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Abstract

Most logistics managers face uncertainty in demand which forces them
to hold safety stock to provide high levels of service to their customers.
The level of safety stock depends on what the company’s targets are
on some performance characteristics of an inventory management deci-
sion problem like the expected number of units short or the stock-out
probability. In the case only incomplete information is available on the
demand distribution during the lead-time, which is relevant in inventory
decision-making, preset service levels do not lead to a unique value of
the safety stock to be hold, but rather to a range of values. Incomplete
information refers to the fact that the full functional form of the distri-
bution is not known, but some knowledge is available like the range or
the mode or a few moments of the demand size distribution. In this way,
upper and lower bounds may be determined for the safety stock in the
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inventory management problem. It is shown how the bounds of both per-
formance measures can be obtained through a numerical approximation
using linear programming. Results are obtained for demand distributions
for which the range, and first and second moments are known.

1 Introduction

A primary objective of inventory management is to ensure that a product is
available at the time and in the quantities desired ((2)). But almost every
inventory system contains uncertainty. Some uncertainty is attributable to
customers, especially demand. If insufficient inventory is hold, a stock-out may
occur which leads to shortage costs or a decreased level of service. Shortage
costs are usually high in relation to holding costs, i.e. the costs of keeping
the goods during some time period in the warehouse. Companies are willing
to hold additional inventory, above their forecasted needs, to add a margin of
safety.

Inventory management decisions are made making use of optimisation mod-
els taking a performance measure into consideration which might be cost-
oriented or service-oriented. Performance measures of the service-oriented type
may be expressed relatively as a probability of stock-out during a certain re-
plenishment period, or may be expressed absolutely in terms of the number of
units short, which is a direct indication for lost sales.

In this study, both performance measures are taken into consideration and
special attention is paid to feasible combinations of company’s objectives re-
garding both performance measures. For a definition of both measures, ref-
erence is made to (9). The authors, Silver, Pyke and Peterson, define the
measures as follows. The expected shortage per replenishment cycle (ESPRC)
is defined as ((9), p. 258):

ESPRC =
∫ +∞

t

(x − t)f(x)dx (1)

where f(x) is the probability density function of the demand in the replenish-
ment lead time and t is the level of the inventory position at which an order is
placed. In many other sources this performance measure is referred to as the
’expected number of units short’. If ordered per fixed quantity Q the fraction
backordered is equal to ESPRC/Q and a performance measure, indicated as
P2, is defined as ((9), p. 299):

P2 = 1 − ESPRC/Q (2)

The other performance measure is the probability of a stock-out during
replenishment lead time ((9), p. 258), defined as:
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1 − P1 = Pr{x ≥ t} =
∫ +∞

t

f(x)dx (3)

P1 is defined as the specified probability of no stockout per replenishment cycle.

From a production or trading company’s point of view, a decision might be
formulated to answer the following question: Given a maximum expected num-
ber of units short and/or a maximum stock-out probability the company wants
to face, what should be the safety inventory at least? In case the distribution of
demand is known, determining the inventory level, given a maximum expected
shortage or a maximum stock-out probability, reduces to the calculation of the
inverse cumulative probability function. The decision problem becomes more
difficult if incomplete information exists on the distribution of demand during
lead time, for example if only the range of demand or the first and second
moments are known. In such a case, no single value for this amount of safety
inventory can be determined but rather an interval.

This research deals with the case where the demand distribution during lead
time is not completely known. This situation is realistic either with products
which have been introduced recently to the market or with slow moving prod-
ucts. In both cases no sufficient data are available to decide on the functional
form of the demand distribution function. Some but not complete information
might exist like the range of the demand, its expected value, its variance and
maybe some knowledge about unimodality of the distribution.

In case incomplete information is available regarding the demand distribu-
tion the integrals of the performance measures P1 and P2 cannot be evaluated
in an analytical manner. This means that also the inverse problem of deter-
mining the safety stock level to satisfy the performance measures cannot be
obtained analytically. However, the integrals can be approximated by a linear
programming formulation with a large set of constraints.

