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Abstract

A module is reduced (in the sense of Lee and Zhou) if and only if it
is rigid and semicommutative. We record several conditions under which
rigidity implies the reduced module property.

1 Introduction

Reduced rings, i.e., rings without nonzero nilpotent elements, have been studied
by algebraists for over forty years (see [14]). The study of reduced modules was
initiated by Lee and Zhou in [11] and was continued in [4], [5], [12] and [2].
In this paper we study rigid modules, a class of modules related to reduced
modules.

All our rings are associative with identity, subrings and ring homomor-
phisms are unitary and - unless otherwise mentioned - modules are unitary left
modules. Domains need not be commutative. R denotes a ring and M denotes
an R-module. Module homomorphisms are written on the side opposite that of
scalars. We may not mention which letters denote elements of rings and which
of modules over them, when this is clear from the context. All our left-sided
concepts and results have right-sided counterparts. For unexplained concepts
and results we refer to [3] and [15].
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A left R-module is reduced (respectively, rigid) if given a ∈ R and m ∈ M
the condition a2m = 0 implies aRm = 0 (respectively, am = 0). Reduced
modules are certainly rigid, but the converse is not true as shown by Examples
2.20 and 2.21. Semiprime rigid modules are reduced (Theorem 2.43). All rigid
modules are reduced over von Neumann regular rings (Proposition 2.37), and
over semi-primary rings (Corollary 2.32).

The following terminology/known results will be used, often without explicit
mention:

1. A ring is left duo (respectively, left quo) if every left ideal (respec-
tively, maximal left ideal) is two-sided. Left duo rings are semicommutative,
i.e.,whenever ab = 0 we have acb = 0 for each element c of the ring. The ring
of 2× 2 upper triangular matrices over a field is a well-known example of a left
and right quo ring which is not left or right duo.

2. A ring R is symmetric if it satisfies the equivalent conditions (a)‘for
elements a, b, c ∈ R given abc = 0 we have bac = 0 ’, and (b)‘given abc = 0 we
have acb = 0’.

3. Reduced rings are symmetric; symmetric rings are reversible, i.e., for
elements a, b of R whenever ab = 0 we have ba = 0; reversible rings are
semicommutative, and semicommutative rings are abelian, namely, satisfy the
‘idempotents are central’ condition.

Throughout Nil(R) denotes the set of nilpotent elements of R, I(R) the set
of its idempotents and ann(M) the annihilator of the left R-module M .

2 Rigid Modules

We begin by recalling the definition of a reduced module [11].

Definition 2.1. A left R-module M is reduced if it satisfies the following
equivalent conditions.

(1) If for a ∈ R and m ∈ M , we have a2m = 0, then aRm = 0.
(2) Whenever am = 0, then aM ∩ Rm = 0.

Semicommutative modules were defined and studied in [7].

Definition 2.2. A left R-module M is semicommutative if the condition am =
0 implies aRm = 0.

Definition 2.3. A left R-module M is rigid if the condition a2m = 0 (for
elements a ∈ R and m ∈ M) implies am = 0.

Remark 2.4. If the left R-module R is rigid, then it follows - by choosing
m = 1 in Definition 2.3 - that the ring R is reduced. The converse being
trivial, the term ‘rigid ring’ is clearly redundant.
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Remark 2.5. A module M has any of the above three properties if and only
if every cyclic submodule of M has the same property. This obvious fact will
be used without mention.

We note the following characterization of rigid modules.

Proposition 2.6. A left R-module M is rigid if and only if for each integer
k ≥ 2 the condition akm = 0 implies am = 0.

Proof Assuming that akm = 0 holds we choose an integer n for which 2n ≥ k.
Clearly a2n

m = 0 yields, on applying the rigidity hypothesis repeatedly, am =
0. �

For later use we record the following remark.

Remark 2.7. Let M be a rigid R-module and let a ∈ Nil(R) so that for some
integer k ≥ 1 we have ak = 0. By Proposition 2.6, we have a ∈ ann(M),
yielding Nil(R) ⊂ ann(M).

We have the following characterization of reduced modules, supplementing
that given in Definition 2.1.

Proposition 2.8. The following conditions are equivalent for a left R-module
M .

(1) M is reduced.
(2) If aRam = 0 holds, we have aRm = 0.
(3) M is rigid and semicommutative.
(4) If for some integer k ≥ 1 we have a(Ra)km = 0, then aRm = 0.
(5) If for some integer k ≥ 2 we have akm = 0, then aRm = 0.

