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Abstract

Let (R, m) be a Noetherian local ring and A an Artinian R-module.
For an integer s > —1, we say that A is co-Cohen-Macaulay in dimension
> s if every system of parameters of A is an A-cosequence in dimension
> s introduced by Nhan-Hoang [NH]. In this paper, we give some char-
acterizations for co-Cohen-Macaulay modules in dimension > s in terms
of the dimension of the local homology modules H;"(A), the polynomial
type 1d(A) of A and the multiplicity e(z; A) of A with respect to a system
of parameter x.

1 Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and A an
Artinian R-module of Noetherian dimension d. Using the concept of an A-
cosequence defined by Ooishi [O], Tang and Zakeri [TZ] introduced the class
of modules satisfying the condition that every system of parameters (s.o.p.
for short) of A is an A-cosequence called co-Cohen-Macaulay module. This
class of modules plays an important role in the theory of Artinian modules
and their structure are well-known in terms of multiplicity, local homology and
Noetherian dimension (see [CNh1], [CN], [O]). There are some extensions of
the concepts of A-cosequences and co-Cohen-Macaulay modules, among which
are the notions of A-cosequences in dimension > s introduced by Nhan-Hoang
[NH] and co-filter modules defined by Dung [D1] which are in some senses dual
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2 Co-Cohen-Macaulay modules in dimension > s

to the notions of M-sequences in dimension > s in sense of Brodmann-Nhan
[BN] and f-modules defined by Cuong-Schenzel-Trung [CST].

Definition Let s > —1 be an integer. A sequence (z1,...,2x) of elements in
m is called an A-cosequence in dimension > s if x; ¢ p for all attached primes
p € Attg(0:a (21,...,2;—1)R) satisfying dim(R/p) > s for alli=1,... k.
Note that an A-cosequence in dimension > —1, 0 are exactly an A-cosequence
in sense of A. Ooishi [O] and f-coregular sequence in sense of [D1], respectively.

The purpose of this paper is to introduce the class of co-Cohen-Macaulay
modules in dimension > s and give some their characterizations in terms of the
dimension of the local homology modules H™(A) introduced by Cuong-Nam
[CN], the polynomial type 1d(A) of A given by Minh [MIN] and the multiplicity
e(z; A) of A with respect to a s.o.p. z defined by [CNh1]. It is clear that if s > d
then A is always co-Cohen-Macaulay in dimension > s and if s > —1 then a co-
Cohen-Macaulay module in dimension > —1 is exactly a co-Cohen-Macaulay
module. Therefore we only consider the case where 0 < s < d.

The main result of this paper is the following theorem.

Main Theorem. Suppose that 0 < s < d.
(i) The following statements are equivalent:
(a) dimg(H"(A)) < s, for all i < d.
(b) 1d(A) < s.
(¢) There exist a s.o.p. £ = (x1,...,2q) of A and ky,..., ks € {1,...,d}
such that
Iy, ya; A) = Iz, ... 23 A),

where y; = x7 if j ¢ {k1,..., ks} and y; = x; if j € {k1, ..., ks}.
(d) There exist a s.o.p. z = (x1,...,24) of A and a constant C, (not
depending on n) such that for all integer n > 0,

I(z}, ...,z A) < n°Cy.

(ii) If A is co-Cohen-Macaulay in dimension > s then one of the conditions

(a), (b), (¢), (d) is satisfied.
(#ii) If one of the conditions (a), (b), (c), (d) is satisfied then A is co-Cohen-

Macaulay in dimension > s as R-module.

The proof of Main Theorem will be given in Section 3. In the next section,
we recall some preliminaries which will be used later.
2 Preliminaries

We first recall the Noetherian dimension N-dimg A of an Artinian R-module
A defined by Kirby [K2] and Roberts [R]: if A =0, we put N-dim A = —1. For
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an integer d > 0, we put N-dimg A = d if N-dimg A < d is false, and for every
ascending sequence Ag C A; C ... of submodules of A, there exists ng such
that N-dimg(A,+1/A,) < d for all n > ny.

