =
Hom(M, (IU1 + · · ·+ IUn)(M)) ∩ Hom(M, K(M)) = Hom(M, IU1 (M) + · · ·+
IUn(M)) ∩ Hom(M, K(M)) = Hom(M, U1 + · · · + Un) ∩ Hom(M, K(M)) =
Hom(M, (U1 + · · · + Un) ∩ K(M)). Since M is a self-generator, (U1 + · · · +
Un) ∩ K(M) = 0, and because U1 + · · ·+ Un is bi-essential in SMR, we have
K(M) = 0. Thus K = 0, proving that IU1 + · · ·+ IUn is an essential ideal of S.
Thus dim(SSS) = n. �

Theorem 3.18. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. Suppose that dim(SSS) = n < ∞. Then dim(SMR) =
n.

Proof. We first show that if K is a uniform ideal of S, then K(M) is a bi-
uniform submodule of SMR and K = IK(M). Suppose that X1, X2 are nonzero
bi-submodules of SMR such that X1, X2 ⊂ K(M). Then 0 �= IX1 , IX2 ⊂
IK(M) = K. We can write IX1∩X2 = IX1 ∩ IX2 �= 0 since K is a uniform
ideal of S. So X1 ∩ X2 �= 0.

From dim(SSS) = n < ∞, there exist n uniform ideals K1, . . . , Kn of S
such that the sum K1 + · · ·+ Kn is direct and is essential in S. Then K1(M),
. . . , Kn(M) are bi-uniform submodules of SMR and Ki = IKi(M). Now, we
show that the sum K1(M) + · · ·+ Kn(M) is direct and is bi-essential in SMR.
We have

0 = Ki ∩
∑
j �=i

Kj = Hom(M, Ki(M)) ∩ Hom(M, (
∑
j �=i

Kj)(M))

= Hom(M, Ki(M)) ∩ Hom(M,
∑
j �=i

Kj(M))

= Hom(M, Ki(M) ∩ ∑
j �=i

Kj(M)).

So Ki(M) ∩ ∑
j �=i

Kj(M) = 0 since M is a self-generator. It shows that the sum

K1(M)+ · · ·+Kn(M) is direct. Let X be a nonzero bi-submodule of SMR such
that (K1(M)+· · ·+Kn(M))∩X = 0. Then we can write (K1+· · ·+Kn)∩IX =
Hom(M, (K1 + · · ·+Kn)(M))∩Hom(M, IX(M)) = Hom(M, (K1(M)+ · · ·+
Kn(M)) ∩ X) = 0. So IX = 0 since K1 + · · ·+ Kn is essential in S. It follows
that X = 0, proving that K1(M) + · · ·+ Kn(M) is a bi-essential submodule of
SMR. Thus dim(SMR) = n. �

Proposition 3.19. Consider the bimodule SMR. Suppose that dim(SMR) =
n < ∞ and V1, . . . , Vn are bi-uniform submodules of SMR such that the sum
V = V1 + · · · + Vn is direct and is bi-essential in SMR. Then any direct sum
of nonzero bi-submodules N = N1 ⊕ · · · ⊕ Nk ⊂ SMR has k ≤ n summands.

Proof. We prove the statement by induction on n. First consider the case
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n = 1. Then we see that SMR is a uniform bimodule. So the direct sum of
nonzero bi-submodules of SMR has only k = 1 summand. Suppose that the
statement holds for n − 1 summands. We check for the case dim(SMR) = n.
Since V is bi-essential in SMR, put N

′
i := Ni ∩ V �= 0 and V ⊃ N

′
1 ⊕ · · · ⊕N

′
k.