Proof (1) =⇒ (2). The condition aRam = 0 yields a2m = 0, which implies,
since M is reduced, aRm = 0.

(2) =⇒ (3). Since am = 0 yields aRam = 0, it follows that aRm = 0,
and so M is semicommutative. Further a2m = 0 yields aRam = 0, by the
semicommutativity of M , which yields aRm = 0.

Since the implication (3) =⇒ (1) is clear, and the equivalences (1) ⇐⇒ (5)
and (2) ⇐⇒ (4) can be proved by the method of Proposition 2.6 the proof is
complete. �

We shall use Propositions 2.9, 2.10 and 2.12 and also their analogues in the
reduced and semicommutative cases (partially noted in [7] and [12]) without
explicit mention.

Proposition 2.9. Let θ : R −→ A be a ring homomorphism. Let M be a left
A-module; then M is an R-module via r.m = θ(r)m.

(1) If AM is rigid, then so is RM .
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(2) If θ is onto and RM is rigid, then so is AM .
(3) If θ is onto and RA is a rigid module, then A is a reduced ring and RA

is a reduced module.

Proof (1). Let a ∈ R, m ∈ M be such that a2m = 0. Then θ(a)2m = 0.
Since AM is rigid, we have θ(a)m = 0 which implies am = 0. The proofs of
(2) and (3) are similar. �

Proposition 2.10. 1. Let M be a left A-module, let R be a subring of A,
and N an R-submodule of M . If M is rigid over A, then N is rigid over
R.

2. The class of rigid modules (over a given ring R) is closed under direct
products, submodules and direct sums.

3. Let {Ri}{i∈I} be a family of rings and let {Mi}{i∈I} be a family of left Ri-
modules. Write R0 (respectively, M0) for the direct product of the rings
Ri (respectively, modules Mi). Then (with its natural structure) the R0-
module M0 is rigid (respectively, reduced) if and only if each Ri-module
Mi is rigid (respectively, reduced).

Example 2.11. Let p be a prime integer. The cyclic group of p elements is a
rigid Z-module. However, the cyclic group of p2 elements is not rigid as a Z-
module. This shows that the class of rigid modules is not closed under module
extensions.

An R-module M is torsionless if M is a submodule of a direct product of
copies of R, equivalently, if given m ∈ M , m 	= 0, there exists q ∈ M∗ =
HomR(M, R) such that mq 	= 0. If M is a faithful R-module, then R is a
submodule of a direct product of copies of M . An application of Proposition
2.10(2) and Remark 2.4 yields the following proposition.

Proposition 2.12. The following conditions are equivalent.

1. R is a reduced ring.

2. Every torsionless R-module is rigid.

3. Every submodule of a free R-module is rigid.

4. There exists a faithful, rigid R-module.

Remark 2.13. For an R-module M , let R denote the ring R/ann(M) and
let E(M) denote the ring of its R-endomorphisms. Consider the following
conditions.

1. The left R-module M is rigid.
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2. The left R-module M is rigid.

3. R is a reduced ring.

4. The right E(M)-module M is rigid.

5. The ring E(M) is reduced.

Then it can be checked that (1) ⇐⇒ (2) =⇒ (3) and (4) =⇒ (5). However,
there exist faithful, non-rigid modules over commutative reduced rings and so
condition (3) does not imply (1); also, if M is a simple, non-rigid left R-module,
then M is rigid as a right module over the division ring E(M), and so (4) does
not imply (1).

Certainly, the rigidity of the left R-module M does not, in general, imply
that the ring E(M) is reduced. (Consider a vector space of dimension ≥ 2.)
However, this does happen in the case of cyclic modules, as noted in Proposition
2.15 below.

Remark 2.14. Let B be a left ideal of a ring R. By the idealizer of B in R we
mean the subring L(B) := {x ∈ R|Bx ≤ B} of R. L(B) contains B as an ideal,
and is the largest subring of R to do so. The endomorphism ring of R/B is
isomorphic to L(B)/B. We use these ideas to prove the following proposition.

Proposition 2.15. Suppose that the cyclic left R-module M is rigid. Then its
endomorphism ring E(M) is reduced.

