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Abstract

Let (R, m) be a Noetherian local ring and A an Artinian R-module.
For an integer s > −1, we say that A is co-Cohen-Macaulay in dimension
> s if every system of parameters of A is an A-cosequence in dimension
> s introduced by Nhan-Hoang [NH]. In this paper, we give some char-
acterizations for co-Cohen-Macaulay modules in dimension > s in terms
of the dimension of the local homology modules Hm

i (A), the polynomial
type ld(A) of A and the multiplicity e(x; A) of A with respect to a system
of parameter x.

1 Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and A an
Artinian R-module of Noetherian dimension d. Using the concept of an A-
cosequence defined by Ooishi [O], Tang and Zakeri [TZ] introduced the class
of modules satisfying the condition that every system of parameters (s.o.p.
for short) of A is an A-cosequence called co-Cohen-Macaulay module. This
class of modules plays an important role in the theory of Artinian modules
and their structure are well-known in terms of multiplicity, local homology and
Noetherian dimension (see [CNh1], [CN], [O]). There are some extensions of
the concepts of A-cosequences and co-Cohen-Macaulay modules, among which
are the notions of A-cosequences in dimension > s introduced by Nhan-Hoang
[NH] and co-filter modules defined by Dung [D1] which are in some senses dual
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2 Co-Cohen-Macaulay modules in dimension > s

to the notions of M -sequences in dimension > s in sense of Brodmann-Nhan
[BN] and f-modules defined by Cuong-Schenzel-Trung [CST].

Definition Let s ≥ −1 be an integer. A sequence (x1, . . . , xk) of elements in
m is called an A-cosequence in dimension > s if xi /∈ p for all attached primes
p ∈ AttR(0 :A (x1, . . . , xi−1)R) satisfying dim(R/p) > s for all i = 1, . . . , k.

Note that an A-cosequence in dimension > −1, 0 are exactly an A-cosequence
in sense of A. Ooishi [O] and f-coregular sequence in sense of [D1], respectively.

The purpose of this paper is to introduce the class of co-Cohen-Macaulay
modules in dimension > s and give some their characterizations in terms of the
dimension of the local homology modules Hm

i (A) introduced by Cuong-Nam
[CN], the polynomial type ld(A) of A given by Minh [MIN] and the multiplicity
e(x; A) of A with respect to a s.o.p. x defined by [CNh1]. It is clear that if s ≥ d
then A is always co-Cohen-Macaulay in dimension > s and if s > −1 then a co-
Cohen-Macaulay module in dimension > −1 is exactly a co-Cohen-Macaulay
module. Therefore we only consider the case where 0 � s < d.

The main result of this paper is the following theorem.

Main Theorem. Suppose that 0 � s < d.
(i) The following statements are equivalent:

(a) dimR̂(Hm
i (A)) � s, for all i < d.

(b) ld(A) � s.
(c) There exist a s.o.p. x = (x1, . . . , xd) of A and k1, . . . , ks ∈ {1, . . . , d}

such that
I(y1 , . . . , yd; A) = I(x1, . . . , xd; A),

where yj = x2
j if j /∈ {k1, . . . , ks} and yj = xj if j ∈ {k1, . . . , ks}.

(d) There exist a s.o.p. x = (x1, . . . , xd) of A and a constant Cx (not
depending on n) such that for all integer n > 0,

I(xn
1 , . . . , xn

d ; A) � nsCx.

(ii) If A is co-Cohen-Macaulay in dimension > s then one of the conditions
(a), (b), (c), (d) is satisfied.
(iii) If one of the conditions (a), (b), (c), (d) is satisfied then A is co-Cohen-
Macaulay in dimension > s as R̂-module.

The proof of Main Theorem will be given in Section 3. In the next section,
we recall some preliminaries which will be used later.

2 Preliminaries

We first recall the Noetherian dimension N-dimR A of an Artinian R-module
A defined by Kirby [K2] and Roberts [R]: if A = 0, we put N-dimA = −1. For
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an integer d ≥ 0, we put N-dimR A = d if N-dimR A < d is false, and for every
ascending sequence A0 ⊆ A1 ⊆ . . . of submodules of A, there exists n0 such
that N-dimR(An+1/An) < d for all n > n0.

