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Abstract

In this note we study some stochastic processes having jumps at some
times τ1, ..., τn, ... and which, between two jumps, satify a stochastic dif-
ferential equation driven by a fractional Brownian motion.

1. Introduction
Consider a filtered probability space (Ω,F , (Ft), P ) on which we define a

fractional Brownian motion (WH
t , t ≥ 0), a Poisson process (Nt, t ≥ 0) with

intensity λ, a sequence (Un, n ≥ 1) of independent and identically distributed
random variables taking value in (0,+∞) and a filtration (Ft, t ≥ 0). Suppose
that (WH

t ), (Nt) and (Un) are independent.
For convenience we take for Ft the σ-algebra generated by random variables

WH
s , Ns for s ≤ t and Un for 1 ≤ n ≤ Nt :

Ft = σ(WH
s , Ns, Un, s ≤ t, 1 ≤ n ≤ Nt).

Let (Xt, t ≥ 0) be a stochastic process adapted to filtration (Ft, t ≥ 0) and
having jumps at times τ1, τ2, ..., τn, ...

Denote by ΔXτn the jump size of Xt at time τn,

ΔXτn = Xτn −Xτn− (1.1)

where Xτn− = limt↗τn Xt.
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We take the relative jump size of Xt at τn as value of Un,

Un :=
Xτn −Xτn−

Xτn−
, n = 1, 2, ...

thus
Xτn = Xτn−(1 + Un). (1.2)

Note that, since the random variables (Un, 1 ≤ n ≤ Nt) are Ft-measurable,
we see that at time t, the relative jump sizes taking place before t are known.
Moreover, the times τn’s are stopping times of (Ft) because (τn ≤ t) = (Nt ≥
j) ∈ Ft (see [3]).

In this note, the considered processes are supposed, between jumps, to
satisfy some fractional stochastic differential equations.

2. On the fractional stochastic calculus from L2- semimatingale ap-
proximation approach
2.1 Fractional Brownian motion

A fractional Brownian motion (WH
t , t ≥ 0) with Hurst index H , (0 <

H < 1) is a centered Gaussian process having covariance function R(s, t) =
E(WH

s W
H
t ) given by

R(s, t) =
1
2

(t2H + s2H − |t− s|2H). (2.1)

In the case H = 1/2, WH
t becomes usual standard Brownian motion.

If H �= 1/2, WH
t is neither a Markov process nor a semimartingale. It is by

this property one cannot apply the traditional Ito calculus to study stochastic
dynamics driven by a fractional Brownian motion. Many approaches have
been introduced to overcome this difficulty, such as these of T. E. Duncan et
al., D. Nualart, B. Oksendal and many others. In this note, we will follow the
approximate approach given by T. H. Thao (see [6-10]).

From this approach one considers the fractional Browinan motion of Liou-
ville form BHt defined by

BHt =
∫ t

0

(t − s)H−1/2dWs, (2.2)

where Wt is a standard Brownian motion. BHt is related to WH
t by

WH
t =

1
Γ(H + 1/2)

(Zt +BHt ), (2.3)

where Γ is the gamma function, Zt is a process having absolutely continuous
trajectories and therefore the long range dependence of the fractional Brownian
motion WH

t focusses at BHt .
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2.2. L2-semimartingale approximation.
Nualart D. [4] has introduced the semimartingaleBH,εt for every ε > 0 given

by

BH,εt =
∫ t

0

(t − s+ ε)H− 1
2 dWs (2.4)

It can be shown that BH,εt has the form

BH,εt = (H − 1/2)
∫ t

0

ϕεsds+ εH−1/2Wt. (2.5)

And T. H. Thao has proved thatBH,εt converges in L2(Ω,F , P ) toBHt uniformly
with respect to t in any finite interval [0, T ] as ε → 0. (Refer to [6], [7]. [10]).

BHt = L2 − lim
ε→0

BH,εt . (2.6)

2.3. Fractional stochastic integration and differential equations

A simple definition of fractional stochastic integral was introduced in [10] ,
motivated by the fact that it was a result for the case of definition for integral
of a process of bounded variation by a formula of integration - by - part.

