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Abstract

The Euclidean algorithm finds the greatest common divisor of a pair
of positive integers recursively by forming a new pair consisting of the
smaller number and the remainder of the larger divided by the smaller.
Formulating this procedure using matrices and using their associativity
and determinant properties gives results about continued fractions. This
expository paper explores related matrix methods to locate polynomial
roots, propagate waves, and design filters, fractals, and wavelets.

1 The Euclidean Algorithm and Continued Frac-

tions

Euclid [12] recorded the ancient recursive algorithm, likely discovered by Eu-
doxus,
a = q0b + r0, b = q1r0 + r1, r0 = q2r1 + r2, · · · , rn−3 = qn−1rn−2 + rn−1, rn−2 = qnrn−1

to compute rn−1 =gcd(a,b) of positive integers a > b. The following matrix
formulation in the internet article en.wikipedia.org/wiki/Euclidean algorithm[

a
b

]
=

[
q0 1
1 0

] [
q1 1
1 0

] [
q2 1
1 0

]
· · ·

[
qn−1 1

1 0

] [
qn 1
1 0

] [
rn−1

0

]
.

gives integers α, β, γ, δ with rn−2 = αa+ βb, 0 = γa + δb, αδ = βγ = (−1)n+1

since[
rn−1

0

]
=

[
0 −1
−1 qn

][
0 −1
−1 qn−1

]
· · ·

[
0 −1
−1 q2

][
0 −1
−1 q1

][
0 −1
−1 q0

][
a
b

]
.
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Khinchin [16] defines continued fractions recursively

[a0; a1, a2, ...] = a0+[a1; a2, ...]−1, [a0; a1, ..., an+x] = [a0; a1, ..., an−1+
1

an + x
].

(1)
If a is an integer sequence then there exist integer sequences p, q, r, s such that

pn + rnx

qn + snx
= [a0; a1, a2, ..., an + x] (2)

for real x. For x = 0 and x → ∞ Equations 1 and 2 give rn = pn−1, sn = qn−1,
and[

pn pn−1

qn qn−1

]
=

[
pn−1 pn−2

qn−1 qn−2

] [
an 1
1 0

]
=

[
a0 1
1 0

] [
a1 1
1 0

]
· · ·

[
an 1
1 0

]
,

so the convergents cn = pn/qn = [a0; a1, a2, ..., an] to a finite or infinite contin-
ued fraction c satisfy cn−cn−1 = (−1)n+1

qnqn−1
and |c−cn| ≤ 1

qnqn+1
. Also, Equations

1 imply that

[a0; a1, a2, ...] = [a0; a1, a2, ..., an + x], x = [an+1; an+2, ....]−1 (3)

so an eventually periodic sequence a defines a quadratic continued fraction.
These standard results, which are easy to derive, are obvious when formulated
using matrices.

2 Schür-Cohn Stability Test

N = {1, 2, 3, ...}, Z, Q, R, C, are the natural, integer, rational, real, and com-
plex numbers. D = {z ∈ C : |z| ≤ 1} is the closed unit disk. Do = {z ∈
C : |z| < 1} is the open unit disk. Tc = {z ∈ C : |z| = 1} is the unit cir-
cle. H(D) is the space of continuous functions on D that are holomorphic on
Do. For continuous f : Tc → Tc, W (f) denotes its winding number. Clearly
W (f1f2) = W (f1) +W (f2).

Schür [35] and Cohn [5] developed algorithms to test if a degree N polyno-
mial

AN(z) = 1 + a1z + · · ·+ aNz
N

has no roots in the closed disk D = {z ∈ C : |z| ≤ 1}, a condition that ensures
the stability of the inverse filter 1/AN(z). We give a matrix formulation of the
version of this test described in [30], slightly modified by replacing z−1 with
z and incorporating complex valued coefficients, and use this formulation to
validate the test. Construct the reciprocal polynomial BN (z) = zN AN (z−1)
and construct Km and degree m polynomials Am(z) and Bm(z) for 1 ≤ m ≤ N
by following recursive algorithm:
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For m = N to 2
Km = coefficient of zm in Am(z),[

Am−1(z)
Bm−1(z)

]
=

(
1 − |Km|2)−1

[
1 0
0 z−1

] [
1 −Km

−Km 1

] [
Am(z)
Bm(z)

]
.

