
East-West J. of Mathematics: Vol. 15, No 1 (2013) pp. 54-69

ON SOME CLASSES OF FRACTIONAL

STOCHASTIC DYNAMICAL SYSTEMS

Tran Hung Thao

Dept. of Mathematics, Dong-A University of Technology
Vo-Cuong District, Bac-Ninh City, Bac-Ninh Province, Vietnam

Email: thaoth2001@yahoo.com

Abstract

A simple method for investigating two classes of fractional stochas-
tic dynamical systems previously studied by other authors is proposed.
Based on a practical approach to fractional SDE’s, the method gives
an effective and easy way for practioners to solve fractional stochastic
problems related to these classes. Some well-known particular cases are
discussed using this approach.

1. Introduction

It is known that there exist phenomena where the occurrence of an event may
influence upon what that happens long time later. This fact requires studies on
stochastic dynamical systems of long-range dependence. And those on systems
driven by a fractional Brownian motion (fBm) have expressed to be a good
reply.
A fBm WH

t with Hurst index H ∈ (0, 1) is a centered Gaussian process such
that its covariance function R(t, s) = EWH

t W
H
s is given by

R(t, s) =
1
2
(t2H + s2H − |t− s|2H).

For H = 1
2 , WH

t is the usual standard Brownian motion Wt.
For H �= 1

2
, WH

t is not a martingale as Wt; it is a process having memory.
That is why the mechanism of Ito calculus cannot be applied.
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Many achievements have been made for fractional stochastic dynamics driven
by a fBm from various approaches. A short story of the development can be
found in the Introduction of papers [1,2] from there we can cite some best
contributions by T. E. Duncan, D.Nualart, L. Decreusefond, M. Zähle, M.
Taqqu, R. J. Elliott, ...[3-10].

In this paper we discuss about the two classes of dynamical systems ex-
pressed by fractional stochastic differential equations:

dXt = f(t, Xt)dt+ c(t)XtdBHt , X(t = 0) = X0 (1.1)

and
dXt = f(t, Xt)dt+ c(t)dBHt , X(t = 0) = X0 (1.2)

where BHt is a fractional Brownian motion.
We would like to propose a simple method for proving the solution’s existence
and uniqueness and solving these classes of equations under some assumptions
that are not difficult to be checked.
From a practical approach to the theory, T. H. Thao and his colleagues have
studied on fractional stochastics driven by a fBm of Liouville form (LfBm)
based on a crucial fact that any LfBm can be approached in the space L2(Ω,F , P )
by semimartingales ([11-19]).
A LfBm BHt is defined by

BHt =
∫ t

0

(t − s)αdWs

where α = H−1/2 and Wt is a standard Brownian motion. It is related to the
Mandelbrot form WH

t mentioned above by

WH
t = CH(Zt + BHt )

where Zt is a process of absolutely continuous sample paths and CH is a con-
stant depending only to H ∈ (0, 1) and therefore the long memory property
focuses at the process BHt . We will work with BHt instead of WH

t in our study.

D. Nualart and al. in [4] have introduced the semimartingale

BH,εt =
∫ t

0

(t− s+ ε)αdWs,

with
dBH,εt = αϕεtdt+ εαdWt for every ε > 0

where

ϕεt =
∫ t

0

(t− s+ ε)α−1dWs.
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We have proved in [11] that BH,εt converges uniformly in t ∈ [0, T ] to BHt . So
after constructing an approximation theory for fractional stochastic integration
and differential equations ([1, 11, 12, 13]) we see that a common scheme for
solving a fractional model can be described as follows:

1. Replace BHt by BH,εt in the model to obtain an approximation model
driven by a semimartingale.

2. Solve the approximation model by the traditional stochastic calculus.

3. Prove that approximate solutions converges to the solution of the initial
model as ε→ 0.

The organization of this paper is as follows: After the introduction and recalling
some of our previous results on fractional stochastic integration and differential
equations, we show in Section 3 and Section 4 how to prove the existence and
uniqueness of two classes of equations (1.1) and (1.2) and how to solve them
in a simple way. Some of well-known particular cases are considered by this
method. An application of local linearization method and a fractional Merton’s
model for credit risk are discussed as well in Sections 5 and 6.

