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Abstract

A new approach to fractional Kalman-Bucy filtering is introduced,
based on author’s results on semimartingale L2-approximation applied
to fractional stochastics. Method of nonlinear filtering is used in the
process of determining the filter.

1. Introduction
In this note we deal with the fractional Brownian motion of Liouville form
(LfBm) BH

t defined by

BH
t =

∫ t

0

(t − s)αdWs, α = H − 1
2

where H is a Hurst index which is supposed that 1
2 < H < 1 and Wt is a

standard Brownian motion.
LfBm is the long memory component in the decomposition of fractional

Brownian motion of Mandelbrot form WH
t

WH
t = CH(Zt + BH

t )

where Zt is a stochastic process having absolutely continuous trajectories and
CH is a constant depending only on H ([1]).
Any works of construction for a fractional stochastic calculus should face up
a main difficulty that is the no-martingale property of fractional Brownian
motion.
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Many contributions have been made for overcoming this difficulty ([1], [3],
[4] and others). In [8,10] we have introduced a practical approach to fractional
stochastics based on establishing some important facts as follows:

1. Consider the process B
(ε)
t defined by D. Nualart ([1])

B
(ε)
t =

∫ t

0

(t − s + ε)αdWt, for any ε > 0, α = H − 1/2, ) ≤ t ≤ T.

Then B
(ε)
t is a semimartingale:

dB
(ε)
t = αϕε

tdt + εαdWt

where

ϕε
t =

∫ t

0

(t − s + ε)α−1dWs.

We have prove in [8]:
Theorem: B

(ε)
t converges to BH

t in L2(Ω) as ε → 0 for any H ∈ (0, 1)
and the convergence is uniform with respect to t ∈ [0, T ].

2. Motivated by a formula of integration by part, we have defined the frac-
tional integral of a process f(t, ω) as a L2-limit:∫ t

0

f(s, ω)dBH
t := L2 − lim

ε→0

∫ t

0

f(s, ω)dB(ε)
s

where the integral in the right hand side is with respect to a semimartin-
gale and so well defined (refer to [10]).

3. A theorem of existence and uniqueness for solution of fractional stochastic
differential equations driven by BH

t has been established in this sense and
some classes of fractional stochastic dynamical systems has been studied
([1]).

Turning back our attention to filtering problems, we will consider in this note
a fractional version of Kalman-Bucy filtering, where signal and observation
processes are driven by two different and independent LfBm’s. By transforming
the initial problem into consequent problems of filtering that are no more really
linear, we will apply the method of nonlinear to obtain the final result.

2. Fractional Kalman-Bucy filtering problem.

Consider a fractional signal-observation system (X, Y ) given by

dXt = aXtdt + dBH1
t , 0 ≤ t ≤ T (2.1)
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dYt = bXt + dBH2
t , 0 ≤ t ≤ T (2.2)

where a and b are constant, and

BH1
t =

∫ t

0

(t − s)α1dW
(1)
t , α1 = H1 − 1/2, 1/2 < H1 < 1

BH2
t =

∫ t

0

(t − s)α2dW
(2)
t , α2 = H2 − 1/2, 1/2 < H2 < 1

W
(1)
t and W

(2)
t are two independent standard Brownian motions.

The problem is to estimate X̂t under the observation Yt:

X̂t = E(Xt|FY
t )

where FY
t is the observation σ− field defined by

FY
t = σ(Ys, 0 ≤ s ≤ t).

Suppose always that Xt and Yt are square-integrable processes: E(X2
t ) < ∞,

E(Y 2
t ) < ∞, 0 ≤ t ≤ T.

2.1 Main ideas for solving.

(a) Firstly we consider the approximation model

dXt = aXtdt + dB
(ε1)
t (2.3)

dXt = aXtdt + dB
(ε2)
t (2.4)

where

B
(ε1)
t =

∫ t

0

(t − s + ε1)α1dW
(1)
t

B
(ε2)
t =

∫ t

0

(t − s + ε2)α2dW
(2)
t

(b) Since
dB

(ε1)
t = α1ϕ

ε1
t dt + εα1

1 dW
(1)
t

then
dXt = (aXt + α1ϕ

ε1
t )dt + εα1

1 dW
(1)
t

where ϕε1
t =

∫ t

0
(t + s + ε1)α1−1dW

(1)
s .

Put Ht = (aXt + α1ϕ
ε1
t ).

Now the problem (2.3)-(2.4) becomes that of filtering for a semimartingale

Xt =
∫ t

0

Hsds + εα1dW
(1)
t (2.5)
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with the observation given by (2.4) perturbed by the noise dB
(ε2)
t .

(c) Since dB
(ε2)
t = α2ϕ

ε2
t dt + εα2

2 dW
(2)
t , (2.4) can be rewritten as

dYt = (bXt + α2ϕ
ε2
t )dt + εα2

2 dW
(2)
t

Put
ht = (bXt + α2ϕ

ε2
t ) (*)

the we have the filtering problem

Signal: Xt =
∫ t

0

Hsds + εα1
1 W

(1)
t (2.5)

Observation: Yt =
∫ t

0

hsds + εα2
2 W

(2)
t (2.6)

As being shown later we can see that E
∫ t

0 H2
sds < ∞ and E

∫ t

0 h2
sds < ∞.