(4)
Therefore 1 is the constant term in each Am, A1(z) = 1+K1z, B1(z) = K1 +z,[

Am(z)
Bm(z)

]
=

[
1 Km

Km 1

] [
1 0
0 z

] [
Am−1(z)
Bm−1(z)

]
, (5)

and the rational functions Rm = Bm

Am
satisfy

Rm(z) =
Km + zRm−1(z)
1 +KmzRm−1(z)

, 2 ≤ m ≤ N. (6)

Lemma 1. If Am has no zeros in D then Rm ∈ H(D), Rm(Tc) = Tc, W (Rm) =
m, and Rm(D) = D.

Proof Since Am has no zeros in D and constant term 1 there exist λ1, ..., λm ∈
Do such that Am(z) =

∏m
j=1(1−λj z), so Bm(z) =

∏m
j=1(z−λj) and Rm(z) =∏m

j=1 Fj(z), where the Blaschke factor Fj(z) = z−λj

1−λj z . Then Fj(Tc) = Tc and
|λj | < 1 implies W (Fj) = 1 so Rm(Tc) = Tc and W (Rm) = m. Since Rm ∈
H(D) the maximum modulus principle gives Rm(D) ⊆ D. Since W (Rm) = m
a homotopy argument gives Rm(D) = D. �

Theorem 1. AN (z) has no zeros in D if and only if |Km| < 1, 1 ≤ m ≤ N.

Proof A1(z) = 1+K1z so the theorem holds forN = 1.We assume thatN ≥ 2
and proceed by induction. Assume that |Km| < 1 for 1 ≤ m ≤ N. By induction
RN−1 has no zeros in D. Then Equation 6 and Lemma 1 give RN(Tc) = Tc

and RN(D) = D so AN has no zeros in D. To prove the converse assume that
AN has no zeros in D. Then since AN has constant term 1, |KN | < 1. Solving
Equation 6 for RN−1 gives

RN−1(z) = z−1 RN −KN

1 −KNRN(z)
. (7)

Therefore RN−1(Tc) = Tc and RN−1(D) = D so AN−1 has no zeros in D. Then
|KN−1| < 1. Proceeding recursively gives |Kj| < 1 for 1 ≤ j ≤ N. �

Since every closed disk in C is homeomorphic to D by a linear transformation,
and every closed half-plane in C is homeomorphic to D\{0} by a linear fractional
transformation, the Schür-Cohn test can be easily extended to test for roots in
these sets.
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3 Wave Propagation

We discuss matrix formulations of some one dimensional wave propagation
models that arise in classical and quantum mechanics.

3.1 Scattering from Layered Media

U = {x+ iy ∈ C : y ≥ 0} is the closed upper half space. Uo = {x + iy ∈ C :
y > 0} is the open upper half plane. H(U) is the space of functions that are
continuous on U and holomorphic on Uo.

We follow the derivation by Robinson and Treitel in [34], based in part on
Robinson’s PhD Thesis research [33], of the reflection from a layered media
with m-interfaces that separate m + 1 homogeneous regions each having con-
stant acoustic impedance. We extend the derivations by allowing different
travel times between consecutive interfaces. Assume that the interfaces form
horizontal planes with the m-th interface on the top. Let τj , j = 2, ..., m be the
round trip time delays between the interface j and interface j−1. A downward
traveling wave whose amplitude at the m-th interface is eiωt gives:

1. An upward traveling wave whose amplitude at the m-th interface equals
Rm(ω) eiωt, where Rm(ω) is the reflection transfer function at frequency
ω ∈ R.

2. A downward travelling wave whose amplitude at the 1-st interface equals
Tm(ω) eiωt, where Tm(ω) is the transmission transfer function at fre-
quency ω ∈ R.

If only the m-th interface existed then:

1. A downward traveling wave whose amplitude at the m-th interface equals
eiωt would result in an upward traveling wave whose amplitude at the m-
th interface equals rm eiωt and a downward traveling wave whose ampli-
tude at the m-th interface equals (1 + rm) eiωt where the m-th reflection
coefficient rm ∈ (−1, 1).

2. An upward traveling wave whose amplitude at the m-th interface equals
eiωt would result in a downward traveling wave whose amplitude at the
m-th interface equals −rm eiωt and an upward traveling wave whose am-
plitude at the m-th interface equals (1 − rm) eiωt.

