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Abstract

Non-commutative geometry, conceived by Alain Connes, is a new
branch of mathematics whose aim is the study of geometrical spaces using
tools from operator algebras and functional analysis. Specifically metrics
for non-commutative manifolds are now encoded via spectral triples, a set
of data involving a Hilbert space, an algebra of operators acting on it and
an unbounded self-adjoint operator, maybe endowed with supplemental
structures. Our main objective is to prove a version of Gel’fand-Năımark
duality adapted to the context of Alain Connes’ spectral triples. In this
preliminary exposition, we present: a description of the relevant cate-
gories of geometrical spaces, namely compact Hausdorff smooth finite-
dimensional orientable Riemannian manifolds, or more generally Hermi-
tian bundles of Clifford modules over them; some tentative definitions
of categories of algebraic structures, namely commutative Riemannian
spectral triples; a construction of functors that associate a naive mor-
phism of spectral triples to every smooth (totally geodesic) map. The
full construction of spectrum functors (reconstruction theorem for mor-
phisms) and a proof of duality between the previous “geometrical” and
“algebraic” categories are postponed to subsequent works, but we provide
here some hints in this direction. We also conjecture how the previous
“algebraic” categories might provide a suitable environment for the de-
scription of morphisms in non-commutative geometry.
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Introduction

In A.Connes’ non-commutative geometry [9, 13, 15], every compact Hausdorff
spinorial Riemannian finite-dimensional orientable manifold (M, gM ) with a
spinorial Hermitian bundle S(M) and volume form μgM is associated to a
commutative regular spectral triple (A,H, DM ) where: A := C(M ; C) is the
unital commutative C*-algebra of complex valued continuous functions on M
with respect to the maximum modulus norm; H := L2(S(M)) is the Hilbert
space obtained by completion of the C(M)-module Γ(S(M)) of continuous
sections of the spinor bundle with respect to the norm induced by the inner
product 〈σ | ρ〉 :=

∫ 〈σx | ρx〉S(M)x
dμgM , for all σ, ρ ∈ Γ(S(M)); and DM is

the Dirac operator i.e. the closure of the densely defined essentially self-adjoint
operator obtained by contracting the spinorial Levi-Civita connection with the
Clifford multiplication.

A reconstruction theorem proved by A.Connes [10, 11] (see also [22, 23]
for previous only partially successful attempts) assures that a commutative
spectral triple (that is irreducible real, graded, strongly regular m-dimensional
finite absolutely continuous orientable with totally antisymmetric Hochschild
cycle in the last m entries, and satisfying Poincaré duality) is naturally isomor-
phic to the above mentioned canonical spectral triple of a spinorial Riemannian
manifold with a given Hermitian spinor bundle equipped with charge conjuga-
tion. The reconstruction theorem has been recently extended to cover the case
of Riemannian spectral triples [18] and to more general situations of almost
commutative (real) spectral triples [7, 8].

It is still an open problem to reformulate these reconstruction theorems for
(almost) commutative spectral triples in a fully categorical context in the same
spirit of such celebrated cornerstones of non-commutative topology as Gel’fand-
Năımark duality (between categories of continuous maps of compact Hausdorff
topological spaces and categories of commutative unital ∗-homomorphisms of
unital C*-algebras), Serre-Swan equivalence (between vector bundles and fi-
nite projective modules), or Takahashi duality (between Hilbert bundles over
compact Hausdorff spaces and Hilbert C*-modules over commutative unital
C*-algebras).

As a first step towards such duality results, several suggestions for the
construction of categories of spectral triples have been put forward (see for
example [12, 2, 3, 4, 5, 6] and the references therein). Of particular relevance
is the category of spectral triples recently constructed by B.Mesland [19, 20],
where morphisms are Kasparov KK-bimodules equipped with smooth structure
and connection.

In this very preliminary and tentative account our purpose, in the spirit
of Cartesian geometry, is to suggest a description of some possible dualities
between categories of geometrical spaces (usually compact Hausdorff smooth
finite-dimensional orientable Riemannian manifolds or more generally Hermi-
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tian bundles of Clifford modules over them), here collectively denoted by T,
and categories of algebraic functional analytic structures (usually some variants
of Connes’ spectral triples) here denoted by A. The dualities are realized via
two contravariant functors, the section functor Γ : T → A and the spectrum
functor Σ : A→ T as in the following diagram:

T
Γ

��

Σ

�� A.