Proof Write M ∼= R/B where B is a left ideal of R. Consider the ring L(B)/B
in the notation of Remark 2.14. Since L(B)/B is an L(B)-submodule of R/B,
it is rigid as a left L(B)-module. By Proposition 2.9(3) L(B)/B is a reduced
ring. Hence, as noted in Remark 2.14, the ring E(M) is reduced. �

In the next definition we introduce a class of modules which (over a given
ring) contains all rigid modules. Recall that - extending the definition of a
symmetric ring - an R-module M is called symmetric if given x, y ∈ R and
m ∈ M the condition xym = 0 implies yxm = 0.

Definition 2.16. A left R-module M is semisymmetric if whenever xy = 0
for elements x, y of R, yx ∈ ann(M).

Remarks 2.17. (a) Symmetric modules are clearly semisymmetric. Next, let
M be a rigid R-module. Since, for elements x, y ∈ R, the condition xy = 0
implies yx ∈ Nil(R), the module M is semisymmetric, by Remark 2.7 .

(b) Clearly, the ring R is reversible if and only if R is semisymmetric as a
left (or, right) module over itself if and only if all left (or, right) R-modules are
semisymmetric if and only if there exists a faithful semisymmetric R-module.
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(c) By an argument similar to that given in the proof of Proposition 2.15
we can show that the endomorphism ring of a cyclic, semisymmetric module is
reversible.

(d) For later use we record the result that if a left ideal J is semisymmetric
(as a left R-module), then for x, y ∈ R satisfying xy = 0 and u, v ∈ J we have
yxu = 0 yielding xuyv = 0.

(e) We note, in passing, that if a left ideal J is semicommutative (as a left
R-module), then for x, y ∈ R satisfying xy = 0, u ∈ R and v ∈ J we have
xyv = 0 and so - using yv ∈ J - we deduce xuyv = 0 - a property stronger than
that noted in (d).

Following [1] an R-module M is abelian if given a ∈ R, e ∈ I(R) and m ∈ M
we have aem = eam. (Classically, a module is called abelian if its endomor-
phism ring is abelian. A vector space is abelian in the sense of the ‘classical’
definition if and only if its dimension is 0 or 1, while all vector spaces are
abelian in our sense.) It was noted in [1] that symmetric modules are abelian.
Since reduced modules are symmetric, as noted in Proposition 2.2 of [12], it
follows that if M is a reduced module, then M is abelian. In Corollary 2.19 we
note that this last implication ‘factors through’ rigid modules.

Proposition 2.18. Semisymmetric modules are abelian.

Proof Let a ∈ R, e ∈ I(R) and m ∈ M , a semisymmetric module. Since
e(a − ea) = 0 we have (a − ea)em = 0, yielding aem = eaem. Similarly we get
eam = eaem yielding aem = eam. �

Corollary 2.19. Rigid modules are abelian.

Examples 2.20 and 2.21 show that rigid modules need not be reduced.

Example 2.20. Let T = L < X, Y > be the ring of polynomials in non-
commuting indeterminates X and Y over a field L and let M be the cyclic
left T -module T/TX. We denote the residue class in M of a polynomial w =
w(X, Y ) ∈ T by w and assume that for some nonzero element f ∈ T we have
f2w = 0. Write f = a+gX+hY, w = b+uX+vY , and fw = c+kX+pY where
a, b, c ∈ L and g, h, u, v, k, p ∈ T . Then f2w = cf + fkX + fpY ∈ TX implies
that the constant term of f2w, namely ac, vanishes. So we have 0 = ac = a2b,
yielding c = ab = 0. Hence fpY ∈ TX which implies fp = 0, yielding (since
f 	= 0) p = 0. It follows that fw = kX ∈ TX, implying fw = 0. Finally, since
X1 = 0, but XY 1 	= 0, the T -module M is not semicommutative, and hence
is not reduced.

Next we exhibit a left ideal of a ring, which is rigid but is not reduced
as a left module over that ring. We construct it by applying the principle of
idealization.
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Example 2.21. Let T be a ring, M a left T -module and E = E(M) the ring
of T -endomorphisms of M . Recall that M has the canonical structure of a left
T -, right E-bimodule. Consider the following ring.

U :=
{(

t m
0 α

)
|t ∈ T, m ∈ M, α ∈ E

}

with usual formal matrix multiplication. Then

M̃ =
{(

0 m
0 0

)
|m ∈ M

}

is an ideal of U . Trivially, M̃ is rigid (respectively, reduced) as a left U -module
if and only if M is rigid (respectively, reduced) as a left T -module. Hence
choosing T and M as in Example 2.20 we get an example of a rigid left ideal
which is not reduced.