Clearly R1(ω) = r1 and T1(ω) = 1 + r1. The derivation in ([34], p. 450), which
is based on summing geometric series, modified by replacing z by eiωτm , gives

Rm(ω) =
rm +Rm−1(ω) eiωτm

1 + rmRm−1(ω) eiωτm
, 2 ≤ m, (8)
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and

Tm(ω) =
(1 + rm)Tm−1(ω)

1 + rmRm−1(ω) eiωτm
, 2 ≤m. (9)

Lemma 2. Let Rm = Bm

Am
, where Bm and Am are (possibly anharmonic)

trigonometric polynomials. Then[
Am(ω)
Bm(ω)

]
=

[
1 rm

rm 1

] [
1 0
0 eiωτm

] [
Am−1(ω)
Bm−1(ω)

]
, 2 ≤m, (10)

and
Tm(ω) =

(1 + r1) · · · (1 + rm)
Am(ω)

. (11)

Proof Equation 10 is obtained by substituting Rm = Bm/Am in Equation 3.
Equation 11 holds for m = 1 since T1(ω) = 1 + r1 and A1(ω) = 1. It holds
for m > 1 by substituting Rm = Bm/Am and Equation 10 in Equation 9 and
using the induction hypothesis that Tm−1(ω) = (1+r1)···(1+rm−1)

Am−1(ω) . �

Lemma 3. If r1, ..., rm ∈ (−1, 1) and ω ∈ U then Rj(ω) ∈ D0, , j = 1, ..., m.

Proof The assertion holds for m = 1 since R1(ω) = r1. We proceed by
induction and assume that Rm−1(ω) ∈ D0. If ω ∈ U then λ = Rm−1(ω) eiωτm ∈
D0. Then |Rm(ω)|2 = r2

m+|λ|2+2rm�λ
1+r2

m|λ|2+2rm�λ < 1 and hence Rm(ω) ∈ Do. �

Theorem 2. If Rm = Bm

Am
, where Bm and Am are (possibly anharmonic)

trigonometric polynomials then

1 − |Rm(ω)|2 =
(1 − r1) · · · (1 − rm)
(1 + r1) · · · (1 + rm)

|Tm(ω)|2, ω ∈ R. (12)

Proof Equation 10 gives

|Am(ω)|2 − |Bm(ω)|2 = (1− r2
m)(|Am−1(ω)|2 − |Bm−1(ω)|2) =

m∏
j=1

(1− r2
j ), 2 ≤ m, ω ∈ R,

so Equation 12 follows from Equation 11. In practice the layers are chosen
so that all τm equal a constant τ > 0 and Rm is expressed as a rational
function of z = eiωτm . If a unit spike is transmitted then the autocorrelation
sequence ψj , j = 0, ..., m of the reflected time series is computed and the normal
equations ⎡

⎢⎢⎢⎣
1 − ψ0 −ψ1 · · · −ψm

−ψ1 1 − ψ0 · · · −ψm−1

...
...

. . .
...

−ψm −ψm−1 · · · 1 − ψ0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
a1

...
am

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
σ2

m

0
...
0

⎤
⎥⎥⎥⎦ ,
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to obtain Am(z) = 1 + a1z + · · · + amz
m as described in ([34], p. 457) where

the connections with prediction theory is discussed. This connection is related
to spectral factorization of the positive trigonometric polynomial |Am(eiτω)|2
to obtain the polynomial Am(z) that has no roots in D. Our generalization al-
lows Am(ω) and Bm(ω) to be anharmonic trigonometric polynomials and thus
almost periodic functions of the type pioneered by Bohr [8]. The |Am(ω)|2 is
extends to be an entire function of exponential type and the relevant spectral
factorization theorem is that of Ahiezer [2], ([7], Theorem 7.5.1). In [22] we
explored some aspects of spectral factorization of trigonometric polynomials of
two variables. In [23] we used Bohr almost periodic functions and their ex-
tensions discussed by Besicovitch [6] to develop a theory that relates Helson
and Lowdenslager’s [13] spectral factorization of multidimensional trigonomet-
ric polynomials to Ahiezer’s spectral factorization.

One consequence of allowing variable τm is that we can consider the limit
as the distance between the m-th and (m− 1)-th interface approaches 0. Then

Rm(ω) − Rm−1(ω)
τm

≈ rm

τm
+ iωRm−1(ω) − rm

τm
R2

m−1(ω).

