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Abstract

A perfect isometry is an important relation between blocks of finite
groups as many information about blocks are preserved by it. If we
consider the group of all perfect isometries between a block to itself then
this gives another information about the block that is also preserved by
a perfect isometry. The structure of this group depends on the block and
can be fairly simple or extremely complicated. In this paper we study
the perfect isometry group for the block of Cp, the cyclic group of prime
order, and completely describe the structure of this group. The result
shows that any self perfect isometry for Cp is essentially either induced
by an element in Aut(Cp), or obtained by multiplication by one of its
linear characters, or a composition of both.

1 Introduction

Let p be a prime number. Let (K,O, k) be a p-modular system where O is a
complete local discrete valuation ring with field of fraction K of characteristic
0 and residue class field k of characteristic p. We suppose that K is sufficiently
large for all groups considered. Let G be a finite group and B and block of
OG. Denote by RK(B) the free abelian group generated by Irr(B). Let H be
another finite group and A a block of OH .
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1.1 Perfect isometries

Definition 1. [1, Definition 1.1] A generalized character μ : G×H −→ K is
said to be perfect if it satisfies the following two conditions.

(i) [Integrality] For all (g, h) ∈ G×H we have

μ(g, h)
|CG(g)| ∈ O and

μ(g, h)
|CH(h)| ∈ O.

(ii) [Separation] If μ(g, h) �= 0 then g is a p-regular element of G if and only
if h is p-regular element of H.

Let μ be a generalized character of G × H . Then, following Broue [1], μ
defines two linear maps

Iμ : RK(A) −→ RK(B) , Rμ : RK(B) −→ RK(A)

defined by

Iμ(β)(g) =
1
|H |

∑
h∈H

μ(g, h−1)β(h) = 〈μ(g, ·), β〉H (1)

and
Rμ(α)(h) =

1
|G|

∑
g∈G

μ(g−1, h)α(g) = 〈μ(·, h), α〉G (2)

for α ∈ RK(B) and β ∈ RK(A). Here 〈 , 〉G denotes the standard inner product
for class functions of G. Furthermore, the maps Iμ and Rμ are adjoint to each
other with respect to 〈 , 〉. That is,

〈Iμ(β), α〉G = 〈β, Rμ(α)〉H
for all α ∈ RK(B), β ∈ RK(A).

The definition of perfect character μ can also be stated in terms of conditions
on the maps Iμ and Rμ as follows.

Let CF(G,B;K) be the subspace of CF(G;K) of class functions gener-
ated by Irr(B). Let CF(G,B;O) be the subspace of CF(G,B;K) of O-valued
class functions. Let CFp′(G,B;K) be the subspace of class functions α ∈
CF(G,B;K) vanishing outside p-regular elements.

If μ is a generalized character of G×H , the linear maps Iμ, Rμ defined in
(1),(2) can be extended in the usual way to the linear maps

Iμ : CF(H,A;K) −→ CF(G,B;K) , Rμ : CF(G,A;K) −→ CF(H,B;K).

Proposition 1. [1, Proposition 4.1] A generalized character μ is perfect if and
only if
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(i*) Iμ gives a map from CF(H,A;O) to CF(G,B;O) and Rμ gives a map
from CF(G,B;O) to CF(H,A;O).

(ii*) Iμ gives a map from CFp′(H,A;K) to CFp′ (G,B;K) and Rμ gives a map
from CFp′(G,B;K) to CFp′(H,A;K).

We have seen that a generalized character μ of G×H defines a linear map
Iμ : RK(A) −→ RK(B). In fact, any linear map I : RK(A) −→ RK(B) is of
the form Iμ for some generalized character μ of G×H .

Lemma 1. Let I : RK(A) −→ RK(B) be a linear map. Then, there is a
generalized character μI of G×H such that I = IμI . Furthermore μI is defined
by

μI(g, h) =
∑

χ∈Irr(A)

I(χ)(g)χ(h), for all g ∈ G, h ∈ H.