The next section introduces the methodology of how a linear program can
be constructed for the evaluation of the performance measures P1 and P2 in the
case the range, first and second moments of the demand distribution during lead
time (DDLT) are known. Subsequently, the level of safety stock is determined
based on the inverse problem. The problem is formulated first for the case
where an inventory manager considers P1 and P2 separately and second for the
case where P1 and P2 are considered simultaneously. Finally, conclusions are
formulated in the last section.
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2 Demand distributions with known range, ex-

pected value and variance

2.1 Bounds on the expected number of units short

When a company holds t units of a specific product in inventory at the start
of a period between order and delivery, any demand less than t during this
period is satisfied while any demand X greater than t results in a shortage of
X − t units. The expected shortage or the expected number of units short in
a replenishment period can be written as:

∫ ∞

0

(x − t)+ dF (x) (4)

Let the size of the demand X for a specific product in a finite period have
a distribution F with first two moments m1 = E(X) and m2 = E(X2).

From a mathematical point of view, the problem is to find the following
bounds:

sup
F∈φ

∫ ∞

0

(x − t)+ dF (x) (5)

and

inf
F∈φ

∫ ∞

0

(x − t)+ dF (x) (6)

where φ is the class of all distribution functions F which have moments m1 and
m2, and which have support in �+. Let further σ2 = m2 − m2

1. We assume t
to be strictly positive.

For any polynomial P (x) of degree 2 or less, the integral
∫ ∞
0

P (x) dF (x)
only depends on m1 and m2, so it takes the same value for all distributions in
φ. There exists some distribution G in φ for which the equality holds:∫ ∞

0

P (x)dG(x) =
∫ ∞

0

(x − t)+dG(x) (7)

As distribution G a two-point or three-point distribution is used. The equal-
ity (7) is attained when P (x) and (x − t)+ are equal in the two points of G.
The best upper and lower bounds on this term with given moments m1 and
m2 are derived. The method is inspired by a paper of (4). In the following we
assume the known range of the distribution to be a finite interval [a,b].



G. K. Janssens, K. Ramaekers, L. Verdonck 111

In this section we consider, of the relevant integral, the supremum version.
Let f1, f2, ..., fn be functions on �. For any z′ = (z1, ..., zn−1) ∈ �n−1, we
consider the primal maximisation problem:

P (z′) = sup
F∈φ

[∫ ∞

0

(x − t)+ dF (x)|I(F )
]

(8)

where I(F ) is a set of integral equality constraints of the type
∫

fi(x)dF (x) =
zi, (i = 1, ..., n − 1) and fn = (x − t)+. In our application, the constraints
are moment constraints, i.e. the first and second moment equalities and the
obvious constraint because any member of φ is a probability distribution.∫

dF (x) = 1,

∫
xdF (x) = m1,

∫
x2dF (x) = m2 (9)

which means that:
n = 3
f1(x) = x
f2(x) = x2

f3(x) = (x − t)+
z1 = m1

z2 = m2

The integral may be approximated by a sum making use of finite masses pi

in a large number of points xi. Its formulation looks like:

Max
∑

i

(xi − t)+ ∗ pi (10)

Subject to ∑
i

pi = 1 (11)

∑
i

xi ∗ pi = m1 (12)

∑
i

x2
i ∗ pi = m2 (13)

And pi ≥ 0, 0 ≤ xi ≤ b.

However, any refinement in granularity leads to an increased number of
variables both in the objective function and in the three constraints. This phe-
nomenon does not guarantee any convergence towards the exact upper bound.
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The optimisation problem (8)-(9) has a dual program of the type:

Q(z′) = inf
(
y1m1 + y2m2 + y3|y1f̂1(θ) + y2f̂2(θ) + y3 ≥ f̂3(θ)

)
, (θ ∈ J)

(14)
where the infimum is over all y = (y1, y2, y3) ∈ �3 satisfying the constraints
indicated after the slash. The functions f̂i(θ) (i = 1, ..., n) are defined on J by

f̂i(θ) =
∫

fidHθ(x) with θ ∈ J, (15)

where Hθ is a subset of functions depending on the family of distributions un-
der consideration.