Remark 2.22. In view of these examples it is of interest to consider conditions
which are sufficient for rigid modules to be reduced, equivalently, as noted in
Proposition 2.8, semicommutative. We shall say that a ring R has property
(P) (on the left) if all rigid (equivalently, by Remark 2.5, cyclic rigid) left R-
modules are reduced. Since, as noted in Proposition 2.11 of [7], a ring R is
left duo if and only if all left R-modules are semicommutative, left duo rings
certainly have property (P). By Example 2.20 domains need not have property
(P).

We note a ‘lifting condition’ for property (P).

Proposition 2.23. Suppose that the ring R has a nil ideal B such that A :=
R/B has property (P).Then R has property (P).

Proof Let M be a rigid R-module. By Remark 2.7 we have B ⊂ Nil(R) ⊂
ann(M). Hence M can be regarded as an A-module, and - by change of rings
results (Proposition 2.9) - it is a rigid A-module. Since A has property (P), M
is a reduced module, over A, and by ‘a change of rings’, over R.

In Proposition 2.25 we prove that if a direct summand of the left R-module
R is rigid, then it is reduced. �

Recall that the set of all idempotents of a ring R is denoted by I(R). An
element e ∈ I(R) is left semi-central if eRe = Re, equivalently, if ete = te for
each t ∈ R.

Remarks 2.24. (a) If the left ideal J of a ring R is rigid as a left R-module,
and if k ∈ R, j ∈ J satisfy k2 = 0 and kj = k, then k2j = 0 yields, by the
rigidity of J , k = kj = 0.

(b) If for an element e ∈ I(R) the R-module Re is rigid, then e is left semi-
central. (This can be quickly seen as follows. Let t ∈ R. We have (te−ete)2 = 0



A.M. Buhphang et al. 77

and (te − ete)e = te − ete yielding - by (a) - the condition te − ete = 0 and so
e is left semi-central.)

Proposition 2.25. If for some e ∈ I(R) the left R-module Re is rigid, then it
is reduced.

Proof Let a ∈ R and te ∈ Re satisfy ate = 0. Let s ∈ R. Since Re is a
semisymmetric left ideal, choosing x = a, y = te, u = se and v = e in Remark
2.17(d), we get asetee = 0. This implies, using the semi-centrality of e proved
in Remark 2.24(b), that aste = 0, proving that Re is semicommutative as a
left R-module. �

Various conditions related to the (von Neumann) regularity condition in rings
have played an important role in the study of a large number of classes of
rings. It is well-known that under the assumption of regularity, the conditions
‘reduced, semicommutative, abelian, reversible, left or right duo, left or right
quo’ are equivalent in a ring and each of them is equivalent to the strong
regularity condition. (A ring R is strongly regular if for each element a of R
there exists an element b satisfying a = ba2; it is well-known that this condition
is left-right symmetric.) In view of this it is of interest to see what role regularity
(and related) conditions in rings and modules play in the context of the rigidity
assumption.

An R-module M is semiprime [17] if given m ∈ M , m 	= 0, there exists
q ∈ M∗ = HomR(M, R) such that (mq)m 	= 0. The ring R is semiprime ( i.e.,
has no nonzero nilpotent ideals) if and only if the module RR is semiprime. A
module M is Z-regular (‘Zelmanowitz-regular’)[16] if given m ∈ M , there exists
q ∈ M∗ such that (mq)m = m. Semisimple, projective modules are Z-regular,
Z-regular modules are semiprime, and semiprime modules are torsionless. (We
use semisimple in the sense of Bourbaki [6].)

A module M is E-regular (‘Elliger-regular’ [9]), if every cyclic submodule
of M is a direct summand of M . Semisimple modules as well as Z-regular
modules are E-regular.

The Jacobson radical Rad(M) of a module M is the intersection of all its
maximal submodules. A module M is semiprimitive if Rad(M) = 0.

Let Q be a property of modules. We say a module M is completely Q (re-
spectively, cyclically Q) if every factor module (respectively, cyclic submodule)
of M has property Q. Let M denote the rationals (regarded as an additive
Z-module). Since M∗ = 0, M is not semiprime; since Rad(M) = M it is not
semiprimitive. However, it is both cyclically semiprime and cyclically semiprim-
itive.