Proof. Define μI as in the lemma. It is clear that μI is a generalized character
of G×H . We will show that IμI = I. Let β ∈ RK(A) and g ∈ G, then

IμI (β)(g) =
1
|H |

∑
h∈H

μ(g, h−1)β(h)

=
1
|H |

∑
h∈H

⎛
⎝ ∑
ϕ∈Irr(A)

I(ϕ)(g)ϕ(h−1)

⎞
⎠ β(h)

=
∑

ϕ∈Irr(A)

1
|H |

(∑
h∈H

ϕ(h−1)β(h)

)
I(ϕ)(g)

=
∑

ϕ∈Irr(A)

〈β, ϕ〉I(ϕ)(g)

= I

⎛
⎝ ∑
ϕ∈Irr(A)

〈β, ϕ〉ϕ
⎞
⎠ (g)

= I(β)(g).

�

Definition 2. [1, Definition 1.4] Let I : RK(A) −→ RK(B) be a linear map.
We say that I is a perfect isometry if I is an isometry and I = Iμ where μ is
perfect.

It turns out that if I : RK(A) −→ RK(B) is an isometry and I = Iμ, then
Rμ is the inverse of Iμ.

Lemma 2. Suppose that Iμ is an isometry. Then Rμ is also an isometry and
(Iμ)−1 = Rμ.
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Proof. Let β ∈ Irr(A). Since Iμ is an isometry, we have Iμ(β) ∈ ± Irr(B). Let
α ∈ Irr(B). Since Iμ and Rμ are adjoint,

〈Iμ(β), α〉G = 〈β, Rμ(α)〉H .

As the left hand side takes values in {0,±1}, this implies that Rμ(α) ∈ ± Irr(A).
By adjointness again,

〈Iμ(Rμ(α)), α〉G = 〈Rμ(α), Rμ(α)〉H = 1.

Since Iμ(Rμ(α)) ∈ ± Irr(B), this forces Iμ(Rμ(α)) = α. Similarly,

1 = 〈Iμ(β), Iμ(β)〉G = 〈β, Rμ(Iμ(β))〉H
implies that Rμ(Iμ(β)) = β. Hence Rμ = (Iμ)−1 and Rμ is an isometry. �

If I : RK(A) −→ RK(B) is an isometry, then I(χ) ∈ ± Irr(B) for all
χ ∈ Irr(B). So I defines a bijection I+ : Irr(A) −→ Irr(B) and a sign function
εI : Irr(A) −→ {±1} such that I(χ) = εI(χ)I+(χ) for χ ∈ Irr(A). This gives
a bijection with signs between Irr(A) and Irr(B). We say that a sign is all-
positive if εI (χ) = +1 ∀χ ∈ Irr(A) and all-negative if εI (χ) = −1 ∀χ ∈ Irr(A).
We also say that a sign is homogenous if it is either all-positive or all-negative.

1.2 Perfect isometry group

We will now restrict our attention to the case where A = B. From Proposition
1 and Lemma 2 it is clear that if I, J : RK(B) −→ RK(B) are perfect isometries
then so are I−1 and I ◦ J . Moreover, the identity map id : RK(B) −→ RK(B)
is also a perfect isometry. This leads us to define the following group.

Definition 3. The set of all perfect isometries I : RK(B) −→ RK(B) forms
a group under composition. We will call this group the perfect isometry group
for B and denote it by PI(B).

This group is invariant under perfect isometries:

Lemma 3. If A,B are any two blocks and there exists a perfect isometry
I : RK(A) −→ RK(B), then PI(A) ∼= PI(B).

Proof. One can check that the map I : J 
→ I ◦ J ◦ I−1 gives a desired isomor-
phism PI(A) ∼= PI(B). �

2 Perfect Isometry Group for Cp

In this section we will study perfect isometry group for G = Cp where Cp is
the cyclic group of prime order p. Let ζ = e2πi/p be a primitive p-root of unity
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and let O = Zp(ζ) and K = Qp(ζ). Since G is a p-group, there is only a single
block B = OG.