Throughout the paper,except for Section 2, the Hurst index is supposed to
be large than 1/2: 1/2 < H < 1.

2. Recall on fractional stochastic integration and

differential equations

We would like to make a brief recall on our previous results [1,11] that are
needed for using later.

2.1. Integration

(a) If {f(t, ω), 0 ≤ t ≤ T} is a process having trajectories of bounded variation
such that

E[
∫ T

0

f2(t, ω)dt] <∞ (2.1)

then we can define the integral It as follows:

It =
∫ t

0

f(s, ω)dBHt = f(t, ω)BHt −
∫ t

0

BHs df(s, ω) − [f, BH ]t (2.2)

where [f, B]t is the quadratic variation of f(t, ω) and BHt .
(b) Now we consider the usual stochastic integral Iεt given by

Iεt =
∫ t

0

f(s, ω)dBH,εt ,
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where f(s, ω) is the function mentioned above and BH,εt is the semimartingale
BH,εt =

∫ t
0
(t− s+ ε)αdWs, α = H − 1/2, 0 < H < 1.

(c) We can prove that Iεt converges to It defined by (2.1) in the space L2(Ω,F , P )
as ε → 0 and this convergence is uniform with respect to t ∈ [0, T ]:

∫ t

0

f(s, ω)dBHs = L2 − lim
ε→0

∫ t

0

f(s, ω)dBH,εt . (2.3)

(d) Motivated by the fact (c), we can define the integral for a general stochastic
process f(t, ω) satisfying (2.1) by the relation (2.3) provided the L2−limit exists
and is uniform with respect to t ∈ [0, T ].

2.2. Fractional stochastic differential equation.

(a) Consider a formal equation

dXt = b(t, Xt)dt+ σ(t, Xt)dBHt (2.4)

Xt|t=0 = X0, 0 ≤ t ≤ T

where b(t, x) and σ(t, x) are two continuous functions andX0 is a given random
variable such that E[X2

0 ] <∞.
(b) The relation (2.4) means that

Xt = X0 +
∫ t

)

b(s,Xs)ds+
∫ t

0

σ(s,Xs)dBHs , t ∈ [0, T ] (2.5)

if the stochastic integral in (2.5) exists.
(c) A solution of equation (2.4) is defined as a stochastic process (Xt, 0 ≤ t ≤ T )
adapted to the σ−algebra Ft = σ(X0, B

H
s , 0 ≤ s ≤ t ≤ T ) and satisfying (2.5).

(d) Existence and Uniqueness for solution.
Theorem 3.1 in [1] says that if b(t, x) and σ(t, x) satisfies the following condi-
tions:

(i) they are Lipschitzian with respect to x,

(ii) if
∫ t
0 σ(s,Xs)dBHs and

∫ t
0 σ(s, Ys)dBHs exist so does

∫ t
0 σ(s, αXs+βYs)dBHs ,

where α and β are any real constants and the fractional integrals are de-
fined in the sense of (2.3),

then there exists a unique solution of (2.4).
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3. On the equation of form

dXt = f(t, Xt)dt+ c(t)XtdBHt (3.1)

Some authors have studied this class of equations among them N. T. Dung
([2]) has used the technique of ”integrating factor” by B. Oksendal ([20]) and
method of R. Carmona ([21]) to prove a theorem of existence and uniqueness
for solution in his sense by convoking Malliavin calculus although he has been
starting from our approach of semimartingale L2−approximation.

In order to facilitate application works in practice, we would like to discuss
here how to investigate this kind of equation by using our simple method of
fractional stochastics mentioned in Section 2.