Lemma 2.1. [CNh2] (i) Let A be Artinian R-module. Then A has a natural
structure R̂-module and

N-dimR A = N-dimR̂ A = dimR̂(R̂/ AnnR̂ A) � dim(R/ AnnR A).

(ii) N-dimA = 0 if and only if dimR A = 0. In this case, the length of A is
finite and the ring R/ AnnR A is Artinian.

(iii) Let I be an ideal of R and M a non zero f.g. R-module. Then N-dim(Hi
m(M)) �

i and in particular, N-dim(Hd
m(M)) = d.

The theory of secondary representation introduced by I. G. Macdonald
[Mac] is in some sense dual to the more known theory of primary decomposi-
tion. It has shown in [Mac] that every Artinian R-module A has a secondary
representation A = A1 + . . . + An of pi-secondary submodules Ai. The set
{p1, . . . , pn} is independent of the minimal secondary representation of A and
it is denoted by AttR A.

Lemma 2.2. (i) A �= 0 if and only if AttR A �= ∅. In this case, the set of all
minimal elements of AttR A is exactly the set of all minimal prime ideals of
Var(AnnR A).

(ii) N-dimA � dim
(
R/ AnnR A

)
= max{dimR/p : p ∈ AttR A}.

From the definition of A-cosequence in dimension > s, if denote by dimR A
the Krull dimension of the ring R/ AnnR A then we have the following result
(see [ND]).

Lemma 2.3. Let I be an ideal of R.

(i) If dimR(0 :A I) � s then there exists an A-cosequence in dimension > s in
I of length n for any integer n > 0.

(ii) If dimR(0 :A I) > s then each A-cosequence in dimension > s in I can be
extended to a maximal one and all maximal A-cosequences in dimension > s
in I have the same length, this common length is equal to the least integer i
such that dimR(TorR

i (R/I, A)) > s.

The common length in Lemma 2.3 is called the width in dimension > s in I
with respect to A and denoted by Width>s(I, A). In case dimR(0 :A I) � s we
set Width>s(I, A) = ∞. Note that Width>−1(I, A) = Width(I, A), the width
of A in I defined by A. Ooishi [O] (cf. [ND]).

The class of co-Cohen-Macaulay modules (co-CM for short) for Artinian
modules is introduced by Tang and Zakeri [TZ] on the Noetherian local ring
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which is in some senses dual to the class of Cohen-Macaulay modules for
Noetherian modules. Recall that an Arinian R-module A is called co-Cohen-
Macaulay if Width(A) = N-dimA. Now by the definition of A-coregular se-
quence in dimension > s, we introduce the new class of modules as follow.

Definition 2.4. An Artinian R-module A is called co-Cohen-Macaulay in di-
mension > s if every s.o.p. of A is an A-coregular sequence in dimension
> s.

Note that co-CM modules in dimension > −1, 0 are exactly co-CM module
introduced by Tang and Zakeri [TZ] and co-filter modules defined by [D1],
respectively.

The multiplicity theory for Artinian modules is introduced by Cuong-Nhan
[CNh1]. Let x = (x1, . . . , xt) ⊆ m be a multiplicative system of A, i.e. it
satisfies the condition �(0 :A xR) < ∞. A multiplicity system x is called a
s.o.p. of A if t = d = N-dimA. Denote by e(x; A) the multiplicity of A w.r.p.
to x, it is proved that the number e(x; A)/d! is exactly the first cofficient of the
Hilbert polynomial with respect to the s.o.p. x introduced by Kirby [K1]. The
following result, see [CNh1], is used in the sequel.

Lemma 2.5. Suppose that x = (x1, . . . , xt) is a multiplicity system for A.

(i) Let 0 −→ A′ −→ A −→ A′′ −→ 0 be an exact sequence of Artinian R-
modules. Then

e(x; A) = e(x; A′) + e(x; A′′).

(ii) 0 � e(x; A) � �(0 :A xR) and e(x; A) > 0 if and only if t = d = N-dimA.

(iii) Let n1, . . . , nt be positive integers and put x(n) = (xn1
1 , . . . , xnt

t ). Then

e(x(n); A) = n1 . . . nte(x; A).