In the commutative C*-algebras context, we will describe how to embed cat-
egories of smooth (totally geodesic) maps of compact Riemannian manifolds
into more general categories of Hermitian bundles and we will also see how a
section functor can be used to trade such categories of bundles with categories
of Hilbert C*-bimodules.

In the non-commutative C*-algebra case, we will mainly deal with topolog-
ical situations, discussing only the rather special categories of Hilbert C*-bi-
modules over tensor products of unital C*-algebras over commutative subal-
gebras. A more complete study aiming at the construction of functors from
Riemann manifolds to B.Mesland’s category of spectral triples and to the pos-
sible definition of involutive categories of spectral triples is left for future work.

Notes and Acknowledgments: A previous draft of this work appeared in
the collection of contributed full papers of the ICMA-MU 2013 “International
Conference in Mathematics and Applications - Mahidol University” (organized
in Bangkok on 19-21 January 2013) where, for personal reasons, the first author
refused to have his name mentioned.

The first author thanks his long time collaborator R.Conti at the “Sapienza”
University in Rome for the discussion of many topics related to this research. He
also thanks Starbucks Coffee at the 1st floor of Emporium Tower in Sukhumvit,
where he spent most of the time dedicated to this research project.

Categories of Manifolds, Bundles and

Propagators

The objects of our categories will be, for now, compact Hausdorff smooth
Riemannian orientable finite-dimensional manifolds that are not necessarily
connected.1 We have several interesting categories that can be naturally con-
structed:

1For background on manifolds, bundles and differential geometry, the reader is referred
for example to R.Abraham, J.Marsden, T.Ratiu [1] and L.Nicolaescu [21].
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a) The category M∞ of smooth maps between such manifolds and its sub-
categories M∞

e of smooth embeddings2 and M∞
s of smooth submersions.

b) The category R-M∞
e of smooth maps that are Riemannian embeddings

and R-M∞
s of smooth Riemannian submersions.

c) The category R-M∞
ge of totally geodesic smooth Riemannian embeddings

and R-M∞
gs of totally geodesic smooth Riemannian submersions.

d) The category R-M∞
gec of totally geodesic smooth Riemann embeddings of

connected components and R-M∞
gsc of totally geodesic smooth Rieman-

nian coverings.

There are natural inclusion functors between such categories as in the following
diagrams:

R-M∞
gec

� � �� R-M∞
ge

� � �� R-M∞
e

� � �� M∞
e

� � �� M∞

R-M∞
gsc

� � �� R-M∞
gs

� � �� R-M∞
s

� � �� M∞
s

� � �� M∞

The previous categories are not equipped with involutions, since the recip-
rocal relations are generally not functions, furthermore the categories of em-
beddings and submersions appear in a kind of dual role. A more satisfactory
involutive environment can be obtained considering (in the terminology often
used in algebraic geometry) cycles i.e. relations R between such manifolds that
are themselves compact (respectively (totally geodesic) Riemannian) orientable
sub-manifolds of the product manifold M

πM←−− M × N
πN−−→ N and equipping

them with “bundle-propagators” between the tangent bundles T (M) and T (N)
i.e. smooth Hermitian sub-bundles of π•

M(T (M))⊕π•
N(T (N))|R that are fiber-

wise linear (partial isometric, or equivalently partial co-isometric) relations
between the corresponding fibers of the pull-backs on R of the tangent bundles
of M and N .3 Furthermore, in order assure the closeness under composi-
tion of this category of bundle-propagators, we will actually work with smooth
((totally geodesic) Riemannian) relational spans M

ρM←−− R
ρN−−→ N of such

compact Hausdorff Riemannian manifolds (or diffeological spaces).
More generally, we can further “decouple” the Hermitian bundles from the

underlying Riemannian structure of the manifolds allowing “(amplified) prop-
agators” between arbitrary Hermitian bundles of Clifford modules over the

2Here and in all the subsequent items we could also consider categories of (injective)
immersions in place of embeddings.