Proposition 3.1 Suppose that f(t, x) is a function satisfying Lipschitz condi-
tion with respect to x and c(t) is a deterministic continuous function on [0, T ].
Then there exists a unique solution Xt for Equation (3.1) given by

Xt = L2 − lim
ε→0

Xε
t (3.2)

where
Xε
t = yF−1

t ,

Ft = exp [−
∫ t

0

c(s)εαdWs +
1
2

∫ t

0

ε2αc2(s)ds] (3.4)

and y = y(t) is the solution of the following ordinary differential equation:

dy

dt
= Ft[f(t, yF−1

t ) + αϕεtyF
−1
t ] (3.5)

Proof The existence and uniqueness for the solutionXt of (3.1) is clear because
it is easy to verify that coefficients b(t, x) = f(t, x) and σ(t, x) = c(t)x satisfy
all conditions of theorem 3.1 of [1] that is recalled in 2.3.c.
The existence and uniqueness of the solution y of (3.5) is resulted from a simple
technique of ”integrating factor” as presented in [20]
Finally, the convergence (3.2) is assured by Theorem 4.1 in [1]. �

A linear equation.

In this subsection, we consider an important particular case of (3.1). We will
see how the mechanism given in Proposition 3.1 works for this case. Also the
problem of convergence Xε

t −→ Xt in L2 can be treated by some remark that
is much simpler than the method used in [2].
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Proposition 3.2. Consider the equation

dXt = [a(t)Xt + b(t)]dt+ c(t)XtdBHt , 0 ≤ t ≤ T (3.2.1)

Xt|t=0 = X0

where a(t), b(t) and c(t) are real continuous function on [0, T ]. Then the unique
solution of (3.2.1) is given by

Xt = exp [
∫ t

0

a(s)ds+
∫ t

0

c(s)dBHs ][X0 +
∫ t

0

b(s)e−
∫

s
0 c(u)dBH

u −∫
s
0 a(u)duds]

(3.2.2)

Proof Firstly we can say that equation (3.2.1) satisfies all conditions of Propo-
sition 3.1 and it has a unique solution which can be found explicitly by our
method of approximation.
The corresponding approximate equation to (3.2.1) is

dXε
t = [a(t)Xε

t + b(t)]dt+ c(t)Xε
t dB

H,ε
t

and set Xε
0 = X0.

dXε
t = [(a(t) + αϕεtc(t))X

ε
t + b(t)]dt+ εαc(t)Xε

t dWt (3.2.3)

Put
f̄(t, Xε

t ) = (a(t) + αϕεtc(t))X
ε
t + b(t)

Ft = exp(−
∫ t

0

εαc(s)dWs +
1
2

∫ t

0

ε2αc2(s)ds)

and
y = y(t, ω) = FtX

ε
t .

Equation (3.1.5)now becomes

dy

dt
= Ftf̄(t, F−1

t y)

= Ft[(a(t) = αϕεtc(t))F
−1y + b(t)]

or
dy

dt
− (a(t) + αϕεtc(t))y = b(t)Ft (3.2.4)

This is an ordinary linear differential equation with continuous coefficients on
[0, T ] so it has a unique solution expressed by

y = exp
( ∫ t

0

a(s)ds+
∫ t

0

c(s)dBH,εs − εα
∫ t

0

c(s)dWs

)×

× {
y0 +

∫ t

0

b(s) exp[−
∫ s

0

c(u)dBH,εu −
∫ s

0

(a(u) +
1
2
ε2αc2(u))du]ds

}
(3.2.5)
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where y0 = F0X
ε
0 = Xε

0 = X0.
And we have the solution Xε

t of (3.2.3) as

Xε
t = F−1

t y = exp(
∫ t

0

εαc(s)dWs − 1
2

∫ t

0

ε2αc2(s)ds).y

Xε
t =exp(

∫ t

0

a(s)ds+
∫ t

0

c(s)dBH,εs − ε2α

2

∫ t

0

c2(s)ds)×

× {
y0 +

∫ t

0

b(s) exp[−
∫ s

0

c(u)dBH,εu −
∫ s

0

(a(u) +
1
2
ε2αc2(u))du]ds

}
(3.2.6)