Thus we may assume that M = V, say M = V1 ⊕ · · · ⊕ Vn, where all the Vi’s
are bi-uniform. Let N = N2 ⊕ · · · ⊕ Nk. If N ∩ Vi �= 0 for all i = 1, . . . , n, then
(N ∩ V1) ⊕ · · · ⊕ (N ∩ Vn) ⊂∗>V1 ⊕ · · · ⊕ Vn = M. This implies that N ⊂∗>SMR,
a contradiction. Therefore, N ∩ Vi = 0 for some i. After relabelling the Vi’s,
we may assume that N ∩ V1 = 0. Projecting M modulo V1 onto V2 ⊕ · · · ⊕ Vn,
we have then an embedding of N into V2 ⊕ · · · ⊕ Vn. By assumption, we get
k − 1 ≤ n − 1 and so k ≤ n. �

Lemma 3.20. Consider the bimodule SMR. If SMR does not contain a di-
rect sum of an infinite number of nonzero bi-submodules, then any nonzero
bi-submodule N ⊂ SMR contains a bi-uniform submodule.

Proof. If SNR does not contain any bi-uniform submodule, then SNR itself
is not bi-uniform, so SNR contains some A1 ⊕ B1, where A1, B1 are nonzero
bi-submodules. Then B1 is also not bi-uniform, so B1 contains some A2 ⊕ B2,
where A2, B2 are nonzero bi-submodules. Continuing the process, we will get
an infinite direct sum A1 ⊕ A2 ⊕ A3 ⊕ · · · ⊂ SMR, a contradiction. Thus the
result follows. �

Proposition 3.21. dim(SMR) = ∞ if and only if SMR contains an infinite
direct sum of nonzero bi-submodules.

Proof. If SMR contains an infinite direct sum of nonzero bi-submodules, then
dim(SMR) = ∞, by Lemma 3.20.

Conversely, suppose that SMR does not contain an infinite direct sum of
nonzero bi-submodules. Pick a bi-uniform submodule V1 ⊂ SMR. If V1 is not
bi-essential in SMR, then SMR contains V1⊕V2, for some nonzero bi-submodule
V2, and we may assume that V2 is bi-uniform. If V1 ⊕ V2 is not bi-essential in
SMR, then V1 ⊕ V2 ⊕ V3 ⊂ SMR where V3 is a bi-uniform submodule. By
our assumption, this process must stop, and we arrive at some bi-essential
submodule V1 ⊕ · · · ⊕ Vn where each Vi is bi-uniform. By definition, we have
dim(SMR) = n. �

We now explore the meaning of bi-uniform dimensions and we need more
concepts of bi-complements in the bimodule SMR.

Definition 3.22. Let X be a bi-submodule of the bimodule SMR. We say
that X is a bi-complement in SMR (denote X ⊂c SMR) if there exists a bi-
submodule Y ⊂ SMR such that X is a bi-complement of Y in SMR.

Proposition 3.23. Consider the bimodule SMR. Suppose that X ⊂c SMR and
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T is a bi-submodule of SMR such that X ∩ T = 0. Then X is a bi-complement
of T if and only if X ⊕ T ⊂∗>SMR.

Proof. If X is a bi-complement of T, then X ⊕ T ⊂∗>SMR. Conversely, assume
that X ⊕ T ⊂∗>SMR. Since X ⊂c SMR, there is a bi-submodule U ⊂ SMR such
that X is a bi-complement of U. We show that X is maximal with respect to the
property that X ∩ T = 0. Let D be a bi-submodule of SMR such that X ⊂ D
and D∩ T = 0. We have (X +T )∩ (D∩U) = ((X +T )∩D)∩U = X ∩U = 0.
Since X ⊕ T ⊂∗>SMR, we have D ∩U = 0. This implies that D = X. Thus X is
a bi-complement of T. �

Corollary 3.24. Suppose that X ⊂c SMR. Let T be a bi-complement of X in
M. Then X is a bi-complement of T.

Proof. Since T is a bi-complement of X, we have T ⊕ X ⊂∗>SMR. But then by
Proposition 3.23, we can conclude that X is a bi-complement of T. �

The next result describes some basic properties of bi-complements in the
bimodule SMR.

Proposition 3.25. Let X, N be bi-submodules of the bimodule SMR such that
X ⊂ N ⊂ SMR. Then we have the following:

(1) If X ⊂c SMR, then X ⊂c SNR.

(2) If X ⊂c SNR and N ⊂c SMR, then X ⊂c SMR.