3Since the equalizer of smooth maps between smooth manifolds usually is not a smooth
manifold, strictly speaking, the composition of smooth ((totally geodesic) Riemannian) cy-
cles between Hausdorff compact Riemannian orientable manifolds fails to be another such
manifold. In order to solve this problem it is appropriate to embed the previous categories
of manifolds into the corresponding categories of Hausdorff compact Riemannian orientable
finite-dimensional diffeological spaces [14, 16] and from now on, whenever necessary, we
will assume that such embedding has been done.
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given manifolds that are equipped with a compatible connection. In more
detail, given two smooth (diffeological) Hermitian bundles (E1, π1, X1) and
(E2, π2, X2) over compact Hausdorff smooth orientable finite-dimensional Rie-
mannian manifolds (diffeological spaces) X1 and X2, here is a description of
the morphisms in some of the several relevant categories E of bundles:

E1 The usual categories of bundle morphisms: (f, F ) where f : X1 → X2

is a morphism of manifolds (diffeological spaces) in any of the previous
categories M and F : E1 → E2 is a smooth map such that π2 ◦F = f ◦π1

and that is respectively fiberwise linear, isometric (when f is in Me),
co-isometric (if f is in Ms).

E2 The category of Takahashi bundle morphisms [24]: (f, F ) where the map
f : X1 → X2 is as above and F : f•(E2)→ E1 is a morphism of bundles
over X1 in the previous sense.

E3 The category of propagators of bundles: (E, γ, R) where R is a smooth
((totally geodesic) Riemannian) relational span X1 ρ1←− R

ρ2−→ X2 and E
is the total space of an Hermitian sub-bundle, over R, of the Whitney
sum ρ•1(E

1) ⊕ ρ•2(E
2), that is a fiberwise partial isometry i.e. the fiber

Er := γ−1(r) ⊂ ρ•1(E1)r ⊕ ρ•2(E2)r is the graph of a partial isometry
between ρ•1(E1)r and ρ•2(E2)r , for all r ∈ R.4

E4 The category of amplified propagators of bundles: (E, γ, R), where R is a
relational span as above and E is an Hermitian sub-bundle of the Whitney
sum ρ•1(E

1 ⊗W 1) ⊕ ρ•2(E
2 ⊗W 2), for two given Hermitian bundles W 1

over X1 and W 2 over X2 in such a way that, for every r ∈ R, Er is the
graph of a partial isometry.

We have natural inclusions relating the previous categories as follows:

E1 � � �� E3 E2 � � �� E3 E3 � � �� E4.

Whenever we have bundles of Clifford modules that are equipped with Clifford
connections, we can require our morphisms to be stable under the action of the
tensor product of the Clifford bundles and totally geodesic for the connection.

Exploiting the language of 2-categories, we can produce an even more effi-
cient way to encode such categorical structures:5 objects are compact Hausdorff
smooth orientable finite-dimensional manifolds (diffeological spaces) X1, X2;
1-arrows are Hermitian bundles E1, E2 (eventually equipped with a Clifford
action and a compatible connection) over relational spans between X1 and X2;
2-arrows are (amplified) propagators between such 1-arrows bundles, that can

4This category, as well as the category E4, is involutive and its morphisms can be consid-
ered as a bivariant version of Takahashi bundle morphisms.

5For details on higher categories, the reader is referred for example to T.Leinster [17].
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be required to be stable under the Clifford action and totally geodesic for the
connection. Note that, since 2-arrows are themselves bundles over relational
spans, the construction of arrows can be iterated obtaining arbitrary higher
categories T of bivariant bundles over relational spans.

We can now sketch the construction of embedding functors from the several
categories M of manifolds to E of bundles (and so into the higher categories T
of bivariant bundles).

Theorem 1. We have covariant Grassmann functors ΛC : M → E from the
previous categories of manifolds into the category E of (amplified) propagators
of bundles.

Proof. On the objects, the functor ΛC associates to every smooth orientable
Riemannian manifold M its complexified Grassmann algebra Hermitian bun-
dle ΛC(M) with its natural right and left Clifford actions of the complexified
Clifford algebra bundle Cl(M) and with the induced Levi-Civita Ehresman
connection.