In order to find L2−limit of Xε
t as ε → 0 from its expression (3.2.6) we notice

a simple remark as follows:
Remark 3.2: Suppose f and g are two functions ∈ L2. We can say

1. If f is Lipschitzian then L2−limf(g) = f(L2−limg)

2. L2−limf.g = (L2−limf).(L2−limg) if f and L2-limg or g and L2-limf
are Lipschitzian.

3. L2−lim(f + g) = (L2−limf) + (L2−limg)

In taking account of this remark and noticing that the function ex is Lip-
schitzian in any finite interval of x, we can conclude that Xε

t converges in
L2(Ω,F , P ) to the solution Xt of the equation (3.2.1) given by

Xt = e
∫ t
0 a(s)ds+

∫ t
0 c(s)dB

H
s (X0 +

∫ t

0

b(s)e−
∫ s
0 c(u)dBH

u −∫ s
0 a(u)duds) (3.2.7)

or in a brief form

Xt = eψ(t)(X0 +
∫ t

0

b(s)e−ψ(s)ds) (3.2.7’)

where

ψ(t) = exp(
∫ t

0

a(s)ds+
∫ t

0

c(s)dBHs ). (3.2.8)

�

In the case where a(t) = μ = const, b(t) ≡ 0 and c(t) = σ = const > 0 we
have the equation

dXt = μXtdt+ σXtdB
H
t (3.2.9)

whose solution is a fractional geometric Brownian motion

Xt = X0 exp(BHt + μt) (3.2.10)

Equation (3.2.9) is used also for a fractional Black-Scholes model. It expresses
the fractional dynamics of a stock price.
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4. On the equation of form

dXt = f(t, Xt)dt+ c(t)dBHt , 0 ≤ t ≤ T (4.1)

Dealing with this equation, the author of [2] announced that the existence and
uniqueness for its solution was proved by Y. Mishura in her excellent book [22].
In fact there may be some confusions: Firstly, the driving fractional Brownian
motion used in Mishura’s book is of Mandelbrot form, not in Liouville form.
Secondly, the theorem of existence (Section 3.5.1 in [22]) is for a weak solution
that was defined by Mishura. It is not a theorem of existence and uniqueness
for a solution that may be obtained by the approximation approach used by
N. T. Dung.
And with our Theorem 3.1 and Theorem 4.1 in [1], we can see that if f(t, x)
and c(t) are supposed to be as in Section 3.1, the existence and uniqueness for
solution of (4.1) is obviously assured.
The approximation equation corresponding to (4.1) is

dXε
t = [f(t, Xε

t ) + αϕεtc(t)]dt+ εαc(t)dWt (4.1.1)

This is an Ito equation and its solution Xε
t converges to the solution Xt of

(4.1).
In general there is no explicit form for Xε

t , so not for Xt as well, except for
some particular cases for example when f(t, x) is a linear function and c(t) is
constant.

4.1. Another linear equation

Consider the equation

dXt = (a(t)Xt + b(t))dt+ c(t)dBHt , 0 ≤ t ≤ T (4.1.2)

where a(t), b(t) and c(t) are continuous functions on [0, T ].

Proposition 4.1 The solution of (4.1.2) is given by

Xt = e
∫ t
0 a(s)ds[

∫ t

0

b(s)e−
∫ s
0 a(u)duds+

∫ t

0

c(s)e−
∫ s
0 a(u)dudBHs +X0] (4.1.3)

Proof The way of finding the solution Xε
t of (4.1.1) can be found in [19] by

using a technique of ”splitting equation” firstly introduced by T. H. Thao and
T. T. Nguyen ([23]). Xt is obtained immediately from Xε

t in taking account of
Remark 3.2. �
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4.2 Fractional Brownian bridge.