Proof. (1) If X ⊂c SMR, then there exists a bi-submodule Y ⊂ SMR such that
X is a bi-complement of Y in SMR. This implies that X is a bi-complement of
Y ∩ N in SNR. Thus X ⊂c SNR.

(2) Suppose that X is a bi-complement of U in SNR and N is a bi-
complement of T in SMR. We will show that X is a bi-complement of U ⊕ T
in SMR. It is clear that X ∩ (U + T ) = 0. Let D be a bi-submodule of SMR

such that D � X. We need to show that D ∩ (U + T ) �= 0. If D ∩N � X, then
(D ∩N) ∩U �= 0. So D ∩U �= 0, and consequently, D ∩ (U + T ) �= 0. Then we
are done. Now, consider the case D∩N = X. Then there exists d ∈ D\N such
that (N + SdR)∩ T �= 0. Therefore, there exist n ∈ N, t ∈ T \ {0}, f1, . . . , fk ∈
S, r1, . . . , rk ∈ R such that

n +
k∑

i=1

fi(dri) = t (1)

If n ∈ X, then n +
k∑

i=1

fi(dri) ∈ D and so D ∩ T �= 0. It follows that

D ∩ (U + T ) �= 0 and we are done. If n �∈ X, then (X + SnR) ∩ U �= 0 and
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there exist x ∈ X, u ∈ U \ {0}, g1, . . . , gm ∈ S, t1, . . . , tm ∈ R such that

x +
m∑

j=1

gj(ntj) = u (2)

From (1), we have

m∑

j=1

gj(ntj) +
m∑

j=1

gj(
k∑

i=1

fi(dri))tj =
m∑

j=1

gj(ttj) (3)

Subtracting (3) from (2), we get

x −
m∑

j=1
gj(

k∑
i=1

fi(dri))tj = u −
m∑

j=1
gj(ttj) ∈ (D ∩ (U ⊕ T )) \ {0}.

�

In the next few results, we shall explore the relationship between bi-uniform
dimensions and bi-complements. The first result about bimodules of finite bi-
uniform dimensions is an analogue of Proposition 3.19.

Proposition 3.26. Suppose that dim(SMR) = n < ∞. Then any chain of
bi-complements in SMR has length ≤ n. More precisely, if C0 � C1 � · · · � Ck

where the Ci’s are bi-complements in SMR, then k ≤ n.

Proof. By Proposition 3.25(1), we have Ci−1 ⊂c Ci, say, Ci−1 is a bi-
complement of Ui in Ci for 1 ≤ i ≤ k. Since Ci−1 �= Ci, then Ui �= 0. Now we
have U1 ⊕ · · · ⊕ Uk ⊂ SMR, so k ≤ n, by Proposition 3.19. �

Next we present the analogue of Proposition 3.21.

Proposition 3.27. For the bimodule SMR, the following are equivalent:

(1) dim(SMR) = ∞;

(2) There exists an infinite strictly ascending chain of bi-complements in
SMR;

(3) There exists an infinite strictly descending chain of bi-complements in
SMR.

Proof. (1) ⇒ (2): By Proposition 3.21, SMR contains U1 ⊕ U2 ⊕ · · · , where
each Ui is a nonzero bi-submodule of SMR. Enlarge U1 into a bi-complement
to U2 ⊕ U3 ⊕ · · · , say C1. Then we enlarge C1 ⊕ U2 into a bi-complement to
U3 ⊕ U4 ⊕ · · · , say C2. In this way, we get an ascending chain C1 ⊂ C2 ⊂ · · · ,
where each Ci is a bi-complement in SMR. Since Ci ⊃ Ui and Ci−1 ∩ Ui = 0,
we have Ci−1 �= Ci for each i.
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(2) ⇒ (3): Suppose that we have a strictly ascending chain of bi-complements
in SMR, say C0 � C1 � · · · . Then Ci−1 is a bi-complement to some nonzero Ui

in Ci. Enlarge U1⊕U2⊕· · · into a bi-complement to C0, say Y1. Working in Y1,
enlarge U2 ⊕U3 ⊕· · · into a bi-complement to U1 in Y1, say Y2. By Proposition
3.25(2), Y2 ⊂c Y1 ⊂c SMR implies that Y2 ⊂c SMR. We have Y1 �= Y2 because
Y1 ⊃ U1 and Y2 ∩U1 = 0. Continuing this process, we get a strictly descending
chain of bi-complements Y1 � Y2 � · · · in M.