On the arrows, the functor ΛC associates to every smooth map f : X1 → X2

the complexified Bogoljubov second quantized ΛC(Df) : ΛC(X1)→ ΛC(X2) of
the differential map Df : T (X1) → T (X2) of f . If the map f is a (totally
geodesic) Riemannian isometry or co-isometry, fiberwise the graph of ΛC(Df)
is an isometry or co-isometry and hence determines a propagator bundle. The
complexified Clifford functor Cl associates to every object M its complexified
Clifford bundle Cl(M) and to every Riemannian (co)isometry f an amplified
propagator of the Clifford bundles that induces a right/left Clifford action on
the propagator bundle determined by ΛC(Df) between the Grassmann bun-
dles. For totally geodesic maps, the covariant derivative on the Whitney sum
of the Grassmann bundles decomposes inducing a covariant derivative on the
propagator bundle. �

If we examine in some more detail how totally geodesic maps between
compact Riemannian manifolds are described in terms of propagators, we
see that the isometric differential map Df : T (M) → T (N) induces an or-
thogonal splitting of the restriction to f(M) of the tangent bundle of N as
T (N)|f(M) = Df(T (M)) ⊕ Df(T (M))⊥ . Passing to the complexified Grass-
mann bundles, and similarly for the Clifford bundles, we obtain the following
tensorial decompositions

ΛC(T (N)|f(M)) � ΛC(Df(T (M))) ⊗ ΛC(Df(T (M))⊥),

Cl(T (N)|f(M)) � Cl(Df(T (M))) ⊗Cl(Df(T (M))⊥).

For totally geodesic maps, the restriction of the Levi-Civita connection on
T (N)f(M) decomposes as a direct sum of the connections on the subbundles
Df(T (M)) and Df(T (M))⊥ and, denoting by∇N , ∇M and∇⊥ the connection
induced respectively on ΛC(T (N)|f(M)), ΛC(Df(T (M))) and ΛC(Df(T (M))⊥),
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we have ∇N = (∇M ⊗ I)⊕ (I ⊗∇⊥) and contracting with the Clifford actions
we obtain the following relation DN |f(M) = (DM ⊗ I)⊕ (I ⊗D⊥) between the
Hodge-De Rham Dirac operators for M and N , where D⊥ denotes a “transver-
sal” operator obtained contracting the Clifford action with the orthogonal part
of the connection ∇⊥. The interesting part, in view of the future study of links
with the notion of B.Mesland morphisms of spectral triples, is the fact that
the Grassmann bundle ΛC(N) decomposes as a tensor product of a “copy” of
the Grassmann bundle of M with a “transversal” factor that, passing to the
module of sections, will provide a Mesland morphism between the Hodge-De
Rham spectral triples of M and N .

Naive Categories of Spectral Geometries

In this section we try to examine some very tentative candidates for categories
A of non-commutative spectral geometries that might be used as targets for
functors that are defined on the categories E of bundles described in the previ-
ous section. Our general ideology will be to start at the topological level from
Takahashi duality [24] (that generalizes the well-known Gel’fand-Năımark du-
ality between compact Hausdorff spaces and unital commutative C*-algebras)
and proceed from there progressively adding the additional structures (Clif-
ford actions, connections) that are required for the description of more rigid
geometrical settings. Since Takahashi duality is between Hilbert bundles over
compact Hausdorff spaces and Hilbert C*-modules over commutative unital
C*-algebras, it is natural for us to start working on Hilbert C*-(bi)modules
rather than on Hilbert spaces. This explains our need to partially reformulate
a naive notion of A.Connes spectral triples in the case of Hilbert C*-modules.

For our purpose here, a (naive) spectral triple (A,H, D) is given by a
(possibly non-commutative) unital C*-algebra A faithfully represented on the
Hilbert space H and a (possibly unbounded) self-adjoint operator D with com-
pact resolvent and such that the commutator [D, x] extends to a bounded
operator on H, for all x in a dense unital C*-subalgebra of A leaving invari-
ant the domain of D. We will reserve the terms Atiyah-Singer spectral
triples and Hodge-De Rham spectral triples for all those spectral triples,
with commutative C*-algebras A, for which respectively either A.Connes’ or
S.Lord-A.Rennie-J.Varilly’s reconstruction theorems [10, 18] are viable.