(iv) Let (x1, . . . , xd) be a s.o.p. of A. For each i = 1, . . . , d, we set Ci = 0 :A
(x1, . . . , xi−1)R. Then

�(0 :A (x1, . . . , xd)R)− e((x1, . . . , xd); A) =
d∑

i=1

e(xi+1, . . . , xd; Ci/xiCi).

The notion of local homology modules was defined by Cuong-Nam [CN]: Let
I be an ideal of R and M an arbitrary R−module. The i-th local homology mod-
ule HI

i (M) of M with respect to I is defined by HI
i (M) = lim←−

t

TorR
i (R/It; M).

It has been presented in [CN] many basic properties of local homology modules
for Artinian modules, which show that this theory of local homology mod-
ules is in some sense dual to the well-known theory of local cohomology of A.
Grothendieck for Noetherian modules.



N. T. Dung 5

Lemma 2.6. (i) Let f : R −→ R′ be a homomorphism of Noetherian rings
and I an ideal of R. Then there exists an isomorphism HI

i (A) ∼= HIR′
i (A) of

ΛI(R)−modules for all i ≥ 0, where ΛI(−) is the I−adic completion functor.

(ii) HI
i (A) = 0, for all i > N-dimA.

Recall that if �R(Hm
i (A)) < ∞ for all i < d then A is called generalized

co-Cohen-Macaulay (g.CCM for short), (see [CDN]), where Hm
i (A) are local

homology modules. Now we recall some characterizations of g.CCM modules
which are used in the sequel. From now on, for a s.o.p. x = (x1, . . . , xd) of A,
we set

I(x; A) = �R(0 :A xR)− e(x; A).

Lemma 2.7. The following statements are equivalent:

(i) A is g. CCM.

(ii) There exists a constant I(A) such that I(x; A) � I(A) for all s.o.p. x of
A.

(iii) There exists s.o.p. x of A such that I(x2
1, . . . , x

2
d; A) = I(x; A).

(iv) There exists an integer s > 0 and a s.o.p x such that I(xn
1 , . . . , xn

d ; A) � s
for all n ≥ 1.

When A satisfies one of the above equivalent conditions, we have

I(A) =
d−1∑
i=0

(
d− 1

i

)
�R(Hm

i (A)).

A s.o.p. x satisfies Lemma 2.7, (iii) is called a co-standard s.o.p. of A. Note
that if a s.o.p. x of A is co-standard then I(xn1

1 , . . . , xnd

d ; A) = I(x; A) for all
n1, . . . , nd � 1 (see [CDN, Lemma 4.3]).

Let n = (n1, . . . , nd) be d-tuple of d non negative integers and consider

I(x(n); A) := �R(0 :A (xn1
1 , . . . , xnd

d )R)− n1 . . . nde(x; A)

as a function on n1, . . . , nd. It is shown in [MIN] that this function is not
a polynomial on n1, . . . , nd (even when n1, . . . , nd large enough). However, it
always takes non-negative values and bounded above by polynomials. The least
degree of all polynomials in n1, . . . , nd bounding the above function I(x(n); A)
is independent of the choice of x and denoted by ld(A). If we stipulate that
the degree of polynomial zero is −∞ then A is co-Cohen-Macaulay if and only
if ld(A) = −∞ (see [MIN, Theorem 4.11]).

Lemma 2.8. (i) A is g. CCM if and only if ld(A) � 0.
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(ii) Let ld(A) > 0. Then we have
(a) ld(A) = max

i<d
dimR̂(Hm

i (A)).

(b) If x ∈ m such that x /∈ p for all p ∈
d⋃

i=1

AssR̂(Hm
i (A)) \ {m} then

ld(0 :A x) = ld(A) − 1.

Proof. (i) By [CDN, Theorem 4.4] and [MIN, Corollary 4.9], we need to prove
the sufficient condition. Since ld(A) � 0, we have two cases. If ld(A) = −∞,
then A is co-Cohen-Macaulay (see [MIN, Theorem 4.11]). Therefore we only
consider to the case ld(A) = 0. We prove by induction on d = N-dimA. Let
d = 1. Then A is g.CCM by [CDN, Theorem 4.4] since the length of the local
homology �(Hm

0 (A)) is always finite. Now assume that d > 1 and the assertion
is true for all Artinian R-module of Noetherian dimesion smaller than d. Let
x = (x1, . . . , xd) be a s.o.p. of A. The assumtion ld(A) = 0 states that