Lemma 2.1. [CNh2] (i) Let A be Artinian R-module. Then A has a natural
structure R-module and

N-dimg A = N-dimp A = dimﬁ(ﬁ/ Anng A) < dim(R/ Anng A).

(i) N-dim A = 0 if and only if dimr A = 0. In this case, the length of A is
finite and the ring R/ Anng A is Artinian.

(iii) Let I be an ideal of R and M a non zero f.g. R-module. Then N-dim(H! (M)) <
i and in particular, N-dim(H% (M)) = d.

The theory of secondary representation introduced by I. G. Macdonald
[Mac] is in some sense dual to the more known theory of primary decomposi-
tion. It has shown in [Mac] that every Artinian R-module A has a secondary
representation A = A; + ...+ A, of p;-secondary submodules A;. The set
{p1,...,pn} is independent of the minimal secondary representation of A and
it is denoted by Attg A.

Lemma 2.2. (i) A # 0 if and only if Attg A # (0. In this case, the set of all
manimal elements of Attg A is exactly the set of all minimal prime ideals of
Var(Anng A).

(i) N-dim A < dim (R/ Anng A) = max{dimR/p: p € Attgr A}.

From the definition of A-cosequence in dimension > s, if denote by dimg A
the Krull dimension of the ring R/ Anng A then we have the following result
(see [ND]).

Lemma 2.3. Let I be an ideal of R.

(i) If dimp(0 :4 I) < s then there exists an A-cosequence in dimension > s in
I of length n for any integer n > 0.

(i) If dimp (0 : 4 I) > s then each A-cosequence in dimension > s in I can be
extended to a maximal one and all mazimal A-cosequences in dimension > s
in I have the same length, this common length is equal to the least integer i
such that dimp(Torl*(R/I, A)) > s.

The common length in Lemma 2.3 is called the width in dimension > s in I
with respect to A and denoted by Widths4(I, A). In case dimp(0:4 I) < s we
set Widths (I, A) = co. Note that Widths (I, A) = Width(I, A), the width
of Ain I defined by A. Ooishi [O] (cf. [ND]).

The class of co-Cohen-Macaulay modules (co-CM for short) for Artinian
modules is introduced by Tang and Zakeri [TZ] on the Noetherian local ring
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which is in some senses dual to the class of Cohen-Macaulay modules for
Noetherian modules. Recall that an Arinian R-module A is called co-Cohen-
Macaulay if Width(A) = N-dim A. Now by the definition of A-coregular se-
quence in dimension > s, we introduce the new class of modules as follow.

Definition 2.4. An Artinian R-module A is called co-Cohen-Macaulay in di-
mension > s if every s.o.p. of A is an A-coregular sequence in dimension
> S.

Note that co-CM modules in dimension > —1,0 are exactly co-CM module
introduced by Tang and Zakeri [TZ] and co-filter modules defined by [D1],
respectively.

The multiplicity theory for Artinian modules is introduced by Cuong-Nhan
[CNh1]. Let z = (x1,...,2¢) € m be a multiplicative system of A, i.e. it
satisfies the condition £(0 :4 zR) < oco. A multiplicity system z is called a
s.o.p. of A if ¢t =d = N-dim A. Denote by e(z; A) the multiplicity of A w.r.p.
to , it is proved that the number e(z; A)/d! is exactly the first cofficient of the
Hilbert polynomial with respect to the s.o.p. z introduced by Kirby [K1]. The
following result, see [CNh1], is used in the sequel.

Lemma 2.5. Suppose that x = (x1,...,x) is a multiplicity system for A.

(i) Let 0 — A" — A — A” — 0 be an exact sequence of Artinian R-
modules. Then

e(z; A) = e(z; A') + e(z; A”).
(i) 0 < e(z; A) < €0 :4 zR) and e(x; A) > 0 if and only if t = d = N-dim A.