Consider the equation

dXt = (− 1
1 − t

Xt +
b

1 − t
)dt+ dBHt , (4.2.1)

Xt|t=0 = a

Its corresponding approximation equation is

dXε
t = (− 1

1 − t
Xε
t +

b

1 − t
+ αϕεt)dt+ εαdWt, (4.2.2)

Xε
t |t=0 = a

Using the technique of ”splitting equation” we put

Xε
t = Xε

1(t) +Xε
2(t), X

ε
1(0) = a,Xε

2(0) = 0

where Xε
1(t) and Xε

2(t) are solutions of two following equations, respectively,

dXε
1(t) = − 1

1 − t
Xε

1(t)dt+ εαdWt, (4.2.3)

Xε
1(0) = a

dXε
2(t) = (− 1

1 − t
Xε

2(t) +
b

1 − t
+ αϕεt)dt, (4.2.4)

Xε
2(0) = 0

The first equation is a stochastic Langevin equation and the second is an or-
dinary linear differential equation of order 1. Combining their solutions Xε

1(t)
and Xε

2(t) and noticing that αϕεtdt+ εαdWt = dBH,εt then taking the L2-limit
of X∗

t = X∗
1 (t) +X∗

2 (t) we have the fractional Brownian bridge Xt from a to b
given by

Xt = a(1 − t) + bt+ (1 − t)
∫ t

0

dBHs
1 − s

(4.2.5)

We have to prove that the fractional noise ξt := (1 − t)
∫ t
0
dBH

s

1−s appeared in
(4.2.5) should converges almost surely to 0 as t → 1.
Indeed, it suffices to show that

ξεt := (1 − t)
∫ t

0

dBH,εs

1 − s
→ 0 a.s. when t → 1, (4.2.6)

where dBH,εs = αϕεsds+ εαdWs, α = H − 1/2 > 0.
We have

ξεt := α(1 − t)
∫ t

0

ϕεs
1 − s

ds+ εα(1 − t)
∫ t

0

dWs

1 − s
(4.2.7)
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For the second term of (4.2.7) where Wt is an usual standard Brownian motion,
it is known already that

(1 − t)
∫ t

0

dWs

1 − s
→ 0 a. s. when t→ 1 ([20])

This follows from an application of the Doob martingale inequality and that of
the Borel-Cantelli lemma. It is easy to extend this result as

(1 − t)
∫ t

0

dWs

(1 − s)α
→ 0 a. s. when t → 1 for α > 0. (4.2.8)

Now we have
∫ t

0

ϕεs
1 − s

ds =
∫ t

0

(
1

1 − s

∫ s

0

(s− u+ ε)α−1dWu)ds

=
∫ t

0

(
∫ t

u

1
1 − s

(s− u+ ε)α−1ds)dWu

=
∫ t

0

(
∫ t

u

ds

(1 − s)(s− u+ ε)1−α
)dWu

≤
∫ t

0

(
∫ t

u

ds

(1 − s)(s− u)1−α
)dWu

≤
∫ t

0

(
∫ t

u

ds

(1 − u)(1 − u)1−α
)dWu since 0 < u < s < t < 1.

Noticing that t− u < 1 and
∫ t

u

ds

(1 − u)α
=

t− u

(1 − u)α
<

1
(1 − u)α

we get almost surely

(1 − t)
∫ t

0

ϕεs
1 − s

≤ (1 − t)
∫ t

0

dWu

(1 − u)α
→ 0 as t → 1

in taking account of (4.2.8).
Therefore ξεt → 0 a.s. when t→ 1.

4.3 Fractional Ornstein-Uhlenbeck processes

We know that in the classical stochastic Langevin dynamics described by the
equation

dXt = −bXtdt+ σdWt (4.3.1)

Xt|t=0 = X0, 0 ≤ t ≤ T,
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and b, σ : const > 0, the solution is an Ornstein-Uhlenbeck process having the
form

Xt = X0e
−bt + σ

∫ t

0

e−b(t−s)dWs (4.3.2)

It has useful for study on volatility in various problems on stochastic dynamical
systems.