(3) ⇒ (1): Follows from Proposition 3.26. �

Negating the three statements in Proposition 3.27, we get the following
equivalent result.

Proposition 3.28. For the bimodule SMR, the following are equivalent:

(1) dim(SMR) < ∞;

(2) The bi-complements in SMR satisfy the ACC;

(3) The bi-complements in SMR satisfy the DCC.

Finally, we get the following theorem which offers various criteria for a
semiprime module to have only finitely many minimal prime submodules.

Theorem 3.29. Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is a semiprime module, then the following
conditions are equivalent:

(1) n := dim(SMR) < ∞;

(2) The number t of minimal prime submodules of M is finite;

(3) The number m of full M -annihilators of M is finite;

(4) MR has the ACC on full M -annihilators;

(4′) MR has the DCC on full M -annihilators;

(5) SMR has the ACC on bi-complements;

(5′) SMR has the DCC on bi-complements.

If these conditions hold, then n = t and m = 2t. Finally, n = t = 1 if and only
if M is a prime module.

Proof. (1) ⇒ (2): Let Ui (1 ≤ i ≤ n) be bi-uniform submodules of the
bimodule SMR such that the direct sum U1⊕· · ·⊕Un is a bi-essential submodule
of SMR. Put Pi = Ker(IUi ). Then Pi is a minimal prime submodule of M, by
Theorem 3.14. Let P be a minimal prime submodule of M. Then for each
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i = 1, . . . , n, we have IUi (Pi) = 0 ⊂ P. By the primeness of P, we have either
IUi(M) ⊂ P or Pi ⊂ P, i.e., either Ui ⊂ P or Pi ⊂ P. If Ui ⊂ P for all
i = 1, . . . , n, then U1 ⊕ · · ·⊕Un ⊂ P. So Ker(IU1⊕···⊕Un) ⊃ Ker(IP ) �= 0. This
implies that Ker(IU1⊕···⊕Un) �= 0. On the other hand, Ker(IU1⊕···⊕Un)∩ (U1⊕
· · · ⊕ Un) = 0 and U1 ⊕ · · · ⊕ Un is a bi-essential submodule of SMR, implying
that Ker(IU1⊕···⊕Un) = 0, a contradiction. Thus, Pi ⊂ P for some i. By the
minimality of P, we have Pi = P. This shows (2), and we see that t = n.

(2) ⇒ (3): From (2), we see that t is finite. By Proposition 3.4, we have
m ≤ 2t < ∞. By Theorem 3.14, each minimal prime submodule of M is a full
M -annihilator. This implies that the finite intersection of full M -annihilators
is also a full M -annihilator. So 2t ≤ m. Thus m = 2t.

(3) ⇒ (4): Clear from (3).
(4) ⇔ (5) and (4′) ⇔ (5′) follow from Proposition 3.7 and Proposition 3.28.
(4) ⇒ (4′): Suppose that we have a descending chain of full M -annihilators,

say U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · · . Then Ker(IU1) ⊂ Ker(IU2 ) ⊂ · · · ⊂
Ker(IUn ⊂ · · · is an ascending chain of full M -annihilators. By (4), there is an
integer k such that Ker(IUk ) = Ker(IUj ) for all j > k. Put Ni = Ker(IUi ), so
we have Uk = Ker(INk ) = Ker(INj ) = Uj for all j > k, by Lemma 3.6. Thus
MR has the DCC for full M -annihilators.

(4′) ⇒ (4): Similar to (4) ⇒ (4′).
(5) ⇒ (1): Follows from Proposition 3.28.
The last statement in this proposition is clear. �
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