We say that (A, M, D) is a naive left spectral module triple if M is a
unital left Hilbert C*-module, over the unital C*-algebra A, that is equipped
with a (possibly unbounded) regular operator D such that, for all x in a dense
unital C*-subalgebra of A leaving invariant the domain of D, the commutator
[D, x] extends to an adjointable operator on M.

The first category of spectral geometries that we consider is strictly adapted
to the commutative algebra situation and will be in duality with the categories
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of (amplified) propagators already described.

Proposition 2. There is an involutive category A1 of propagators of uni-
tal Hilbert C*-modules over commutative unital C*-algebras whose morphisms
from the module MA to the module NB are given by Hilbert C*-submodules
ER ⊂ (R ⊗A M) ⊕ (R ⊗B N), where R is a unital C*-algebra bimodule over
A ⊗B.

The details of the proposition can be obtained considering that the section
functor Γ from Hilbert bundles to Hilbert C*-modules preserves direct sums
and transforms the pull-back of bundles into change of the base algebra of
modules via tensor product. In such commutative setting, if necessary, fur-
ther requirements can be added to assure that these propagators of bimodules
correspond to (totally geodesic) Riemannian maps.

Note that, as always, propagators consist of two distinct processes: first a
transport via pull-back of bundles and Hilbert C*-modules onto a common
space here realized via the change of rings with tensorization over A and B and
then a correspondence here realized via the selection of suitable submodules
in the direct sum.

For the special case of spectral module triples (A, M1, D1) and (A, M2, D2)
on the same algebra A, we can further specialize the propagators morphism of
Hilbert C*-modules obtaining the following interesting definition of a category
of spectral correspondences.

Proposition 3. There is a naive totally geodesic category of spectral
correspondences module triples S whose objects are naive spectral mod-
ule triples over the same unital C*-algebra and whose morphisms, say from
(A, M1, D1) to (A, M2, D2), consist of spectral module triples (A, Φ, DΦ) where
Φ ⊂M1⊕M2 is a left A-submodule that is stable under the action of the regular
operator D1 ⊕D2 and DΦ := (D1 ⊕D2)|Φ.

The category S is essentially a bivariant version of the naive category of
spectral triples [2, 3, 6] and (at least in the commutative C*-algebra case) can
be used to model the “correspondence” part in the definition of a propagator.

The “transport” process that in the commutative case is just a relatively
unproblematic pull-back, in the case of non-commutative C*-algebras must be
substituted by the more sophisticated notion of A.Connes’ transfer of spectral
triples between different algebras via tensorization with appropriate bimodules
(a process that has been further developed by B.Mesland).

Anyway, also the category A1 is just an involutive version of the famil-
iar category of Hilbert C*-modules over commutative unital C*-algebras used
in Takahashi duality, where 1-arrows between C*-algebras reduce to unital
∗-homomorphisms. It is a general ideological principle that in non-commutative
geometry categories of homomorphisms of algebras get substituted with cate-
gories of bimodules: every unital homomorphism φ : A→ B of unital C*-alge-
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bras is associated to a pair of correspondences: Hilbert C*-bimodules BA

and AB (where the action of A on the right/left is via the homomorphism φ)
with B-valued inner products. Composition of unital ∗-homomorphisms be-
comes the internal tensor product of such bimodules. As a consequence of this
general passage from Abelian categories of bimodules to “tensorial” categories
of bimodules, instead of pursuing the description of the details of dualities tar-
geting the category A1, it is important to try to look for a similar “tensorial”
reformulation of the previous category.

A bivariant version of naive spectral triple is also needed and it is nat-
ural to start with a notion of Hilbert C*-bimodule. Although we are not
ready yet to select a definition of Hilbert C*-bimodules over general non-
commutative C*-algebras, we can provide some elementary examples of sit-
uations that are sufficient to cover at least some significant cases of Hilbert
C*-bimodules over commutative C*-algebras. This will be enough to create an
environment suitable for the formulation of dualities with subcategories of the
previous categories of bundles that is more in line with generalizations to the
non-commutative setting.