(i11) Let ny, ..., ng be positive integers and put z(n) = (z1*,...,xy"). Then
e(z(n); A) =nq...ne(z; A).

(i) Let (x1,...,24) be a s.0.p. of A. For each i =1,...,d, we set C; =0 :4
(xl,...,xi_l)R. Then

00:4 (z1,...,2q)R) —e((x1,...,24); A) = Z€($i+1; vy xq; O/, Cy).

=1

The notion of local homology modules was defined by Cuong-Nam [CN]: Let
I be an ideal of R and M an arbitrary R—module. The i-th local homology mod-
ule HI(M) of M with respect to I is defined by H/(M) = lim Tor;"(R/I*; M).

t
It has been presented in [CN] many basic properties of local homology modules
for Artinian modules, which show that this theory of local homology mod-
ules is in some sense dual to the well-known theory of local cohomology of A.
Grothendieck for Noetherian modules.
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Lemma 2.6. (i) Let f : R — R’ be a homomorphism of Noetherian rings
and I an ideal of R. Then there exists an isomorphism HI(A) = HI® (A) of
Ar(R)—modules for all i > 0, where Ar(—) is the I—adic completion functor.

(ii) HI(A) =0, for all i > N-dim A.

Recall that if {r(H™"(A)) < oo for all i < d then A is called generalized
co-Cohen-Macaulay (g.CCM for short), (see [CDN]), where H"(A) are local
homology modules. Now we recall some characterizations of g.CCM modules
which are used in the sequel. From now on, for a s.0.p. z = (x1,...,24) of A,
we set

I(z; A) = Lr(0 :a zR) — e(z; A).

Lemma 2.7. The following statements are equivalent:
(i) Ais g. CCM.

(i) There exists a constant I(A) such that I(z; A) < I(A) for all s.o.p. x of
A.

(iii) There exists s.o.p. x of A such that I(z3%,...,2%; A) = I(z; A).
(iv) There exists an integer s > 0 and a s.o.p x such that I(xl, ..., 27; A) < s

for alln > 1.
When A satisfies one of the above equivalent conditions, we have

d—1

1(4)=%" (d; 1>€R(HZ”(A))-

=0

A s.0.p. z satisfies Lemma 2.7, (iii) is called a co-standard s.o.p. of A. Note
that if a s.0.p. z of A is co-standard then I(z}*,...,z};"; A) = I(x; A) for all
ni,...,nq = 1 (see [CDN, Lemma 4.3]).

Let n = (n1,...,nq) be d-tuple of d non negative integers and consider
I(z(n); A) :=LlRr(0:4 (21", ...,2}")R) — n1...nge(z; A)

as a function on ny,...,ng. It is shown in [MIN] that this function is not
a polynomial on ny,...,ng (even when nq,...,ng large enough). However, it
always takes non-negative values and bounded above by polynomials. The least
degree of all polynomials in n1, ..., ngs bounding the above function I(z(n); A)
is independent of the choice of z and denoted by 1d(A). If we stipulate that
the degree of polynomial zero is —oco then A is co-Cohen-Macaulay if and only
if 1d(A4) = —oo (see [MIN, Theorem 4.11]).

Lemma 2.8. (i) A is g. CCM if and only if 1d(A) < 0.
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(ii) Let1d(A) > 0. Then we have
() 14(4) = max dimg (H7" (4).

(b) If x € m such that x ¢ p for all p € G Assp(H(A)) \ {m} then
i=1

1d(0 14 ) = 1d(A) — 1.