Denote the filter for this problem by ̂
X

(ε1,ε2)
t . We will prove that the

process

X̂ε1
t := L2 − lim

ε2→0

̂
X

(ε1,ε2)
t (2.7)

is exactly the solution of the filtering problem

Signal: Xε1
t =

∫ t

0

Hsds + εα1
1 W

(1)
t (2.8)

Fractional observation: Yt = bXtdt + dBH2
t (2.9)

(d) Finally, denoting by X̂t the solution for the initial problem (2.1)-(2.2),
we will prove that

X̂t = L2 − lim
ε1→0

X̂ε1
t = L2 − lim

ε1→0
(L2 − lim

ε2→0
X̂ε1,ε2

t ) (2.10)

2.2. Solving problem (2.8)-(2.9).
2.2.1 We begin with the proof for (2.7).
We take ε2 = 1/n and put
FY

t : σ−algebra generated by (Ys, s ≤ t), Yt given by (2.2).
FY 1/n

t : σ−algebra generated by (Y 1/n
s , s ≤ t) ,where

Y
1/n

t =
∫ t

0

hsds +
1

nα2
W

(2)
t
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The filter X̂ε1
t for system (2.5)-(2.2) is defined by

X̂ε1
t = E(Xε1

1 |FY
t ),

where Xε1
t is given by (2.8).

Denote also by X̂ε1
t

(n)
the filter of Xε1

t based on the observation Y
1/n
t :

X̂ε1
t

(n)
= E(Xε1

t |FY 1/n

t )

Theorem 2.1. The filter X̂ε1
t

(n)
converges to X̂ε1

t as n → ∞.

Proof (refer to [8]). Consider two observations

Y
1/n

t =
∫ t

0

hsds +
1

nα2
W

(2)
t (2.11)

Z
1/n
t =

∫ t

0

hsds +
1

nα2
W

(2)
t+1/n (2.12)

We have

E|Y 1/n
t − Z

1/n
t |2 =

1
n2α2

E|W (2)
t − W

(2)
t+1/n|2 =

1
n2α2

1
n

=
1

n2α2+1
→ 0

as n → ∞.
Now it follows from the convergence

||Y 1/n
t − Z

1/n
t ||L2 → 0 as n → ∞

that
||E(Xε1

t |Y 1/n
t ) − E(Xε1

t |Z1/n
t )|| → 0 as n → ∞

or more general

||E(Xε1
t |FY 1/n

t ) − E(Xε1
t |FZ1/n

t )|| → 0 as n → ∞ (2.13)

where FZ1/n

t = σ(Z1/n
s , 0 ≤ s ≤ t). Because the family (FZ1/n

t )n is non-
increasing such that ∩nFZ1/n

t = FY
t then we see from a theorem on the con-

vergence of conditional expectations that (refer to [6,p. 409]):

E(Xε1
t |FZ1/n

t ) −→L2 E(Xε1
t |FY

t ), n → ∞ (2.14)

A combination of (2.13)and (2.14) yields

E(Xε1
t |FY 1/n

t ) −→L2 E(Xε1
t |FY

t ), n → ∞
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or
X̂ε1

t

(n) −→L2 X̂ε1
t , n → ∞

that is another form of (2.7), where X̂ε1
t

(n)
= ̂

X
(ε1,ε2)
t . �

2.2.2. Calculation of X̂ε1
t

(n)
, the filter for system (2.5)-(2.6).

This system can be rewritten as

Xt =
∫ t

0

Hsds + εα1
1 W

(1)
t , (2.16)

Y
1/n

t =
∫ t

0

hsds +
1

nα2
W

(2)
t (2.17)

We have to check the condition

E

∫ t

0

h2
sds < ∞ for all t ∈ [0, T ] (2.18)

Indeed, it follows from (*) and (2.17) that

ht = bXt + α2ϕ
1/n
t

and

Y
1/n
t =

∫ t

0

(bXs + α2ϕ
1/n
s )ds +

1
nα2

W
(2)
t , 0 ≤ t ≤ T (2.17’)

We have

h2
s ≤ 2(b2X2

s + α2
2(ϕ

1/n
s )2)

Eh2
s ≤ 2(b2EX2

s + α2
2E(ϕ1/n

s )2)

By the Ito isometry we see that

E(ϕ1/n
s )2 = E[(

∫ t

0

(t − s +
1
n

)α2−1dWs)2]

=
∫ t

0

(t − s +
1
n

)2α2−2ds ≤
∫ T

0

(t − s +
1
n

)2α2−2ds < ∞

It is clear that ∫ t

0

h2
sds ≤ 2(b2

∫ t

0

X2
s ds + α2

2

∫ t

0

(ϕ1/n
s )2ds)

and then

E

∫ t

0

h2
sds ≤ 2(b2

∫ t

0

EX2
s ds + α2

2

∫ t

0

E(ϕ1/n
s )2ds) < ∞.
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Similarly we have also E
∫ t

0
H2

s ds < ∞.
Now we define the innovation process

I
1/n
t = Y

1/n
t −

∫ t

0

ĥs

(n)
ds (2.19)

where
ĥs

(n)
= E(ht|FY 1/n

t )

then I
1/n
t is a FY 1/n

t - martingale.
Finally, we can write down the FKK (Fujisaki - Kallianpur - Kunita) equa-

tion for the filter X̂ε1
t

(n)
of the system (2.16)-(2.17) as stated in the following

theorem, where for the sake of simplification of notation we denote by π
(n)
t (.)

the filter E(.|FY 1/n

t ), for example π
(n)
t (Xε1

t ) = E(Xε1
t |FY 1/n

t ).