Before stating the main theorem about perfect isometry group for B, we will
first define the following isometries in RK(B) that are crucial in the structure
of PI(B).

• Let λ ∈ Irr(B). Since λ is a linear character, λχ ∈ Irr(G) for every χ ∈
Irr(B) where λχ(g) = λ(g)χ(g), ∀g ∈ G. Thus λ induces and isometry
I : χ 
→ λχ defined by Iλ(χ) = λχ for χ ∈ Irr(B).

• Let σ ∈ Aut(G). Then σ acts on RK(B) via θσ(h) = θ(hσ
−1

). Since the
action by σ permutes elements in the set Irr(B), this induces an isometry
Iσ : RK(B) −→ RK(B) defined by Iσ(χ) = χσ for χ ∈ Irr(B).

Observes that the each isometry Iλ, Iσ has all-positive sign.
The main result can now be stated as follows.

Theorem 1. Let G be a cyclic group of order p. Let B = OG be the block of
G. Then

1. Every perfect isometry in PI(B) has a homogenous sign.

2. Every perfect isometry in PI(B) with all-positive sign is a composition of
isometries of the following forms:

• Iλ : χ 
→ λχ, ∀χ ∈ Irr(B) where λ ∈ Irr(B).
• Iσ : χ 
→ χσ, ∀χ ∈ Irr(B) where σ ∈ Aut(G).

3. We have
PI(B) ∼= (G� Aut(G)) × 〈−id〉.

2.1 Proof of the main theorem

Suppose G = 〈g〉. Then we can write Irr(B) = {χ0, χ1, . . . , χp−1} where
χa(gb) = ζab (so χ0 is the trivial character).

We will first show that any perfect isometry I ∈ PI(B) has a homogenous
sign.

Lemma 4. Let I ∈ PI(B). Then

(i) I has a homogenous sign.

(ii) Either I(χ)(1) = χ(1)∀χ ∈ Irr(G) or I(χ)(1) = −χ(1)∀χ ∈ Irr(G).

Proof. By [1, Lemma 1.6], we know that I(χ)(1)/χ(1) is an invertible element
in O for any χ ∈ Irr(B). Since both I(χ)(1) and χ(1) are powers of p, we must
have I(χ)(1) = ±χ(1). Consider

μI(1, 1)
|G| =

∑
χ∈Irr(B) I(χ)(1)χ(1)

p
=

∑
χ∈Irr(B)(±χ(1)2)

p
.
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Table 1: Character table of Cp
Cq 1 g g2 . . . gm . . . gp−1

χ0 1 1 1 . . . 1 . . . 1
χ1 1 ζ ζ2 . . . ζm . . . ζp−1

χ2 1 ζ2 ζ4 . . . ζ2m . . . ζ2(p−1)

. . .
χk 1 ζk ζ2k . . . ζmk . . . ζk(p−1)

. . .
χp−1 1 ζp−1 ζ2(p−1) . . . ζm(p−1) . . . ζ(p−1)2

Since μI(1, 1)/|G| ∈ O and |∑χ∈Irr(B)(±χ(1)2)| ≤ p this means that either

• ∑χ∈Irr(B)(±χ(1)2) = p in which case all the signs are positive, or

• ∑χ∈Irr(B)(±χ(1)2) = −p in which case all the signs are negative.

This proves (i), and (ii) follows from I(χ)(1) = ±χ(1) by above. �
This proves part 1 of the main theorem. Since an isometry I is perfect

if and only if −I is perfect, it suffices to consider perfect isometries with all-
positive sign. We will show that these isometries are precisely compositions of
isometries of the form Iλ and Iσ for λ ∈ Irr(B) and σ ∈ Aut(G). First, we
need to show that Iλ is perfect for any λ ∈ Irr(B).

Lemma 5. Let λ ∈ Irr(B). Then Iλ is a perfect isometry.