For this purpose, we define a unital C*-algebra bimodule, factoriz-
able over commutative C*-algebras, to be a unital bimodule ARB over
the unital C*-algebras A and B, such that R is a unital C*-algebra that is ten-
sor product, over commutative unital C*-algebras, of other unital C*-algebra
bimodules, i.e. a unital C*-algebra of the form A ⊗C(Y ) F ⊗C(X) B, where
AC(Y ), C(Y )FC(X), C(X)B are three unital C*-algebra bimodules and X, Y are
compact Hausdorff spaces.6 A Hilbert C*-bimodule over a C*-algebra bi-
module factorizable over commutative C*-algebras is a unital bimodule
RMR on a unital C*-algebra R, that is a unital C*-algebra bimodule factor-
izable over commutative C*-algebras ARB = A ⊗C(Y ) F ⊗C(X) B, that is also
equipped with both right 〈· | ·〉R and left R〈· | ·〉 R-valued inner products7 that
satisfy the compatibility condition R〈x | y〉x = x〈y | x〉R, for all x, y ∈ M.8

Theorem 4. There is an involutive category A2 of Hilbert C*-bimodules over
unital bimodule C*-algebras factorizable over commutative C*-algebras.

Proof. Objects are unital C*-algebras A, B, C, . . . ; morphisms from B to A are
given by Hilbert C*-bimodules M over unital C*-algebra bimodules factorizable

6Note that, since the right/left actions of A and B on R = A⊗C(Y ) F⊗C(X) B commute,
the C*-algebra R can be naturally considered as a bimodule over the unital C*-algebras A
and B, both on the right and on the left.

7Here both inner products are assumed to be Hermitian positive non-degenerate with
the left product being left R-linear: R〈rx | y〉 = r · R 〈x | y〉 and right R-adjointable:

R 〈xr | y〉 = R〈x | yr∗〉; and the right product being right R-linear: 〈x | yr〉R = 〈x | y〉R · r
and left R-adjointable: 〈rx | y〉R = 〈x | r∗y〉R , x, y ∈ M, r ∈ R.

8The compatibility condition assures that the left and right norms induced by the inner
products coincide and for bimodule morphisms that are left and right adjointable the left
and right adjoints coincide.
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over commutative C*-algebras R := A⊗C(Y )F⊗C(X)B, S := B⊗C(Z)G⊗C(W)C;
the involution is given by the passage to the contragradient bimodules M∗ over
B⊗C(X) F⊗C(Y ) A; composition of MR with NS is given by the internal tensor
product M⊗BN as a bimodule over the unital C*-algebra bimodule factorizable
over commutative C*-algebras R⊗B S � A⊗C(X) (F⊗C(Y ) B⊗C(Z) G)⊗C(W) C

with inner products defined by universal factorization property via

R⊗BS〈x1 ⊗B y1 | x2 ⊗B y2〉 := R〈x1 ⊗B S〈y1 | y2〉 | x2 ⊗B 1S〉,
〈x1 ⊗B y1 | x2 ⊗B y2〉R⊗BS := 〈1R ⊗B y1 | 〈x1 | x2〉R ⊗B y2〉S.

�

The previous category can be made into a 2-category A2 if we define
2-arrows as pairs (φ, Φ) such that Φ : MR → NS is additive map and φ : F → G

is a unital ∗-homomorphism such that Φ(r1xr2) = φ(r1)Φ(x)φ(r2), where with
some abuse of notation we also denote 1A ⊗ φ ⊗ 1B : R → S by φ. Fur-
thermore (at least in the commutative C*-algebras case), one can consider as
2-arrows with source MR and target NS new Hilbert C*-bimodules over fac-
torizable C*-algebras bimodules from R to S and in this way the category now
constructed becomes actually an ∞-category, defining recursively level-(n + 1)
morphisms as morphisms between the spectral module triples that are mor-
phism at level-n.

Section Functor

Theorem 5. There is a section functor Γ : E → A that to every propagator
(E, γ, R) of Hermitian bundles from (E1, π1, X1) to (E2, π2, X2) associates the
Hilbert C*-bimodule Γ(R, E) over the C*-algebra bimodule factorizable over
commutative C*-algebras given by C(R) � C(X1)⊗C(X1) C(R)⊗C(X2) C(X2).