Proof. (i) By [CDN, Theorem 4.4] and [MIN, Corollary 4.9], we need to prove
the sufficient condition. Since 1d(A) < 0, we have two cases. If 1d(A) = —oo,
then A is co-Cohen-Macaulay (see [MIN, Theorem 4.11]). Therefore we only
consider to the case 1d(4) = 0. We prove by induction on d = N-dim A. Let
d =1. Then A is g.CCM by [CDN, Theorem 4.4] since the length of the local
homology ¢(Hj"(A)) is always finite. Now assume that d > 1 and the assertion
is true for all Artinian R-module of Noetherian dimesion smaller than d. Let
z = (x1,...,24) be as.0.p. of A. The assumtion ld(A) = 0 states that

(r(0:a 2(n)R) — e(z(n)R; A) < ny...na(lr(0 :a zR) — e(zR; A)) = C < oo,

where C'is constant. So £r(0:4 zR)—e(zR; A)) = C and hence x1 A DO m™A for
some n € N, i.e. x; is a weak co-sequence by [CDN]. Therefore {(A/z1A) < oo
and hence H™(A/x1A) = 0, for all ¢ > 0. Thus, form exact sequences

0 —x1A— A— AJz1A — 0;

0 —0:427—A 5 214 —0

we get the long exact sequences fori=1,...,d — 1,
— H"™ (04 :x1) — H™(A) =, H™(A) — H™ (04 :21) — ....

So, by using the induction hypothesis with respect to the s.o.p. (x2,...,x,)
of (0:4 @1), we have by [CDN, Theorem 4.4] that £(H(04 : 1)) < oo for all
i < d — 2. Therefore, we have ((H!™(A))< oo for all i <d—1 and A is g.CCM
by [CDN, Theorem 4.4].

(ii) Note that 1d(A) = p(D(A)), where D(A) is a Noetherian E-module and
p(D(A)) is a polynomial type of D(A) defined by [C]. Hence from isomorphisms
H: (D(A)) = D(HM™(A)) and 0 14 x = D(A)/zD(A) of R-modules, using
Matlis duality, we get the result by [CMN, Lemma 3.1]. O

3 Proof of Main Theorem

(i). (a) < (b) follows by Lemma 2.8,(ii).

(a) = (¢). Let d = 1. Then s = 0 and A is g.CCM. By Lemma 2.7(iii),
there exists a standard s.o.p. @1 of A, i.e. I(2?; A) = I(z1; A). Therefore (c)
is true.
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Let d > 1. We prove the result by induction on s, where 0 < s < d. Let s =
0. Then dimg H{"(A) < 0 for all i < d. By Lemma 2.1(ii), £5(H]"(A)) < oo for
alli < d,i.e. Aisg.CCM by [CDN, Theorem 4.4]. Hence there exists by Lemma
2.7(iii) a s.0.p. (x1,...,2q) of A such that I(z%,... 2% A) = I(x1,..., 24 A).
Therefore the condition (c) is true for s = 0. Let 1 < s < d and assume that
the result is true for the case s — 1. If 1d(A4) < 0 then A is g.CCM by Lemma
2.8,(i). Therefore there exists a standard s.o.p. = (x1,...,24) of A. Thus by
[CDN, Lemma 4.3] we have

I(z; A) < I(y1,-- -y ya; A) g](x%,...,xZ;A):I@;A),

where y; = 23 if j ¢ {ki,...,ks} and y; = w; if j € {ki,..., ks}, for all
j=1,...,d. Hence I(z;A) = I(y1,...,ya; A), the result is true in this case.

d
Let 1d(A) > 0. Let 21 € m such that z; ¢ pforallp € |J Assp(H"(A))\ {m}.
i=1

Note that 1d(A) < s by Lemma 2.8(ii). Therefore we get by Lemma 2.8(ii) that
1d(0 :4 1) =1d(A) =1 < s — 1. Hence dimpz H"(A) < s —1foralli<d—1
by Lemma 2.8(ii). Applying the induction for (0 :4 z1), there exists a s.o.p.
(x2,...,2q) of A and integers ko, ..., ks € {2,...,d} such that

Iy, ya;0:a x1) = I(xa, . .., xq;0 14 1),

where y; = 23 if j ¢ {ko,...,ks} and y; = w; if j € {kg,..., ks}, for all
j=2,...,d. Without loss any generality we can assume that ko = 2,..., ks = s,
i.e.