Assume that f(t, ω) is an adapted process such that

E

∫ t

0

f2(s, ω)ds <∞ (2.7)

then the fractional integral is defined as
∫ t

0

f(s, ω)dBHs = L2 − lim
ε→0

∫ t

0

f(s, ω)dBH,εs , (2.8)

where the existence of the integral in the right hand side of (2.8) with respect
to the semimartingale BH,εt is obvious and the limit is in the sense of the
convergence in L2(Ω,F , P ).

A theorem of existence and uniqueness for solution of the equation of form

dXt = b(t, Xt)dt+ σ(t, Xt)dBHt

has been proved in [10] and some classes of fractional stochastic dynamics with
explicit solutions have been introduced in[11].

3. Fractional geometric Brownian motion with jumps.

Consider the fractional stochastic differential equation

dXt = μXtdt+ σXtdB
H
t (3.1)
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where BHt is a fractional Brownian motion of Liouville form. From an approx-
imate approach in L2-space given by T.H.Thao [4] we know that the solution
of (3.1) can be expressed by

Xt = X0 exp(μt+ σBHt ). (3.2)

Now let (Xt)t ≥ 0 be an adapted process such that
(a) It satisfies the equation (3.1) for each time interval [τn, τn+1),
(b) At times τn, the jump of Xt is given by

ΔXτn = Xτn −Xτn− = Xτn−Un,

then Xτn = Xτn−(1 + Un) where Un is the relative jump size at time τn.
We see that, for t ∈ [0, τ1]

Xt = X0 exp(μt+ σBHt ),

and the left-hand limit at τ1 is

Xτ1− = X0 exp(μτ1 + σBHτ1 ),

and
Xτ1 = Xτ1−(1 + U1) = X0(1 + U1) exp(μτ1 + σBHτ1 ).

Then for t ∈ [τ1, τ2],

Xt = Xτ1 exp[μ(t− τ1) + σ(BHt − BHτ1 )]

= Xτ1−(1 + U1) exp[μ(t− τ1) + σ(BHt −BHτ1 )]

= X0(1 + U1) exp(μt + σBHt ).

Notice that, since BHt is a process having stationary increments then in the
calculation above we can replace BHt−τ1 by BHt −BHτ1 .

Repeating this procedure we have

Xt = X0[
Nt∏
n=1

(1 + Un)] exp(μt+ σBHt ). (3.3)

Then process Xt given by (3.3) is called a fractional geometric Brownian motion
with jumps.

It is known from [6], [7] and [11] that exp(μt + σBHt ) is the L2- limit of
exp(μt + σBH,εt ), where

BH,εt = α

∫ t

0

ϕεsds+ εαWt,
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α = H−1/2, ϕεt =
∫ t
0

(t−s+ε)α−1dWs and Wt is a standard Brownian motion.
Thus Xt in (3.3) is the L2-limit of

Xε
t = X0[

Nt∏
n=1

(1 + Un)] exp
(
b(t, ε) + σεαWt

)
, (3.4)

where b(t, ε) = μt+ ασ
∫ t
0
ϕεsds.

According to [3], the process Xε
t of the form (3.4) can be expressed as

Xε
t = X0 +

∫ t

0

Xε
s(b(s, ε) + σεαdWs) +

Nt∑
n=1

Xε
τn−Un. (3.5)

Note that the continuous part of (3.5) is
∫ t

0

Xε
s(b(s, ε) + σεαdWs) =

∫ t

0

Xε
s [μds+ σ(αϕεsds+ εαdWs)]

=
∫ t

0

Xε
s [μds+ σdBH,εs ]. (3.6)

And

L2 − lim
ε→0

∫ t

0

Xε
s(μds+ σdBH,εs ) =

∫ t

0

Xs(μds+ σdBHs ) (3.7)

L2 − lim
ε→0

Nt∑
n=1

Xε
τn−Un =

Nt∑
n=1

Xτn−Un. (3.8)

Finally,

Xt = �L2 − lim
ε→0

Xε
t = X0 +

∫ t

0

Xs(μds+ σdBHs ) +
Nt∑
n=1

Xτn−Un. (3.9)

Now we have the proposition to state.
Theorem 3.1 Suppose (Xt, t ≥ 0) is an adapted process verifying two condi-
tions (a) and (b) above, then it can be expressed as

Xt = X0[
Nt∏
n=1

(1 + Un)]eμt+σB
H
t . (3.10)