Proof. Suppose λ = χa. Consider

μIλ(gm, gn) =
p−1∑
r=0

Iλ(χr)(gm)χr(gn) =
p−1∑
r=0

ζm(a+r)+rn

= ζma
p−1∑
r=0

ζrm+rn = ζmaμid(gm, gn).

Since the identity map is perfect. It is clear that Iλ is also perfect. �
The character multiplication makes Irr(B) into a cyclic group generated by

χ1.

Lemma 6. The map λ 
→ Iλ is a group monomorphism from Irr(B) into
PI(B).

Proof. Let λ, λ′ ∈ Irr(B). For each χ ∈ Irr(B) we have

Iλλ′(χ) = λλ′χ = λIλ′ (χ) = Iλ(Iλ′ (χ)) = (Iλ ◦ Iλ′)(χ).

This shows that the map λ 
→ Iλ is a group homomorphism. Let λ be in the
kernel. Then Iλ(χ0) = χ0 = λχ0. So λ = χ0. �
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Lemma 7. Let m be an integer not divisible by p. Then

p∑
k=1

ζkm = 0.

Proof. Let P (X) = Xp−1 +Xp−2 + . . .+X +1. Since ζm is a pth-root of unity
which is not equal to 1, P (ζm) = 0. Consider

XP (X) = Xp + Xp−1 + . . .+X2 +X

XmP (Xm) = Xpm +Xm(p−1) + . . .+ X2m +Xm .

Hence

0 = ζmP (ζm) =
p∑

k=1

ζkm.

�
Next, we will show that the isometry Iσ is perfect for any σ ∈ Irr(B).

Lemma 8. Let σ ∈ Aut(G). Then Iσ is a perfect isometry.

Proof. Since σ is an automorphism, gσ
−1

= ga for some integer a not divisible
by p. Now

μIσ (gm, gn) =
p−1∑
r=0

Iσ(χr)(gm)χr(gn) =
p−1∑
r=0

χr(gam)χr(gn)

= μid(gam, gn).

Since gam is p-regular if and only if gm is p-regular, and the identity map is
perfect, it is clear that Iσ is a perfect isometry. �

Lemma 9. The map σ 
→ Iσ−1 is a group monomorphism from Aut(G) into
PI(B).

Proof. Let σ, τ ∈ Aut(G). For each χ ∈ Irr(B) we have

I(στ)−1 (χ) = χ(στ)−1 = χτ
−1σ−1 = Iσ−1 (χτ

−1) = Iσ−1 (Iτ−1 (χ)) = (Iσ−1◦Iτ−1 )(χ).

This shows that the map σ 
→ Iσ−1 is a group homomorphism. Suppose σ ∈
Aut(G) is in the kernel. Then χ1(g) = Iσ(χ1)(g) = χσ1 (g) = χ1(gσ

−1
). This

implies that σ is the identity map. �
Since Iλ, Iσ are perfect isometries with all-positive sign for any λ ∈ Irr(B)

and any σ ∈ Aut(G). A composition of Iλ, Iσ is also a perfect isometry with
all-positive sign. Before proving the converse, we need the following lemma.
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Lemma 10. Let α = C0+C1ζ+· · ·+Cp−1ζ
p−1 where Ci ∈ Z for all i. Suppose

that α/p ∈ O. Then Ci ≡ Cj mod p for all i, j.

Proof. Since α/p ∈ Zp(ζ) , we can write α = pa0 + pa1ζ + · · · + pap−2ζ
p−2

where ai ∈ Zp∀i, as {1, ζ, . . . , ζp−2} is a basis of Zp(ζ) over Zp. Write ζp−1 =
−1 − ζ − · · · − ζp−2. Then

α = (C0 − Cp−1) + (C1 −Cp−1)ζ + · · ·+ (Cp−2 −Cp−1)ζp−2

= pa0 + pa1ζ + · · · + pap−2ζ
p−2.