�R(0 :A x(n)R) − e(x(n)R; A) � n1 . . . nd(�R(0 :A xR)− e(xR; A)) = C <∞,

where C is constant. So �R(0 :A xR)−e(xR; A)) = C and hence x1A ⊇ mnA for
some n ∈ N, i.e. x1 is a weak co-sequence by [CDN]. Therefore �(A/x1A) <∞
and hence Hm

i (A/x1A) = 0, for all i > 0. Thus, form exact sequences

0 −→ x1A −→ A −→ A/x1A −→ 0;

0 −→ 0 :A x1−→A
x1−→ x1A −→ 0

we get the long exact sequences for i = 1, . . . , d− 1,

. . . −→ Hm
i (0A : x1) −→ Hm

i (A) x1−→ Hm
i (A) −→ Hm

i−1(0A : x1) −→ . . . .

So, by using the induction hypothesis with respect to the s.o.p. (x2, . . . , xr)
of (0 :A x1), we have by [CDN, Theorem 4.4] that �

(
Hm

i (0A : x1)
)
< ∞ for all

i � d− 2. Therefore, we have �
(
Hm

i (A)
)
<∞ for all i � d− 1 and A is g.CCM

by [CDN, Theorem 4.4].
(ii) Note that ld(A) = p(D(A)), where D(A) is a Noetherian R̂-module and

p(D(A)) is a polynomial type of D(A) defined by [C]. Hence from isomorphisms
Hi

m(D(A)) ∼= D(Hm
i (A)) and 0 :A x ∼= D(A)/xD(A) of R̂-modules, using

Matlis duality, we get the result by [CMN, Lemma 3.1]. �

3 Proof of Main Theorem

(i). (a)⇔ (b) follows by Lemma 2.8,(ii).
(a) ⇒ (c). Let d = 1. Then s = 0 and A is g.CCM. By Lemma 2.7(iii),

there exists a standard s.o.p. x1 of A, i.e. I(x2
1; A) = I(x1; A). Therefore (c)

is true.
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Let d > 1. We prove the result by induction on s, where 0 � s < d. Let s =
0. Then dimR̂ Hm

i (A) � 0 for all i < d. By Lemma 2.1(ii), �R̂(Hm
i (A)) <∞ for

all i < d, i.e. A is g.CCM by [CDN, Theorem 4.4]. Hence there exists by Lemma
2.7(iii) a s.o.p. (x1, . . . , xd) of A such that I(x2

1, . . . , x
2
d; A) = I(x1, . . . , xd; A).

Therefore the condition (c) is true for s = 0. Let 1 � s < d and assume that
the result is true for the case s− 1. If ld(A) � 0 then A is g.CCM by Lemma
2.8,(i). Therefore there exists a standard s.o.p. x = (x1, . . . , xd) of A. Thus by
[CDN, Lemma 4.3] we have

I(x; A) � I(y1 , . . . , yd; A) � I(x2
1, . . . , x

2
d; A) = I(x; A),

where yj = x2
j if j /∈ {k1, . . . , ks} and yj = xj if j ∈ {k1, . . . , ks}, for all

j = 1, . . . , d. Hence I(x; A) = I(y1 , . . . , yd; A), the result is true in this case.

Let ld(A) > 0. Let x1 ∈ m such that x1 /∈ p for all p ∈
d⋃

i=1
AssR̂(Hm

i (A))\ {m}.
Note that ld(A) � s by Lemma 2.8(ii). Therefore we get by Lemma 2.8(ii) that
ld(0 :A x1) = ld(A) − 1 � s − 1. Hence dimR̂ Hm

i (A) � s− 1 for all i < d− 1
by Lemma 2.8(ii). Applying the induction for (0 :A x1), there exists a s.o.p.
(x2, . . . , xd) of A and integers k2, . . . , ks ∈ {2, . . . , d} such that

I(y2 , . . . , yd; 0 :A x1) = I(x2, . . . , xd; 0 :A x1),

where yj = x2
j if j /∈ {k2, . . . , ks} and yj = xj if j ∈ {k2, . . . , ks}, for all

j = 2, . . . , d. Without loss any generality we can assume that k2 = 2, . . . , ks = s,
i.e.