If a free left R-module M is rigid, then it certainly is reduced, since a
nonzero free module has a copy of R as a direct summand. In what follows we
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prove analogues of this result for other classes of modules; namely, for semisim-
ple modules, regular modules as defined by Zelmanowitz and Elliger, semiprime
modules and some other related classes of modules.

We first consider semisimple modules. We begin with a lemma.

Lemma 2.26. Suppose that for a left ideal B 	= R of a ring R the left R-module
R/B is rigid. If x ∈ R, then we have B + Bx 	= R.

Proof Suppose that for some element x ∈ R we have B + Bx = R, yielding
the existence of elements a, b ∈ B satisfying 1 = a+ bx. Then b2x = b− ba ∈ B
yields, since R/B is rigid, bx = 1 − a ∈ B implying B = R, a contradiction! �

Remark 2.27. Let R be a ring and let B be an ideal of R. By ‘change of
rings’ results, the R-module R/B is certainly reduced whenever the ring R/B
is reduced. This applies, trivially, when B is an intersection of some family
of prime ideals of a commutative ring R. However, as the following example
shows, even when B is a maximal left ideal of a left and right principal ideal
domain R, the simple R-module R/B need not be rigid:

Example 2.28. Let H be the division ring of real (or rational) quaternions.
Denote by R the ring H [X], and let (with usual notation) B = R(X + i), a
maximal left ideal of R. Since i(X + i) + k(X + i)j = −2, a unit in R, we have
B + Bj = R. Hence, by Lemma 2.26, the R-module R/B is not rigid.

We could not find a reference in the literature for the proof of the sufficiency
of condition (2) in the next proposition for a maximal left ideal to be an ideal.

Proposition 2.29. Let μ be a maximal left ideal of a ring R. Then the fol-
lowing conditions are equivalent:

(1) The left R-module R/μ is rigid;
(2) Given x, y ∈ R satisfying x2y ∈ μ, we have xy ∈ μ;
(3) μ is an ideal;
(4) The left R-module R/μ is reduced.

Proof The equivalence of (1) and (2) is obvious. Next assume (1) and let
x ∈ R. By Lemma 2.26 we have μ + μx 	= R yielding, since μ is maximal,
μx ≤ μ, proving (3). Next, if (3) holds, the ring R/μ is a division ring and
hence is a reduced ring. By ‘change of rings’ results R/μ must be a reduced
R-module. �

Corollary 2.30. If a simple (semisimple) module is rigid, then it must be
reduced.

Proof A simple, rigid R-module is reduced since it is of the form R/μ for
some maximal left ideal μ of R. Every semisimple module is a direct sum of
some family of its simple submodules. �
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Corollary 2.31. Semisimple rings have property (P).

Proof Every module over a semisimple ring is, indeed, semisimple. � A
ring R is semiprimary if Rad(R) is nilpotent and the factor ring R/Rad(R) is
semisimple (see [3], p.175). Left or right Artinian rings are semiprimary. An
application of Proposition 2.23 and Corollary 2.31 yields the following result.

Corollary 2.32. Semiprimary rings have property (P).

Remark 2.33. A module-theoretic property which is preserved by direct prod-
ucts and submodules, and which holds for simple modules, also holds for
semiprimitive modules, since such modules are submodules of direct products
of simple modules.

Proposition 2.34. The following conditions are equivalent:
(1) R is left quo.
(2) Every simple left R-module is reduced.
(3) Every simple left R-module is rigid.
(4) Every semiprimitive module is rigid.

Proof (1) ⇐⇒ (2) is a part of Proposition 3.6 of [12].
(2) =⇒ (3) is trivial.
(3) =⇒ (1). This follows from Proposition 2.29.
(3) ⇐⇒ (4) holds by the preceding remark. �

Remark 2.35. The structure of rigid (equivalently, by Corollary 2.31, reduced)
modules over a semisimple ring can now be determined by using the Wedder-
burn structure theorem, which asserts that a semisimple ring R is a finite direct
product of full matrix rings Ri over division rings Di. When Ri = Mni(Di)
with ni ≥ 2, the zero module is the only reduced Ri-module. On the other
hand, when Ri = Di, all left Di-vector spaces are reduced modules. All reduced
R-modules can now be described using Proposition 2.10(3).

In what follows we study the rigidity condition in the context of (von Neu-
mann) regularity and related properties in modules and rings. We begin with
an extension of a result from [12].

Proposition 2.36. The following conditions are equivalent.
(1) Every left R-module is reduced.
(2) Every left R-module is rigid.
(3) The ring R is strongly regular.