I(xQ,...,xs,x§+1,...,x§;0:A x1) =1(xa,...,24;0:4 x1). (1)
By the choice of z1, we have N-dim(A/x1 A) < 0. Since d > 1, we have
6(.232, . -;xs;xg-',—l; e 7‘1:33‘4/3:1‘4) =0= 6(332, sy Lgy Lg41, -+ ,de,A/xlA)

Therefore, we have

I(xg,...,xs,x§+1,...,x3;0:A 21) =Llr(0:4 (xl,...,xs,x§+1,...,x§))
—e(xl,...,xs,x§+1,...,xZ;A)—Fe(xQ,...,xs,x§+1,...,x3;A/x1A)
:I(xl,...,xs,x§+1,...,x§;A),

and

I(xa,...,24;0:4 x1) =Lg(0:4 (x1,22,...,24)) —e(x1, 22, ...,2q4; A)

+e(xo,...,xq; AJx1A) = 1(x1,...,24; A).
So, it follows by (1) that

I(xl,...,xs,x§+1,...,x§;A):I(xl,...,xd;A),
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and (c) is proved.

(¢) = (d). Let d = 1. Then s = 0 and A is g.CCM. So, there exists a
standard s.o.p. z1 of A and we have I(z1; A) = I(2%; A) = I(2}; A) for all
n € N by [CDN]. Set Cy, = I(x1; A). Then I(z7; A) = Cy = nC,, for alln > 1.
Hence (d) is true.

Let d > 1. We prove the result by induction on s, where 0 < s < d. Let
s = 0. From the hypothesis (c), there exists a s.o.p. x = (x1,...,24) of A such
that

I(x%,... 23 A) = I(21,...,24 A).

It implies A is g.CCM and z is a standard s.o.p. of A by [CDN]. Set C, =
I(x1,...,24; A). Then
I(zh,... 2 A) =n'C,

for all n > 1 and (d) is true for the case s = 0. Let s > 0 and assume that

the result is true for s — 1. Let = (21,...,2q) be a s.o.p. of A satisfies (c).
Without loss any generality we can assume that k1 =d—s+1,..., ks =d , i.e.
I(x3,.. .. . 0% Tgsity. - xg A) = I(z1,. .., 24 A). (2)

We have by the property of multiplicity that

2 2 AN T2 2 0 -
I(xy, o T Tdest1y - - Tay A) = T(@], oo T Tdest1y - - s Td—150 14 Tq)
d—: )
+ 29 %(x1, ..., xg_1; A/ A).

and
I(xla .. .,de;A) :I(xla .. '7xd—1;0 ‘A xd) +€(xla .. '7xd—1;A/x1A)'

Note that I(x%,...,2%  @4—si1,-- - Ta—1;0:4 xq) = I(x1,...,2a-1;0 14 Tq)
by [CDN, Lemma 4.3]. Since s < d, we have

2d_se(x1, co s a1 AJxgA) = e(x, ..., xq_1; AxqA).
Therefore it follows by (2) that e(x1,...,x4-1; A/x1A) = 0 and
I(x1, . Tdesy Td—st1y -+ -, Td—1;0 14 Tyg) = I(x%, .. -7$3_s,$d—s+1, e, g—1;0
Thus, N-dim(A/z4A4) < d — 2 and hence e(z?, ...,z _|; A/z4A) = 0 for all

n > 0. Therefore, by applying the induction assumption for (0 :4 z4), there
exists a constant Cy such that

I(xt, ... 2 A) <nl(x, ...,z _q,xq; A)
(@, ey 2301 20) + el 2y AfzaA))
=n(I(2},....25_1;0:4 2q)) <nn*'Cp =n°Cy

A Tg)-
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for all integer n > 0. Thus (d) is proved.