The family of distributions considered in this study concerns distributions on
a finite interval [0, b], where b is a fixed positive number. In this case ((8)):

Hθ(x) = 1θ≤x (0 ≤ θ ≤ b), (16)

which means in our case that

f̂1(θ) = θ (0 ≤ θ ≤ b) (17)

f̂2(θ) = θ2 (0 ≤ θ ≤ b) (18)

Mostly the set J is infinite, so the number of linear constraints on y is infinite.
In (8) an idea is launched to replace J by a large finite subset of J and then
to solve the so obtained linear program.

The optimisation problem (14) can thus be approximated by the problem QA:

QA(z′) = inf
y∈�3

(
y1m1 + y2m2 + y3|y1θi + y2θ2

i + y3 ≥ (θi − t)+
)
,

(
θi = i ∗ b

k
, i = 0, ..., k)

)
(19)

This leads to the following dual problem:

Min
2∑

j=1

yjmj + y3 ∗ 1 (20)

Subject to

2∑
j=1

yj f̂j(xi) + y3 ≥ f̂3(xi) (xi = i ∗ b

k
, i = 0, ..., k) (21)

With
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f̂1(xi) = xi (22)

f̂2(xi) = x2
i (23)

f̂3(xi) = (xi − t)+ (24)
(25)

And yj (j = 1,2,3) unbounded.

To obtain the lower bound (6), only the objective function type needs to be
replaced from Max to Min in the primal problem and from Min to Max in
the dual problem while constraints remain the same.

A numerical example demonstrates the use of bounds on the expected number
of units short. In this example, the following information on demand during
the replenishment period is known: the first moment m1 = 25, the second mo-
ment m2 = 725 and the range of demand is [0, b] with b = 50. The upper and
lower bounds on the number of stock-out units are presented in Tables 1 and
2 for different values of t and varying sizes k of the evaluation point set. The
exact values for the upper bounds are 16.37931 for t = 10, 5.0 for t = 25 and
1.37931 for t = 40. The exact values for the lower bounds are 15.0 for t = 10,
2.0 for t = 25 and 0.0 for t = 40.

Table 1: Upper bounds on the expected number of units short
k = 10 k = 20 k = 40 k = 80

t = 10 16.3333 16.3636 16.3768 16.3784

t = 25 5.0000 5.0000 5.0000 5.0000

t = 40 1.3333 1.3636 1.3768 1.3784

Table 2: Lower bounds on the expected number of units short
k = 10 k = 20 k = 40 k = 80

t = 10 15.0000 15.0000 15.0000 15.0000

t = 25 2.0000 2.0000 2.0000 2.0000

t = 40 0.0000 0.0000 0.0000 0.0000
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2.2 Bounds on the probability of a shortage

(author?) (9, p. 245) define the concept of a cycle service level as the specified
probability (P1) of no stock-out per replenishment cycle. This means that P1

is the fraction of cycles in which a stock-out does not occur.

If an order to the supplier is released whenever the inventory level drops below
a level t and assuming that X represents the demand during lead time, then
P1 can be written as:

P1 = 1 − P (X ≥ t) = 1 − E[1[t,+∞[(X)] (26)

In this section upper and lower bounds are determined for the tail probabilities
E[1[t,+∞[(X)], i.e. the values are to be found for

sup
F∈Φ

∫ b

0

1[t,+∞[(x)dF (x) (27)

and

inf
F∈Φ

∫ b

0

1[t,+∞[(x)dF (x) (28)

where Φ is the class of all distribution functions with range [0,b] and moments
m1 and m2 known.

For reasons similar to the ones in section 2.1, this section concentrates on the
dual problems only to find the extreme values. The dual problem for obtaining
the upper bound is formulated as:

Min
2∑

j=1

yjmj + y3 ∗ 1 (29)

subject to
2∑

j=1

yj f̂j(xi) + y3 ≥ f̂3(xi) (xi = i ∗ b

k
, i = 0, ..., k) (30)

with

f̂1(xi) = xi (31)

f̂2(xi) = x2
i (32)

f̂3(xi) = 1[t,xi] (33)

The dual problem for obtaining the lower bound uses

Max
2∑

j=1

yjmj + y3 ∗ 1 (34)
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as its objective function and the constraints are identical to those of the upper
bound.