The fractional partner of (4.3.1) is the equation

dXt = −bXtdt+ σdBHt (4.3.3)

where BHt is a Liouville fractional Brownian motion.
Some authors such as P. Cheridito, H. Kawaguchi, M. Maejima [24,25] have

results on fractional Langevin equation driven by a fBm of Mandelbrot form.
Turning our attention to (4.3.3) we see that it is only a particular case of (4.1.3)
and it has been solved explicitly by the technique of ”splitting equation” in
[23,2]. Its solution is

Xt = X0e
−bt + σ

∫ t

0

e−b(t−s)dBHs (4.3.4)

It is called a fractional Ornstein-Uhlenbeck process that has many applica-
tions in practice, for example in the study on fractional volatility in a financial
evolution dynamics.

We can see again here an advantage of our approximate approach: it sup-
plies a simple method for solving the problem and the analogous form of (4.3.4)
in comparison of (4.3.3) can facilitate some similar calculations.

5. Local Linearization Method

The local linearization method was introduced by T. Ozaki [26] in consider-
ing nonlinear time series and dynamical system. This method firstly was an
attempt to obtain a numerical scheme in the form of a linear multivariate au-
togressive time series with state-dependent coefficient. R. Biscay and al. [27]
has extended to general scalar SDE’s and to non-autonomous multidimensional
SDE’s with additive noise.
In this section we consider how to apply this method for one-dimensional scalar
non- autonomous fractional stochastic differential equations (3.1) and (4.1)
studied above.

For both cases we make the approximation

f(t, x) ≈ f(t0 , x0) +
∂f

∂x
(t0, x0)(x− x0) +

∂f

∂t
(t0, x0)(t− t0) (5.1)

where x0 = X(t0) is a known deterministic value of X at a moment t0. In
some practical problems one needs only to receive values of the solution Xt
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near from a known value x0. And such an approximation may be useful to
avoid complicated calculations.

5.1 Local Linearization for Equation (3.1).

The approximation for (3.1) is the linear equation

dXt = [aXt + b(t) + d]dt+ c(t)XtdBHt (5.1.1)

where

a =
∂f

∂x
(t0, x0) = const,

b(t) =
∂f

∂t
(t0, x0)t

,

d = f(t0 , x0) − x0
∂f

∂x
(t0, x0) − t0

∂f

∂t
(t0, x0) = const.

Equation (5.1.1) is a particular case of (3.2.1)that can be solved explicitly by
(3.2.7).

5.2. Local Linearization for Equation (4.1)

The approximation equation is

dXt = [aXt + b(t) + d]dt+ c(t)dBHt (5.2.1)

It is a particular case of (4.1.2) with the explicit solution (4.1.3).

6. An application for Finance:

A fractional Merton model for default risk.

In the classical Merton’s model (1974) for valuing corporate liabilities, the
firm’s asset value is assumed to follow a diffusion process given by

dVt = rVtdt+ σvVtdWt, (6.1)

where σv is the asset volatility, r is the risk-free rate and Wt is a Brownian
motion. In this model, all probabilities and expectations are taken under the
risk neutral measure.
Now we consider a fractional analogous version of Merton model given by

dVt = rVtdt+ σVtdB
H
t (6.2)
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where BHt is a Liouville fractional Brownian motion. If at some time t the
asset’s value of a firm is less than its total debt Lt that should be paid at that
time and the company has not ability to pay for this, it will jump into default
risky state.
The problem is how to estimate the possibility for the occurrence of this risky
state. In other word, we have to consider the probability

P (Vt < Lt)

where P is a risk neutral probability.
It follows from (3.2.10) that the firm’s value Vt satisfying (6.2) has the form

Vt = V0 exp(rt+ σBHt ) (6.3)

Then Vt < Lt means that

lnV0 + rt+ σBHt < Lt.