Proof. The set Γ(R, E) of continuous sections of the Hilbert bundle (E, γ, R) is
already a Hilbert C*-bimodule over the commutative unital C*-algebra C(R)
that is a C*-algebra bimodule C(X2)⊗C(X2) C(R)⊗C(X1) C(X1), factorizable
over the commutative C*-algebras C(X1) and C(X2). �

More generally, one can consider propagators where (E, γ, R) is a bundle
of Hilbert C*-bimodules over a bundle (A, γ′, R) of commutative C*-algebras
(this means that there is a fiber preserving action of the total space A on the
total space E making each fiber Er into a C*-bimodule over the C*algebra
Ar , for all r ∈ R) and in this way one recovers, via the section functor, a
C*-bimodule over the commutative C*-algebra bimodule factorizable over com-
mutative C*-algebras given by C(X1)⊗C(X1) Γ(R, A)⊗C(X2) C(X2).

Let us examine in some more detail how (totally geodesic) maps between
compact Riemannian manifolds are described using spectral module triples
(this will provide insight on the role of tensorization by B.Mesland bimodules).
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As already described at the end of the previous section (in the specific case of
totally geodesic Riemannian embeddings), every totally geodesic Riemannian
map f : M → N induces a propagator between the complexified Grassmann
bundles that is stable under Clifford action and the induced direct sum of the
Levi-Civita connections. Perfectly similar results can be formulated for general
totally geodesic propagators between Hermitian bundles of Clifford modules
with a compatible connection.

Modulo pull-back of bundles and change of rings of modules (that in this
commutative situation is not problematic), an application of the section functor
Γ will immediately produce a propagator of Hilbert C*-modules over the same
C*-algebra C(f) � C(M) and in the totally geodesic case a naive morphism of
spectral module triples in S.

Alternatively one notes that a propagator between bundles or modules (let’s
say over the same space) induces at the second quantized level an inclusion
into a tensor product factorization. To explain, in a very special situaton, the
tangent bundle decomposition T (N)|f(M) = Df(T (M)) ⊕ Df(T (M))⊥ corre-
sponds to a factorization ΛC(T (N)|f(M)) � ΛC(Df(T (M)))⊗ΛC(Df(T (M))⊥)
of Grassmann bundles and so to a tensorial factorization of the bimodules of
sections. In this way we see a possible role for Γ(ΛC(Df(T (M))⊥)) as a Mes-
land bimodule for the Hodge-De Rham spectral triples of M and N . We plan
to elaborate much further on these points in forthcoming work.

Outlook

The work here presented is at a very preliminary stage and most of the el-
ementary categorical structures here considered are essentially a playground
(still mainly at the topological level) to test the validity of some conjectures.
Specifically we would like to see a clear picture of how geometrical morphisms
of Riemannian manifolds can be encoded via the section functor in terms of
B.Mesland’s bimodules between commutative Hodge-De Rham spectral triples.
In order to provide a duality, a spectrum functor from categories of commuta-
tive Riemannian spectral triples to Riemannian manifolds must be constructed.
At the level of objects this is already done, via the already mentioned recon-
struction theorems by A.Connes and A.Rennie, S.Lord, J.Varilly, and our next
goal is to prove a similar reconstruction theorem for suitable (totally geodesic)
morphisms between these Hodge-De Rham spectral triples. Our hope is that,
if morphisms can be described as a bivariant version of spectral triples, a di-
rect application of (part of) the reconstruction theorems for objects might be
possible also in the case of morphisms.

Another important direction of investigation is related to our belief that
“involutive tensorial” categories are the right environment for the study of
non-commutative geometry and that involutive categories of bimodules should
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help to formulate a version of B.Mesland category of “bivariant” spectral triples
with involutions. The categories of Hilbert C*-bimodules over C*-algebra bi-
modules factorizable over commutative C*-algebras that we defined here are
not yet sufficient to cover even some of the most elementary morphisms of non-
commutative spaces (the bimodule BA induced by a unital ∗-homomorphism
φ : A→ B, for example).
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