I(x2, . . . , xs, x
2
s+1, . . . , x

2
d; 0 :A x1) = I(x2, . . . , xd; 0 :A x1). (1)

By the choice of x1, we have N-dim(A/x1A) � 0. Since d > 1, we have

e(x2, . . . , xs, x
2
s+1, . . . , x

2
d; A/x1A) = 0 = e(x2, . . . , xs, xs+1, . . . , xd; A/x1A).

Therefore, we have

I(x2, . . . , xs,x
2
s+1, . . . , x

2
d; 0 :A x1) = �R(0 :A (x1, . . . , xs, x

2
s+1, . . . , x

2
d))

− e(x1, . . . , xs, x
2
s+1, . . . , x

2
d; A) + e(x2, . . . , xs, x

2
s+1, . . . , x

2
d; A/x1A)

= I(x1, . . . , xs, x
2
s+1, . . . , x

2
d; A),

and

I(x2, . . . , xd; 0 :A x1) = �R(0 :A (x1, x2, . . . , xd)) − e(x1, x2, . . . , xd; A)
+ e(x2, . . . , xd; A/x1A) = I(x1, . . . , xd; A).

So, it follows by (1) that

I(x1, . . . , xs, x
2
s+1, . . . , x

2
d; A) = I(x1, . . . , xd; A),
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and (c) is proved.
(c) ⇒ (d). Let d = 1. Then s = 0 and A is g.CCM. So, there exists a

standard s.o.p. x1 of A and we have I(x1; A) = I(x2
1; A) = I(xn

1 ; A) for all
n ∈ N by [CDN]. Set Cx = I(x1; A). Then I(xn

1 ; A) = Cx = n0Cx for all n � 1.
Hence (d) is true.

Let d > 1. We prove the result by induction on s, where 0 � s < d. Let
s = 0. From the hypothesis (c), there exists a s.o.p. x = (x1, . . . , xd) of A such
that

I(x2
1, . . . , x

2
d; A) = I(x1, . . . , xd; A).

It implies A is g.CCM and x is a standard s.o.p. of A by [CDN]. Set Cx =
I(x1, . . . , xd; A). Then

I(xn
1 , . . . , xn

d ; A) = n0Cx

for all n � 1 and (d) is true for the case s = 0. Let s > 0 and assume that
the result is true for s − 1. Let x = (x1, . . . , xd) be a s.o.p. of A satisfies (c).
Without loss any generality we can assume that k1 = d−s+1, . . . , ks = d , i.e.

I(x2
1, . . . , . . . , x

2
d−s, xd−s+1, . . . , xd; A) = I(x1, . . . , xd; A). (2)

We have by the property of multiplicity that

I(x2
1, . . . , x

2
d−s, xd−s+1, . . . , xd; A) = I(x2

1, . . . , x
2
d−s, xd−s+1, . . . , xd−1; 0 :A xd)

+ 2d−se(x1, . . . , xd−1; A/x1A).

and

I(x1, . . . , xd; A) = I(x1, . . . , xd−1; 0 :A xd) + e(x1, . . . , xd−1; A/x1A).

Note that I(x2
1, . . . , x

2
d−s, xd−s+1, . . . , xd−1; 0 :A xd) � I(x1, . . . , xd−1; 0 :A xd)

by [CDN, Lemma 4.3]. Since s < d, we have

2d−se(x1, . . . , xd−1; A/xdA) � e(x1, . . . , xd−1; A/xdA).

Therefore it follows by (2) that e(x1, . . . , xd−1; A/x1A) = 0 and

I(x1, . . . , xd−s, xd−s+1, . . . , xd−1; 0 :A xd) = I(x2
1, . . . , x

2
d−s, xd−s+1, . . . , xd−1; 0 :A xd).