And we have to calculate the probability

P (Vt < Lt) = P (BHt < xt), (6.4)

where xt :=
ln

V0
Lt

+rt

−σ .
For each t, BHt =

∫ t
0 (t− s)αdWs is a Gaussian random variable with

E(BHt ) = 0

σ2
H = V ar(BHt ) = E(BHt )2 = E(

∫ t

0

(t− s)αdWs)2

=
∫ t

0

(t − s)2αds =
t2α+1

2α+ 1
=
t2H

2H

So

BHt ∼ N (0,
t2H

2H
)

and

Pdefault = P (BHt < xt) =
1

σH
√

2π

∫ xt

−∞
exp(− x2

2σ2
H

)dx,

or

Pdefault =
√
H

tH
√
π

∫ ln(V0/Lt)+rt
−σ

−∞
exp(− H

t2H
x2)dx. (6.5)
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A numerical example

We try to calculate default probabilities for a company following our frac-
tional model in Section 6. Data are taken from Global Trust Bank (India)
during numerous fiscal years, since 1997-1998 up to 2000-2003 [28]. Each value
such as the total market value V0 of the firm, the risky free rate r, the asset
returns volatility σ, the debt L, is given for each fiscal year and the default
is considered for maturity t = 1 because credit risk models routinely assume
one-year time horizon for debt maturity.

Table 1. Case: H = 0.54, t = 1

t = 1 t = 1 t = 1 t = 1 t = 1 t = 1

Year 1997-98 98-99 99-2000 2000-01 2001-02 2002-03

V0 684.11 678.88 1100.76 1625.37 661.93 713.12

r 0.089 0.095 0.096 0.093 0.069 0.057

σ 0.345 0.258 0.338 0.506 0.276 0.130

L 256.39 593.24 661.42 365.775 421.55 511.68

H 0.54 0.54 0.54 0.54 0.54 0.54

P 0.0004088 0.1679888 0.0265376 0.0003600 0.0208928 0.0006162

Table 2. Case: H = 0.55, t = 1

t = 1 t = 1 t = 1 t = 1 t = 1 t = 1

Year 1997-98 98-99 99-2000 2000-01 2001-02 2002-03

V0 684.11 678.88 1100.76 1625.37 661.93 713.12

r 0.089 0.095 0.096 0.093 0.069 0.057

σ 0.345 0.258 0.338 0.506 0.276 0.130

L 256.39 593.24 661.42 365.775 421.55 511.68

H 0.55 0.55 0.55 0.55 0.55 0.55

P 0.0002313 0.1635527 0.0244118 0.0002861 0.0190700 0.0004990

Table 3. Case: H = 0.56, t = 1

t = 1 t = 1 t = 1 t = 1 t = 1 t = 1

Year 1997-98 98-99 99-2000 2000-01 2001-02 2002-03

V0 684.11 678.88 1100.76 1625.37 661.93 713.12

r 0.089 0.095 0.096 0.093 0.069 0.057

σ 0.345 0.258 0.338 0.506 0.276 0.130

L 256.39 593.24 661.42 365.775 421.55 511.68

H 0.56 0.56 0.56 0.56 0.56 0.56

P 0.0002554 0.1591935 0.0224308 0.0002265 0.0173843 0.0004027

Tables 1,2 and 3 corresponding to H = 0.54, 0.55, and 0.56 respectively are assumed
to be according to an inference result for H-index in some model of Dow-Jones return
[29]. One can see, the financial crisis in 1997-1998 has left consequences of default
risk for some subsequent years later. This example is only a simple illustration for
the model with many limitations of course. An application of the model into practice
requires much more rigorous studies.
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[4] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to frac-
tional Brownian motion with Hurst paramenter less than 1

2
, J. Stoc. Proc. Appl.,

86(1),(2000), 121-139.

[5] L. Decreusefond and A.S.Ustunel, Stochastic analysis of the fractional Brownian
motion, Potential Anal., 10(1999), 177-214.

[6] M. Zähle, Integration with respect to fractal function and stochastic calculus Part
I, Probab. theo. Rel. fields 111(1998) 33372.

[7] M. Zähle, Stochastic differential equations with fractal noise, Math. Nachr.
278(9),(2005), 1097-1106.

[8] M. Taqqu, Fractional Brownian motion and long-range dependence, Theory and
applications of long-range dependence, Birkhäuser,(2003),5-38.
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