Proof The implication (1)=⇒(2) is trivial and (3)=⇒ (1) is proved in Theorem
2.16 of [12]. (2)=⇒(3). (For the sake of completeness we note the following
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analogue of an argument used in the proof of Theorem 2.16 of [12].) Let a ∈ R
and let M = R/Ra2. Let 1 denote the residue class of the element 1 in M .
Since a21 = 0 in M the rigidity assumption yields a1 = 0 in M . This yields
a = ba2 for some b ∈ R. �

Next we show that regular rings have property (P); this extends Corollary
2.31.

Proposition 2.37. Over a regular ring all rigid modules are reduced.

Proof By Remark 2.5 we may assume M to be cyclic. Write R = R/ann(M).
Then the R-module M is rigid and faithful. It follows, by Proposition 2.12,
that the ring R is (regular and) reduced. Hence, by Proposition 2.36, M is
reduced as an R-module and also as an R-module. � Z-regular
modules have been defined in the remarks after Proposition 2.25.

Proposition 2.38. If M is a Z-regular and rigid R-module, then M is reduced.

Proof It is enough to prove Rm is reduced for each m ∈ M . Since M
is Z-regular, there exists q ∈ M∗ satisfying (mq)m = m. This implies that
e := mq is an idempotent in R and the restriction of q to Rm is an R-module
isomorphism from Rm to Re. Since M is rigid, Re is also rigid - and therefore,
by Proposition 2.25, reduced - as an R-module. It follows that Rm is a reduced
module. �

Remark 2.39. A module M is called anti-regular if for each nonzero element m
of M , there is a nonzero element q ∈ M∗ = HomR(M, R) such that q(mq) = q.
(The canonical right R-module structure on M∗ is exploited here.) The moti-
vation for this term comes from the theory of generalized inverses. Anti-regular
modules were studied in a series of papers beginning with [8]. Z-regular mod-
ules are anti-regular; if M is an E-regular (respectively, an anti-regular) module,
then every nonzero submodule of M contains a nonzero direct summand (re-
spectively, a nonzero projective direct summand) of M . We shall call a module
M satisfying the condition ‘every nonzero submodule of M contains a nonzero
direct summand of M ’ E-antiregular. While anti-regular modules can be seen
to be semiprime, E-antiregular modules need not even be cyclically semiprime,
as shown by the example of (for a prime integer p) the simple Z-module Z/pZ.

Proposition 2.40. (a) E-antiregular modules are semiprimitive.
(b) If an E-antiregular module is rigid then it is reduced.

Proof (a) We record the proof for the sake of completeness. Let M be an
E-antiregular module, and let m be a nonzero element of M . By hypothesis,
the R-module Rm contains a nonzero direct summand W of M . Since W is a
direct summand of Rm as well, it is cyclic and, therefore, contains a maximal
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submodule V . If W ′ is a complementary direct summand of W in M , it is
easily seen that V + W ′ is a maximal submodule of M satisfying m /∈ V + W ′

proving the semiprimitivity of M .
(b). Let, if possible, M be an E-antiregular rigid R-module which is not

reduced. Then there exist elements a, t ∈ R and m ∈ M which satisfy am = 0
and atm 	= 0. By hypothesis, there is a nonzero direct summand V of M which
is contained in Ratm. Since V is a direct summand of Rm also, Rm = V ⊕W
for some submodule W of Rm. Write m = v + w for elements v ∈ V, w ∈ W .
Then we have 0 = am = av + aw yielding av = 0. Note that v = ratm for
some r ∈ R. Hence 0 = av = aratm = (ra)2tm implying, since M is rigid,
v = ratm = 0. So m = w ∈ W implying that V = 0, a contradiction. �

Next we consider modules which are completely rigid, i.e., satisfy the con-
dition ‘all factor modules are rigid’.

Proposition 2.41. If M is a cyclically semiprimitive, completely rigid module,
then M is reduced.

Proof It is enough to prove that for each nonzero element m of M , the R-
module Rm is reduced. Suppose, if possible, for some elements a, b, t ∈ R
we have abm = 0 and atbm 	= 0. As Rm is semiprimitive, it has a maximal
submodule W satisfying atbm /∈ W . Now the simple R-module Rm/W is rigid,
being a submodule of the rigid module M/W . Hence, by Corollary 2.30, the
R-module Rm/W is reduced. However,with m denoting the residue class of m
in M/W , we have abm = 0 and atbm 	= 0. �

Recall that a left R-module M is a co-semisimple module (also called a
V-module) if every simple R-module is M-injective in the sense of Azumaya.