A numerical example demonstrates the use of bounds on the probability of
a shortage. In this example, the following information on demand during the
replenishment period is known: the first moment m1 = 25, the second moment
m2 = 725 and the range of demand is [0, b] with b = 50. The upper and
lower bounds on the stock-out probability are presented in Tables 3 and 4 for
different values of t and varying sizes k of the evaluation point set. The exact
values for the upper bounds are 1.0 for t = 10, 0.92 for t = 25 and 0.30769 for
t = 40. The exact values for the lower bounds are 0.692308 for t = 10, 0.08 for
t = 25 and 0.0 for t = 40.

Table 3: Upper bounds on the stock-out probability
k = 10 k = 20 k = 40 k = 80

t = 10 1.0000 1.0000 1.0000 1.0000

t = 25 0.8000 0.8818 0.9000 0.9098

t = 40 0.2000 0.2444 0.2745 0.2905

Table 4: Lower bounds on the stock-out probability
k = 10 k = 20 k = 40 k = 80

t = 10 0.7000 0.6944 0.6928 0.6924

t = 25 0.0800 0.0800 0.0800 0.0800

t = 40 0.0000 0.0000 0.0000 0.0000

2.3 Inverse problem to determine the level of safety stock

From a production or trading company’s point of view, a decision might be for-
mulated to answer the following question: ’Given a maximum expected number
of units short and/or a maximum stock-out probability the company wants to
face, what should be the safety inventory at least (or at most)?’. The question
with the ’at most’ option might be only of academic nature, as it reflects the
most optimistic viewpoint. In human terms, this question would be interpreted
as: ’Would there exist any probability distribution so that I can still reach my
preset performance criteria given a specific level of safety inventory?’. This
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type of question is not relevant for a manager facing a real-life situation.

In (6) a method is proposed in which the integral constraints are trans-
formed into a sequence, with increasing number of evaluation points, of op-
timisation problems and where the integral is replaced by an infinite sum.
Instead of evaluating the objective function on a continuous interval [low,high],
the functions are evaluated in a discrete number of points xi (i = 1,...,k). This
approach leads to the solution of the continuous problem if k → ∞. The ob-
jective function contains only one decision variable, i.e. the reorder level. This
leads to the following optimisation problem, where:

t = level of inventory
pi = the mass in point xi

z1 = the expected value
z2 = the absolute second moment
z3 = the maximum expected number of items short

The optimisation problem might be formulated as:

Mint (35)

Subject to ∑
i

pi = 1 (36)

∑
i

xi ∗ pi = z1 (xi = i ∗ b

k
, i = 0, ..., k) (37)

∑
i

x2
i ∗ pi = z2 (xi = i ∗ b

k
, i = 0, ..., k) (38)

∑
i

(xi − t)+ ∗ pi ≤ z3 (xi = i ∗ b

k
, i = 0, ..., k) (39)

where (xi − t)+ stands for max(xi − t, 0).

The problem formulated above gives an answer to the following question:
’What is the minimal amount of inventory so that a distribution with given
characteristics exists in which the expected number of units short maximally
equals the value z3?’.

The non-linear constraint may be approximated by letting the value of t
coincide with one of the xi values (so as k → ∞, the approximation takes the
correct value). In such a way the constraint is linearized.
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In the case t coincides with one of the xi values, say xj, then:

n∑
i=1

pi(xi − xj)+ ≤ z3 (40)

A binary variable needs to be introduced to indicate the condition ’t = xj ’.
In the case t does not coincide with a point xj, a general truth should be
indicated, for example ’the expected number of units short cannot be larger
than the expected demand’, expressed by a binary variable yj .

yj = 1 if t = xj

else = 0

As t can coincide with only one xj value, the additional constraint is intro-
duced:

n∑
j=1

yj = 1 (41)

The y variable is introduced in the last constraint as:

n∑
i=1

pi(xi − xj)+ ≤ z3yj + z1(1 − yj) (42)

Finally, a link should be made between t and the value of x with which t
coincides:

t ≥ xjyj ∀j (43)

If yj = 0, a universal truth is mentioned.