Theorem 2.2.

X̂ε1
t

(n)
= π

(n)
t (Xε1 ) =

∫ t

0

π(n)
s (Xε1 .H)ds+

+
∫ t

0

[π(n)
s (Xε1 .h)− π(n)

s (Xε1 )π(n)
s (h)]dIs (2.20)

where Hs = aXε1
s + α1ϕ

ε1
s , hs = bXε1

s + 1
nα2 ϕ

1/n
s and It is the innovation

process.

Up to now, by Theorem 2.1 and Theorem 2.2 we can conclude that the filter
X̂ε1

t of the system (2.8)-(2.9) is given by

X̂ε1
t = L2 − lim

n→∞ X̂ε1
t

(n)
(2.21)

where X̂ε1
t

(n)
satisfies the filtering equation (2.20).

3. Filtering for system (2.1)-(2.2)

Now we rewrite two equations (2.1) and (2.3) as follows

dXt = aXtdt + dBH1
t (2.1)

dXε1
t = aXε1

t dt + dBε1
t (2.3’)

where

BH1
t =

∫ t

0

(t − s)α1dW
(1)
t , α1 = H1 − 1/2
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B
(ε1)
t =

∫ t

0

(t − s + ε1)α1dW
(1)
t ,

Theorem 3.1. The solution Xε1
t of (2.3’) converges to the solution Xt of (2.1)

as ε1 → 0 and the converges is uniform w.r.t. t ∈ [0, T ].

Proof We get from (2.1) and (2.3’)

Xt − Xε1
t = a

∫ t

0

(Xs − Xε1
s )ds + BH1

t − B
(ε1)
t (3.1)

Noticing that ||BH1
t − B

(ε1)
t || ≤ C(α1)εα1+

1
2 as recalled in Section 1 then we

have

||Xt − Xε1
t || ≤ |a|

∫ t

0

||Xs − Xε1
s ||ds + C(α1)εα1+

1
2 (3.2)

where ||.|| stands for L2-norm.
An application of Gronwall’s lemma to (3.2) yields:

||Xt − Xε1
t || ≤ C(α1)εα1+1/2et|a| (3.3)

It follows that
sup

0≤t≤T
||Xt − Xε1

t || ≤ C(α1)εα1+1/2et|a| (3.4)

Then Xε1
t −→ Xt in L2 uniformly with respect to t ∈ [0, T ] �

Remark. In fact, (2.1) is a fractional stochastic Langevin equation and its
solution is called a fractional Ornstein-Uhlenbeck given by

Xt = X0e
at +

∫ t

0

ea(t−s)dBH1
s (3.5)

(refer to [11]).
Next, we take ε1 = 1/m, m ∈ Z and redenote Xε1

t now by X
(m)
t . For each m

we consider the system

dX
(m)
t = Htdt +

1
mα1

dW
(1)
t (2.8’)

dYt = bX
(m)
t dt + dBH2

t (2.9’)

and we have already the filter ̂
X

(m)
t given by (2.21):

̂
X

(m)
t = L2 − lim

n→∞
̂
X

(m)
t

(n)

(3.6)
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Proposition 3.1.
̂
X

(m)
t

(n)

converges to required filter X̂t in L2(Ω,F , P ) as
m → ∞, n → ∞.

Proof By definition FY
t = limn→∞ FY 1/n

t where (FY 1/n

t )n is a non-increasing
family of σ−fields.
We have now

̂
X

(m)
t −→L2 Xt, m → ∞ (3.7)

and
FY 1/n

t ↘ FY
t , n → ∞ (3.8)

then by a result of convergence of conditional expectations we have

E(X(m)
t |FY 1/n

t ) −→L2 E(Xt|FY
t ) as m, n → ∞ (3.9)

or
X̂ε1

t

(n) −→L2 X̂t as ε1 =
1
m

→ 0 and n → ∞
or by other notation

π
(n)
t (X(m)) −→L2 X̂t as m, n → ∞,

where π
(n)
t (X(m)) = π(n)(Xε1

t ) satisfies Equation (2.20).
�

Conclusion. The filter for the initial system (X, Y ) satisfying (2.1)-(2.2) is a
process X̂t determined by

X̂t = L2 − lim
m,n→∞π

(n)
t (X(m)) (3.10)

where π
(n)
t (X(m)) = π

(n)
t (Xε1 ) is solution of the filtering equation (2.20).
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