Corollary 2.42. A completely rigid, co-semisimple module is completely re-
duced.

Proof Let M be a completely rigid, co-semisimple module. By Exercise 23 on
p.216 of [3], a module is co-semisimple if and only if it is completely semiprim-
itive. Hence every factor module of M is a completely rigid, semiprimitive
module and is, therefore, reduced, by Proposition 2.41. �

In our final result we add conditions (3) and (4) to those considered in
Proposition 3.2 of [12].

Theorem 2.43. Let M be a cyclically semiprime module. Then the following
conditions are equivalent.

(1)M is reduced.
(2)M is symmetric.
(3)M is rigid.
(4)M is semisymmetric.
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(5)M is semicommutative.

Proof The equivalence of (1),(2) and (5) follows from Proposition 3.2 of
[12]. Next (1) =⇒ (3) by the definitions and (3) =⇒ (4) has been noted in
Remark 2.17(a). Finally, assume that (4) holds, and that for some a, t ∈ R and
m ∈ M we have am = 0 and atm 	= 0. As M is cyclically semiprime, for some
q ∈ (Rm)∗, we have [(atm)q]atm 	= 0. It follows that (mq)aM 	= 0. However,
am = 0 yields a(mq) = (am)q = 0 which implies, since M is semisymmetric,
(mq)a ∈ ann(M), a contradiction. Hence (5) holds, and this concludes the
proof of the theorem. �

3 Concluding Remarks

Remark 3.1. Some results in §2 follow from other results. For example, Corol-
lary 2.31 is a special case of Proposition 2.37. Also Proposition 2.38 can be
deduced from either Proposition 2.40(b) or Theorem 2.43 since Z-regular mod-
ules are both E-antiregular and semiprime. However, we have retained the
proofs of Corollary 2.31 and Proposition 2.38 given here since these proofs as
well as some intermediate results (like Propositions 2.25 and 2.29) seem to be
of independent interest.

Remark 3.2. We record a few questions arising out of our study.
1. Consider the following conditions for a left R-module M .
(1) M is rigid.
(2) The left R[x]-module M [x] is rigid.
(3) The left R[[x]]-module M [[x]] is rigid.
The implications (3) =⇒ (2) and (2) =⇒ (1) are consequences of Proposi-

tion 2.10(1). We do not know if (1)=⇒(3) holds; its analogue holds for reduced
modules but is false for semicommutative modules.

2. The study of reduced modules in [11] was partly motivated by the rela-
tionship of reduced rings with Armendariz rings, a notion introduced in [13].
A ring R is Armendariz if given polynomials f(x) = Σaix

i and g(x) = Σbjx
j

with coefficients in R, the condition f(x)g(x) = 0 implies aibj = 0 for every i
and j. It was pointed out in 4.7 of [13] that this concept can be extended to
modules and to the power series situation.

In [10] Kim, Lee and Lee studied the power series analogue of the ‘Armen-
dariz ring’ concept; they called such rings power-serieswise Armendariz rings.
Extending this concept to modules an R-module M is ps-Armendariz if when-
ever f(x) =

∑
aix

i ∈ R[[x]], g(x) =
∑

mjx
j ∈ M [[x]] (the power series

module) satisfy f(x)g(x) = 0, we have aimj = 0, ∀i and ∀j.
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We have the following implications in the module case: rigid + semicommu-
tative =⇒ ps-Armendariz =⇒ Armendariz + semicommutative. Against this
background we can ask whether semicommutativity can be ‘dropped’ from the
first and third conditions noted here, i.e., we can ask:

2.1. Are all rigid modules Armendariz?
The following question also arises in a natural manner.
2.2. Are all rigid, Armendariz modules reduced?
Since rigid modules need not be reduced, at least one of these two questions

has a negative answer.
3. A number of questions involving property (P) arise naturally from the

above study. We record a few:
3.1. Is the condition ‘R has property (P)’ left-right symmetric?
3.2. Do left Ore domains (or at least left principal ideal domains)/left quo

rings/quasi-simple rings have property (P)?
4. In Propositions 2.40 and 2.41 we have given some evidence to suggest

that the following question may have an affirmative answer: Are all semiprim-
itive, rigid modules reduced?
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