The elaboration above will be illustrated by means of a numerical example
similar to the one used in the previous sections. With a range of demand [0,50],
an expected value z1 = 25 and a second moment z2 = 725, Table 5 presents the
minimal amount of inventory for different values of z3 (maximum number of
items short) and varying sizes k of the evaluation point set. The exact values
for the minimal inventory level are 25 for z3 = 2, 21 for z3 = 4 and 19 for z3

= 6.
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Table 5: Minimal required inventory level based on the maximum expected
number of units short

k = 10 k = 20 k = 40 k = 80
z3 = 2 25.0000 25.0000 25.0000 25.0000

z3 = 4 25.0000 22.5000 21.2500 21.2500

z3 = 6 20.0000 20.0000 20.0000 19.3750

In case the company, given a maximum stock-out probability, is looking for
the least level of safety inventory to satisfy that constraint, a similar optimisa-
tion problem (44)-(50) might be formulated, where:

t = level of inventory
pi = the mass in point xi

z1 = the expected value
z2 = the absolute second moment
z4 = the maximum stock-out probability

This leads to the following optimisation problem:

Mint (44)

Subject to ∑
i

pi = 1 (45)

∑
i

xi ∗ pi = z1 (xi = i ∗ b

k
, i = 0, ..., k) (46)

∑
i

x2
i ∗ pi = z2 (xi = i ∗ b

k
, i = 0, ..., k) (47)

n∑
j=1

yj = 1 (48)

n∑
i=1

pi ∗ 1[xj ,xi] ≤ z4yj + (1 − yj) (49)

t ≥ xjyj (50)

Constraints (45) till (50) are equal to those in the previous optimisation
problem. Constraint (49) makes use of the stock-out probability objective in
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the left-hand side and uses the value 1 instead of z1 in the right-hand side to
make the universal truth come true.

Using the same numerical example Table 6 presents the minimal amount of
inventory for different values of z4 (maximum stock-out probability) and vary-
ing amounts of measuring values. The exact values for the minimal inventory
level are 23.75 for z4 = 0.1, 20 for z4 = 0.2 and 15 for z4 = 0.5.

Table 6: Minimal required inventory level based on the maximum stock-out
probability

k = 10 k = 20 k = 40 k = 80
z4 = 0.1 25.0000 25.0000 23.7500 23.7500

z4 = 0.2 20.0000 20.0000 20.0000 20.0000

z4 = 0.5 15.0000 15.0000 15.0000 15.0000

In the company, the inventory manager might have target values for both
performance measures (number of stock-out units and stock-out probability)
in mind, looking for a safety inventory level satisfying both his targets. The
linear programs formulated in this section smoothly allow the manager to make
use of his combination in mind.

The combination will be illustrated by means of the same numerical example
in which all three illustrative values for the maximum expected number of units
short (z3) from Table 5 are combined with all three values for the maximum
stock-out probability (z4) in Table 6. The formulation of the linear program
combining constraints both on expected number of units short and on stock-out
probability is given below. The results for the nine combinations are shown in
Table 7. In most cases one of both constraints will be the binding constraint.
Take the example of z4 = 0.1, which leads to a value t = 23.75. When combined
with z3 = 2, the value is increased to t = 25. But when combined with z3 =
4 or z3 = 6, it remains unchanged because these z3-values impose less strict
constraints.
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Mint (51)

Subject to ∑
i

pi = 1 (52)

∑
i

xi ∗ pi = z1 (xi = i ∗ b

k
, i = 0, ..., k) (53)

∑
i

x2
i ∗ pi = z2 (xi = i ∗ b

k
, i = 0, ..., k) (54)

n∑
j=1

yj = 1 (55)

n∑
i=1

pi(xi − xj)+ ≤ z3yj + z1(1 − yj) (56)

n∑
i=1

pi ∗ 1[xj ,xi] ≤ z4yj + (1 − yj) (57)

t ≥ xjyj (58)