Replacing m by a time variable τ, setting Fω(τ ) = Rτ (ω), and assuming that
the impedance Z(τ ) is differentiable gives the Riccati [32] differential equation

Fω(τ )
dτ

=
d logZ(τ )

dτ
+ iωFω(τ ) − d logZ(τ )

dτ
Fω(τ )2. (13)

Compare this simple derivation of the Riccati scattering equation with Chen’s
[4].

3.2 Vibrations of Random Media

As Lin explained in her honors thesis [25], the displacement amplitudes
v1,j, ..., vn,j for the eigenmodes with eigenvalue λj for a circular chain on har-
monic oscillators with unit stiffness and masses m1, ..., mn satisfies the gener-
alized eigenvector equation⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · −1
−1 2 −1 · · · 0

0 −1
. ..

. . .
.
..

..

.
..
.

. . . 2 −1
−1 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1,j

v2,j

.

..
vn−1,j

vn,j

⎤
⎥⎥⎥⎥⎥⎦ =λj

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 · · · 0
0 m2 0 · · · 0

0 0
. ..

. . .
.
..

..

.
..
.

. . . mn−1 0
0 0 · · · 0 mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1,j

v2,j

.

..
vn−1,j

vn,j

⎤
⎥⎥⎥⎥⎥⎦,

j = 1, ..., n

which can be formulated using matrices. Using a slightly different notation
than used by Lin we define a family of transfer matrices

T (k, μ) =
[

0 1
−1 2 − μmk

]
, μ ∈ R, (14)
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and their product

P (μ) = T (n, μ)T (n− 1, μ) · · ·T (1, μ), μ ∈ R. (15)

Clearly detP (μ) =
∏n

i=1 det T (i, μ) = 1.

Theorem 3. For an eigenvalue λj of the generalized eigenvector equation, the
displacement amplitudes satisfy[

vk,j

vk+1,j

]
= T (n, λj)

[
vk−1,j

vk,j

]
, (16)

where we define vn+1,j = v1,j, and consequently[
vn,j

v1,j

]
= P (λj)

[
vn,j

v1,j

]
, (17)

and hence 1 is an eigenvalue of P (λj) = 1. Conversely, if 1 is an eigenvalue of
P (λ) then λ = λj for some j = 1, ..., n.

Proof The first assertion is obvious. If 1 is an eigenvalue of P (λ) then there
exist vn, v1 ∈ R such that [

vn

v1

]
= P (λ)

[
vn

v1

]
. (18)

Recursively define for k = 1 to k = n− 1[
vk

vk+1

]
= T (k, λ)

[
vk−1

vk

]
. (19)

Equations 16 and 19 give[
vn

v1

]
= P (λ)

[
vn

v1

]
= T (n, λ)

[
vn−1

vn

]
,

and hence v1, ..., vn are amplitudes that satisfy the generalized eigenvector
equation with eigenvalue λ so λ = λj for some j = 1, ..., n. �

A theorem of Furstenberg [11] implies that if μ is fixed, then as n → ∞ if
mj are independent random variables such that the probability measure of the
transfer matrices T (j, μ) are not supported in a compact subgroup of SL(2,R),
then trace(P (μ)) → ∞. Ishii [15] has argued that this result explains the lo-
calization of amplitude sequences v1,j, ..., vn,j for large values for j ≥ √

n for
large n and λ1 < λ2 < · · · < λn. Lin ([25], §3.3.3) raises the fact that the
matrices P (λj) are not products of independent random variables and thus do
not satisfy the hypotheses of Furstenberg’s theorem. She performed extensive
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computational experiments using MATLAB to show how the eigenvalues make
the transfer matrices statistically dependent and also to explore the degree of
eigenvalue localization. A rigorous formulation of eigenvector localization as j
increases is required to devise a proof of localization and such a formulation
appears to be lacking.

3.3 The Ten Martini Problem

Avila and Jitomirskaya [1] solved this famous problem by proving that the
spectrum of the almost Mathiew operator on �2(Z)

(Hλ,α,θ u)n = un−1 + un+1 + 2λ cos(2π(θ + nα))un,

which models the Quantum Hall Effect, is a Cantor set if α is irrational, ω ∈ R,
and λ > 0. u ∈ �2(Z satisfies Hλ,α,θu = Eu if and only if

[
uk

uk+1

]
=

[
0 1
−1 E − 2λ cos(2π(θ + nα))

] [
uk−1

uk

]
.