Thus, N-dim(A/xdA) � d − 2 and hence e(xn
1 , . . . , xn

d−1; A/xdA) = 0 for all
n > 0. Therefore, by applying the induction assumption for (0 :A xd), there
exists a constant Cx such that

I(xn
1 , . . . , xn

d ; A) � nI(xn
1 , . . . , xn

d−1, xd; A)

= n
(
I(xn

1 , . . . , xn
d−1; 0 :A xd) + e(xn

1 , . . . , xn
d−1; A/xdA)

)
= n

(
I(xn

1 , . . . , xn
d−1; 0 :A xd)) � nns−1Cx = nsCx
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for all integer n > 0. Thus (d) is proved.
(d) ⇒ (b). Since I(xn

1 , . . . , xn
d ; A) � nsI(x; A) for all integers n, from the

definition of the polynomial type ld(A) we have ld(A) � s.
(ii). Suppose that A is a co-CM R-module in dimension > s. Since each

A-cosequence in dimension > s in I is always an A-cosequence in dimension
> s in IR̂ by Nhan-Dung [ND], we have that A is also a co-CM R̂-module in
dimension > s. Therefore the Matlis dual D(A) of A is a CM R̂-module in
dimension > s. It follows that D(A) is a CM R-module in dimension > s by [Z,
Proposition 2.6] and hence N-dimR(Hi

m(D(A))) � s, for all i < d by the Main
Theorem, (iii) in [D2]. Since there is an isomorphism Hi

m(D(A)) ∼= D(Hm
i (A))

of R̂-modules, we have by Lemma 2.1 that

dimR̂(Hm
i (A)) = N-dimR̂(Hi

m(D(A))) = N-dimR(Hi
m(D(A))) � s

and (a) is satisfied.
(iii) Suppose that (a) is true, i.e. dimR̂(Hm

i (A)) � s. By using the Matlis
dual and with similar aguments in (ii) we have D(A) is a CM R̂-module in
dimension > s and hence A is a co-CM R̂-module in dimension > s.

It should be mentioned that Width>s(I, A) � Width>s(IR̂, A) since each
A-cosequence in dimension > s in I is an A-cosequence in dimension > s in
IR̂. In case s � 0, the above inequality becomes equality. However, this is not
the case when s > 0. A counter example given in [ND] shows that there exists a
Noetherian local ring (S, n), an ideal I of S and an Artinian S-module A such
that Width>1(I, A) < Width>1(IŜ, A), where Ŝ is the n-adic completion of S
(cf. Corollary 3.3 and Example 3.4, [ND]). Therefore, in general, an Artinian
R̂-module in dimension > s is not an Artinian R-module in dimension > s.

Below, by constructing similarly to the Example 3.4 in Nhan-Dung [ND],
we can give a counter example for this comment.

Example 3.1. There exists an Artinian module A over local ring (S, n) such
that A is a co-CM Ŝ-module in dimension > 1, but A is not a co-CM S-module
in dimension > 1, where Ŝ is the n-adic completion of S.

Proof. Let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [FR] such that there exists an associated prime
p̂ ∈ Ass R̂ satisfying dim(R̂/p̂) = 1. Let S = R[[x]] be the ring of all formal
power series in one variable x with coefficients in R. Then S is a Noetherian
local domain of dimension 3, depth S = 2, the unique maximal ideal of S is
n = (m, x)R[[x]] and Ŝ is the n-adic completion of S. Now, choose I = xS and
A = H2

n(S). Then A is an Artinian S-module, dimS A = 3, dimŜ A = 2 =
N-dimA, dimS(0 :A I) = 2, dimŜ(0 :A I) = 1 (see [ND, Example 3.4]).

Let (a, b) be a s.o.p of A in IŜ. Then a /∈ p̂, for all p̂ ∈ AttŜ(A) such
that dim Ŝ/p̂ = 2 > 1. Hence x is an A-cosequence in dimension > 1 in IŜ.
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Since b is a s.o.p of 0 :A a, we have b /∈ p̂, for all p̂ ∈ AttŜ(0 :A a) such that
dim Ŝ/p̂ = 1, i.e. b /∈ p̂, for all p̂ ∈ AttŜ(0 :A a) such that dim Ŝ/p̂ > 1.

Therefore b is also an 0 :A a-cosequence in dimension > 1 in IŜ and hence
(a, b) is an A-cosequence in dimension > 1 in IŜ. Thus by the definition, A is
a co-CM Ŝ-module in dimension > 1.

However, A is not a co-CM S-module in dimension > 1. In fact, let (a, b)
be a s.o.p of A in IS. Since Width>1(IS, A) = 1 by [ND, Example 3.4], (a, b)
can not be an A-cosequence in dimension > 1 in IS. �
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