Table 7: Minimal required inventory level based on the maximum expected
number of units short (z3) and the maximum stock-out probability (z4)

k = 10 k = 20 k = 40 k = 80
z3 = 2 and z4 = 0.1 25.0000 25.0000 25.0000 25.0000

z3 = 2 and z4 = 0.2 25.0000 25.0000 25.0000 25.0000

z3 = 2 and z4 = 0.5 25.0000 25.0000 25.0000 25.0000
z3 = 4 and z4 = 0.1 25.0000 25.0000 23.7500 23.7500

z3 = 4 and z4 = 0.2 25.0000 22.5000 21.2500 21.2500

z3 = 4 and z4 = 0.5 25.0000 22.5000 21.2500 21.2500
z3 = 6 and z4 = 0.1 25.0000 25.0000 23.7500 23.7500

z3 = 6 and z4 = 0.2 20.0000 20.0000 20.0000 20.0000

z3 = 6 and z4 = 0.5 20.0000 20.0000 20.0000 19.3750
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Figure 1 shows the minimal required re-order point (called ’Inventory level’)
on the x-axis for obtaining either a maximum expected number of units short
(called ’Max number of units short’) on the left y-axis or a maximum shortage
probability (called ’Max shortage probability’) on the right y-axis. The man-
ager can easily obtain, from this figure, the required inventory level selecting
the lower values of ’Inventory level’ corresponding to both of his targets. The
detailed Lingo code is written in appendix for a combination of z3 = 2 and z4

= 0.1 for the numerical example under study throughout the whole paper.

Figure 1: Minimal required inventory level based on the maximum expected
number of units short and the maximum stock-out probability

Conclusions

A logistics manager should determine the level of safety stock for goods in in-
ventory based on service level criteria like the expected number of units short
or the stock-out probability per replenishment cycle. The decision makes use
of the probability distribution of demand during lead time, but if that distribu-
tion is not fully specified, the decision maker is confronted with an additional
uncertainty. In that case, he might choose to find the least value of safety stock
that leads to the required service level criteria values in the worst cases. This
paper offers a tool to support the manager in his decision. The answer to his
decision question is formulated as a linear program. The paper shows how such
a linear program can be used in the case the information on the distribution of
demand during lead time is limited to the range, the expected value and the
absolute second moment. The method is illustrated both for the criteria of ’ex-
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pected number of units short’ and ’stock-out probability’, and the combination
of both performance criteria.

Appendix

Lingo code for the combination model with z3 = 2 and z4 = 0.1:

(1) MIN = D;
(2) PROB1 +PROB2 +PROB3 +PROB4 +PROB5 +PROB6 +PROB7 +
PROB8 + PROB9 + PROB10 + PROB11 = 1;
(3) 5 ∗PROB2 +10 ∗PROB3 +15 ∗PROB4 + 20 ∗PROB5 + 25 ∗PROB6 +
30∗PROB7 +35∗PROB8 +40∗PROB9 +45∗PROB10 +50∗PROB11 = 25;
(4) 25 ∗ PROB2 + 100 ∗ PROB3 + 225 ∗ PROB4 + 400 ∗ PROB5 + 625 ∗
PROB6 +900 ∗PROB7 +1225 ∗PROB8 +1600 ∗PROB9 +2025 ∗PROB10 +
2500 ∗ PROB11 = 725;
(5) Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8 + Y9 + Y10 + Y11 = 1;
(6) PROB1 >= 0;
(7) PROB2 >= 0;
(8) PROB3 >= 0;
(9) PROB4 >= 0;
(10) PROB5 >= 0;
(11) PROB6 >= 0;
(12) PROB7 >= 0;
(13) PROB8 >= 0;
(14) PROB9 >= 0;
(15) PROB10 >= 0;
(16) PROB11 >= 0;
(17) − D <= 0;
(18) − D + 5 ∗ Y2 <= 0;
(19) − D + 10 ∗ Y3 <= 0;
(20) − D + 15 ∗ Y4 <= 0;
(21) − D + 20 ∗ Y5 <= 0;
(22) − D + 25 ∗ Y6 <= 0;
(23) − D + 30 ∗ Y7 <= 0;
(24) − D + 35 ∗ Y8 <= 0;
(25) − D + 40 ∗ Y9 <= 0;
(26) − D + 45 ∗ Y10 <= 0;
(27) − D + 50 ∗ Y11 <= 0;
(28) 23 ∗ Y1 + 5 ∗PROB2 + 10 ∗ PROB3 + 15 ∗PROB4 + 20 ∗ PROB5 + 25 ∗
PROB6 + 30 ∗ PROB7 + 35 ∗ PROB8 + 40 ∗ PROB9 + 45 ∗ PROB10 + 50 ∗
PROB11 <= 25;
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(29) 23 ∗ Y2 + 5 ∗PROB3 + 10 ∗ PROB4 + 15 ∗PROB5 + 20 ∗ PROB6 + 25 ∗
PROB7 + 30 ∗ PROB8 + 35 ∗PROB9 + 40 ∗PROB10 + 45 ∗PROB11 <= 25;
(30) 23 ∗ Y3 + 5 ∗PROB4 + 10 ∗ PROB5 + 15 ∗PROB6 + 20 ∗ PROB7 + 25 ∗
PROB8 + 30 ∗ PROB9 + 35 ∗ PROB10 + 40 ∗ PROB11 <= 25;
(31) 23 ∗ Y4 + 5 ∗PROB5 + 10 ∗ PROB6 + 15 ∗PROB7 + 20 ∗ PROB8 + 25 ∗
PROB9 + 30 ∗ PROB10 + 35 ∗ PROB11 <= 25;
(32) 23 ∗ Y5 + 5 ∗PROB6 + 10 ∗ PROB7 + 15 ∗PROB8 + 20 ∗ PROB9 + 25 ∗
PROB10 + 30 ∗ PROB11 <= 25;
(33) 23 ∗ Y6 +5 ∗PROB7 +10 ∗PROB8 +15 ∗PROB9 +20 ∗PROB10 +25 ∗
PROB11 <= 25;
(34) 23∗Y7+5∗PROB8+10∗PROB9+15∗PROB10+20∗PROB11 <= 25;
(35) 23 ∗ Y8 + 5 ∗ PROB9 + 10 ∗ PROB10 + 15 ∗ PROB11 <= 25;
(36) 23 ∗ Y9 + 5 ∗ PROB10 + 10 ∗ PROB11 <= 25;
(37) 23 ∗ Y10 + 5 ∗ PROB11 <= 25;
(38) 23 ∗ Y11 <= 25;
(39) 0.9∗Y1 +PROB2 +PROB3 +PROB4 +PROB5 +PROB6 +PROB7 +
PROB8 + PROB9 + PROB10 + PROB11 <= 1;
(40) 0.9∗Y2 +PROB3 +PROB4 +PROB5 +PROB6 +PROB7 +PROB8 +
PROB9 + PROB10 + PROB11 <= 1;
(41) 0.9∗Y3 +PROB4 +PROB5 +PROB6 +PROB7 +PROB8 +PROB9 +
PROB10 + PROB11 <= 1;
(42) 0.9∗Y4+PROB5 +PROB6+PROB7 +PROB8+PROB9+PROB10+
PROB11 <= 1;
(43) 0.9∗Y5+PROB6+PROB7+PROB8+PROB9+PROB10+PROB11 <=
1;
(44) 0.9 ∗ Y6 + PROB7 + PROB8 + PROB9 + PROB10 + PROB11 <= 1;
(45) 0.9 ∗ Y7 + PROB8 + PROB9 + PROB10 + PROB11 <= 1;
(46) 0.9 ∗ Y8 + PROB9 + PROB10 + PROB11 <= 1;
(47) 0.9 ∗ Y9 + PROB10 + PROB11 <= 1;
(48) 0.9 ∗ Y10 + PROB11 <= 1;
(49) 0.9 ∗ Y11 <= 1;
@FREE(D);
@BIN(Y1); @BIN(Y2); @BIN(Y3); @BIN(Y4); @BIN(Y5); @BIN(Y6);
@BIN(Y7); @BIN(Y8); @BIN(Y9); @BIN(Y10); @BIN(Y11);
@FREE(PROB1); @FREE(PROB2); @FREE(PROB3); @FREE(PROB4);
@FREE(PROB5); @FREE(PROB6); @FREE(PROB7); @FREE(PROB8);
@FREE(PROB9); @FREE(PROB10); @FREE(PROB11);
END
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