(d) = (b). Since I(zf},...,z0;A) < n°I(xz; A) for all integers n, from the
definition of the polynomial type 1d(A) we have 1d(4) < s.

(ii). Suppose that A is a co-CM R-module in dimension > s. Since each
A-cosequence in dimension > s in [ is always an A-cosequence in dimension
> s in IR by Nhan-Dung [ND], we have that A is also a co-CM R-module in
dimension > s. Therefore the Matlis dual D(A) of A is a CM R-module in
dimension > s. It follows that D(A) is a CM R-module in dimension > s by [Z,
Proposition 2.6] and hence N-dimg(H},(D(A))) < s, for all i < d by the Main
Theorem, (iii) in [D2]. Since there is an isomorphism H{, (D(A)) = D(H™(A))
of ]?i—modules, we have by Lemma 2.1 that

dimp (H]"(A)) = N-dimp(H,, (D(4))) = N-dimp (H,, (D(4))) < s

and (a) is satisfied.

(iii) Suppose that (a) is true, i.e. dimp(H;"(A)) < s. By using the Matlis
dual and with similar aguments in (i) we have D(A) is a CM R-module in
dimension > s and hence A is a co-CM R-module in dimension > s.

It should be mentioned that Widths (I, A) < Widths (IR, A) since each
A-cosequence in dimension > s in I is an A-cosequence in dimension > s in
IR. In case s < 0, the above inequality becomes equality. However, this is not
the case when s > 0. A counter example given in [ND] shows that there exists a
Noetherian local ring (S,n), an ideal I of S and an Artinian S-module A such
that Width~ (I, A) < Widthsq (1 S, A), where S is the n-adic completion of S
(cf. Corollary 3.3 and Example 3.4, [ND]). Therefore, in general, an Artinian
R-module in dimension > s is not an Artinian R-module in dimension > s.

Below, by constructing similarly to the Example 3.4 in Nhan-Dung [ND],
we can give a counter example for this comment.

Example 3.1. There exists an Artinian module A over local ring (S,n) such
that A is a co-CM S-module in dimension > 1, but A is not a co-CM S-module
in dimension > 1, where S is the n-adic completion of S.

Proof. Let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [FR] such that there exists an associated prime
P € Ass R satisfying dim(R/p) = 1. Let S = R[[z]] be the ring of all formal
power series in one variable x with coefficients in R. Then S is a Noetherian
local domain of dimension 3, depth S = 2, the unique maximal ideal of S is
n = (m, z)R[[z]] and S is the n-adic completion of S. Now, choose I = xS and
A = HZ(S). Then A is an Artinian S-module, dimg A = 3, dimg A = 2 =
N-dim A, dimg(0 :4 I) = 2, dimg(0 :a I) = 1 (see [ND, Example 3.4]).

Let (a,b) be a s.0.p of A in IS. Then a ¢ p, for all p € Attg(A) such
that dimS/p = 2 > 1. Hence z is an A-cosequence in dimension > 1 in IS.
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Since b is a s.0.p of 0 :4 a, we have b ¢ p, for all p € Attg(0 :4 a) such that
dimS/p = 1, ie. b ¢ P, for all p € Attg(0 :4 a) such that dimS/p > 1.
Therefore b is also an 0 :4 a-cosequence in dimension > 1 in I S and hence
(a,b) is an A-cosequence in dimension > 1 in IS. Thus by the definition, A is
a co-CM S-module in dimension > 1.

However, A is not a co-CM S-module in dimension > 1. In fact, let (a, b)
be a s.o.p of A in IS. Since Widths; (IS, A) = 1 by [ND, Example 3.4], (a,b)
can not be an A-cosequence in dimension > 1 in IS. O
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