Compare the structure of this equation with Equations 14 and 16. Their trans-
fer matrices are deterministic but associated with the minimal dynamical sys-
tem x → x + α on the circle group R/Z. Their proof uses deep properties of
the dynamics of the products of transfer matrices and involves extraordinarily
detailed computations and hard as well as functional analysis. A more detailed
discussion of it is far beyond the scope of this paper.

4 Filters, Fractals and Wavelets

Resnikoff and Wells [31] make extensive use of matrices to discuss the topics
in this section. Given a bisequence Ak with values in the algebra of m ×m
matrices over a subfield F ⊆ C, they associate a formal Laurent series ([31],
Equation 4.4)

A(z) =
∑
k∈Z

Ak z
k

and they define its adjoint

Ã(z) =
∑
k∈Z

A∗
k z

−k.

A(z) is a paraunitary m-channel filter bank if

A(z) Ã(z) = mI
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where I is the m×m identity matrix, and an m-channel wavelet matrix if in
addition

A(1) [1 1 ... 1]∗ = [m 0 ... 0]∗.

They use wavelet matrices to design orthogonal wavelets. This involves fac-
torization wavelet matrices identical to the factorization in Equation 5 in
the Schür-Cohn stability test. They also use matrices to design biorthogonal
wavelet bases, analyse the differentiability of wavelets, and construct multidi-
mensional nonseparable wavelet bases. These include two dimensional analogs
of the one dimensional Haar wavelet bases where the wavelets are constant of
self similar regions whose translates tile the plane and whose boundaries have
fractal dimension. They use matrices to develop applications of wavelets to
image compression, wavelet-Galerkin and wavelet-multigrid solution of elliptic
boundary value problems, and modulation and channel coding.

A(z) is a paraunitary m-channel filter bank if and only if A(z) ∈ SU(m), z ∈
Tc, this means that A(z) belongs to the loop group C∞(Tc, SU(m)). More-
over, A(z) is wavelet matrix that yields bases of sufficiently smooth wavelets if
and only if the associated loop satisfies certain interpolatory conditions. Since
SU(m) is a semisimple Lie group, every loop A(z) in SU(m) can be uniformly
approximated by a polynomial loop A0(z). A short proof of this amazing result
is given by Pressley and Segal ([29], Proposition 3.5.3). In [19] we combined this
result with methods from algebraic topology to show that the approximation
of loops by polynomial loops can preserve the interpolatory conditions, thus
providing a method to construct orthonormal wavelet bases of compactly sup-
ported wavelets of prescribed regularity by approximating orthonormal wavelet
bases of wavelets with noncompact supports. The later include the Lemarie-
Battle wavelet bases constructed from multiresolution analyses constructed
from splines. They are described by Battle [3] , Meyer [26], and Daubechies
[9]. Results using loop groups were obtained earlier (unpublished) by Hennings
[14] and sharp approximation results extending classical Jackson-Bernstein the-
orems were derived later by Oswald and Shingel [27], [28].

5 Open Problems for Future Research

We discussed our current research in the areas of spectral factorization and
almost periodic functions, and issues related to Lyapunov localization of vibra-
tions in random media and their possible explanation by random products of
matrices.

Noncompactly supported smooth wavelets on stratified nilpotent Lie groups,
such as Heisenberg groups, we introduced in 1989 by Lemarié [24]. In 200 we
introduced [18] compactly supported refinable distributions and scaling func-
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tions on these Lie groups. Little is understood about the properties, such as
regularity and vanishing moments, of the compactly supported scaling func-
tions and associated wavelets. Matrix methods will likely be useful to derive
these properties.

In [20] and [21] we outlined approaches to solve an extension of the Ten Mar-
tini Problem for a class of chaotic quantum systems. The operators for these
systems cannot be represented by tridiagonal matrices so the use of 2 × 2
transfer matrices is precluded. Loop group approximation methods provide
approximate representations by banded matrices thus enabling the use of finite
dimensional transfer matrices.

Progress in the above areas will likely involve relationships between these area
and a deeper understanding of almost periodic functions, quasicrystals, chaos
and perhaps even the distribution of roots of the Riemann’s zeta function. We
refer readers who are intrigued by provocative assertion to articles by Dyson
[10] and Laaksonen [17].
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