Comparing the coefficients, we have Ci −Cp−1 ∈ pZp for i = 1, . . . , p− 2. But
Ci−Cp−1 are integers, we have Ci−Cp−1 ∈ pN and so Ci ≡ Cj mod p for all
i, j as claimed. �

Lemma 11. Let I ∈ PI(B) be a perfect isometry with all-positive sign. Then
I is a composition of Iλ and Iσ for some λ ∈ Irr(B) and σ ∈ Aut(G).

Proof. Suppose I does not fix the trivial character, say I(χ0) = χa for some
a ∈ {1, . . . , p−1}. Then (Iχp−a ◦I)(χ0) = χp−aχa = χ0. So, by composing with
Iλ for a suitable λ ∈ Irr(B), we can assume that I fixes the trivial character.
Suppose now that I(χ1) = χb for some b ∈ {1, . . . , p − 1}. Let σ be the
automorphism g 
→ gb. Then

(Iσ ◦ I)(χ1)(g) = Iσ(χb)(g) = χb(gb
−1

) = ζ = χ1(g)
(Iσ ◦ I)(χ0)(g) = Iσ(χ0)(g) = 1 = χ0(g).

Thus Iσ ◦ I fixes both χ0 and χ1. So, by composing with Iσ , Iλ for suitable
λ ∈ Irr(B), σ ∈ Aut(G), we can also assume that I fixes χ0, χ1. The lemma
is proved once we show that I must then be the identity map. To see this,
consider

μI(g, g−1) =
p−1∑
r=0

I(χr)(g)χr(g−1)

= 1 + 1 +
p−1∑
r=2

I(χr)(g)
χr(g)

= C0 + C1ζ + · · · +Cp−1ζ
p−1

where 0 ≤ Ci ≤ p for all i and C0 ≥ 2 (Ci is the number of occurrences of ζi in
1 + 1 +

∑p−1
r=2

I(χr)(g)
χr(g) . Since I is perfect, μI(g, g−1) ∈ pO. So, by Lemma 10,

we have Ci ≡ Cj mod p for all i, j. But C0 ≥ 2. So we must have C0 = p and
Ci = 0 for all i �= 0. This means that I(χr)(g)

χr(g) = 1 for all r. Thus I(χr) = χr
for all r and so I is the identity map. �
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This proves part 2 of the main theorem.
Let L and A be the images of the monomorphisms Irr(B) −→ PI(B) and

Aut(G) −→ PI(B) respectively. Since character multiplication is an abelian
operation, we observe that L is an abelian group.

Lemma 12. The group PI(B) contains the subgroup L � A.

Proof. For any λ ∈ Irr(B), σ ∈ Aut(G) and χ ∈ Irr(B), we have

(Iσ ◦ Iλ ◦ (Iσ)−1)(χ) = (Iσ ◦ Iλ)(χσ
−1

) = Iσ(λχσ
−1

) = λσχ = Iλσ (χ).

Thus L is normal in A. Since L is abelian, L is also normal in LA. Suppose
I ∈ L ∩ A, say I = Iλ = Iσ for some λ ∈ Irr(B) and σ ∈ Aut(G). Then
Iλ(χ0) = Iσ(χ0). This implies that λ = χ0 and so I is the identity map. Hence
L intersects A trivially and so LA = L � A is a subgroup of PI(B). �

We will now prove part 3 of the main theorem.

Lemma 13. We have
PI(B) = L � A × 〈−id〉

and
PI(B) ∼= G� Aut(G) × 〈−id〉.

Proof. By Lemma 4 every perfect isometry I ∈ PI(B) has a homogenous sign.
Thus PI(B) = S×〈−id〉 where S is a subgroup containing all perfect isometries
with all-positive sign. Since perfect isometries in L�A has all-positive sign, we
have L�A ≤ S. But Lemma 11 says that any perfect isometry with all-positive
sign must be in L � A, we have S ≤ L � A and so S = L � A. Finally, since
Irr(B) −→ PI(B) and Aut(G) −→ PI(B) are monomorphisms, it is clear that
L ∼= Irr(B) ∼= G and A ∼= Aut(G). �
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