Also, it satisfies the following equation

Xt = X0 +
∫ t

0

Xs(μds+ σdBHs ) +
Nt∑
n=1

Xτn−Un. (3.11)
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4. Fractional Ornstein-Uhlenbeck process with jumps

Consider a fractional stochastic Langevin equation

dXt = −bXtdt+ σdBHt , t >≥ 0 (4.1)

where b and σ are positive constants.
This equation was studied in [8,11] by an approximate approach. Its solu-

tion is called a fractional Ornstein-Uhlenbeck process.
Theorem 4.1 Suppose Xt is a process having jumps at times τ1, ..., τn such
that:

(a) It satisfies the equation (4.1) for each time interval [τn, τn+1).
(b) At time τn, the jump of Xt is given by

ΔXτn = Xτn −Xτn− = Xτn−(1 + Un),

where Un is the relative jump size at time τn.
Then Xt can be expressed by:
(i) For t ∈ [0, τ1)

Xt = e−bt(X0 + σ

∫ t

0

ebsdBHs ). (4.2)

(ii) For t ∈ [τn, τn+1),

Xt = e−b(t−τn)
(
Xτn + σ

∫ t−τn

τn

ebsdWH
s

)
, (4.3)

where Xτn = Xτn−1 (1 + Un).
(iii) For t = τn+1,

Xτn+1 = e−b(τn+1−τn)
(
Xτn + σ

∫ τn+1−τn

τn

ebsdBHs
)
(1 + Un+1). (4.4)

Proof. According to results given in [ 7,11] , the solution of Equation (4.1) is
given by

Xt = e−bt(X0 + σ

∫ t

0

ebsdBHs ) (4.5)

then for the first interval [0, τ1], Xt has the same form of (4.5).
The left-limit Xτ1− = limt↗τ1 Xt is of the form

Xτ1− = e−bτ1 (X0 + σ

∫ τ1

0

ebsdBHs ). (4.6)
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And
Xτ1 = Xτ1−(1 + U1) = e−bτ1 (X0 + σ

∫ τ1

0

ebsdBHs )(1 + U1). (4.7)

For t ∈ [τ1, τ2) we have

Xt = e−b(t−τ1)(Xτ1 + σ

∫ t−τ1

τ1

ebsdBHs )

= e−b(t−τ1)
[
e−bτ1 (X0 + σ

∫ τ1

0

ebsdBHs )(1 + U1) + σ

∫ t−τ1

τ1

ebsdBHs
]

= e−bt
[
(X0 + σ

∫ τ1

0

ebsdBHs )(1 + U1) + σebτ1
∫ t−τ1

τ1

ebsdBHs
]

(4.8)

Repeating procedure yields for t ∈ [τn, τn+1),

Xt = e−b(t−τn)
(
Xτn + σ

∫ t−τn

τn

ebsdBHs
)

(4.9)

where Xτn = Xτn−1 (1 + Un).
We have also for t = τn+1

Xτn+1 = e−b(τn+1−τn)
(
Xτn + σ

∫ τn+1−τn

τn

ebsdBHs
)
(1 + Un+1) (4.10)

Formulas (4.5), (4.7), (4.8), (4.9) and (4.10) give us recursive relations for de-
termining the fractional Ornstein-Uhlenbeck process with jumps that complete
the proof. �

5. Jumps fractional stochastic differential equation

Consider the equation

dXt + g(t, Xt)dt+ γ(t)XtdBHt +Xt−UNtdNt, (5.1)

where (BHt ) is a fractional Brownian of Liouville form, (Nt) is a standard
Poisson process and (Uk, k ≥ 1) is an i.i.d. sequence of random variables,
g(t, x) and γ(t) are some regular real functions such that there exists a unique
solution for the equation

dXt = g(t, Xt)dt+ γ(t)XtdBHt . (5.2)

Suppose that (BHt ), (Nt) and (Uk) are independent.
In fact, the process (Xt) satisfying (5.1) is a process having jumps at some

times τ1, τ2, ... such that the number of jumps in time interval [0, t] is Nt and
between jumps, it satisfies (5.2). Also, Uk is the relative jump size of (Xt)at
time τn.
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An application of Thao’s approximation approach leads us to the approxi-
mate equation corresponding to (5.2)

dXε
t = g(t, Xε

t )dt+ γ(t)Xε
t dB

H,ε
t , (5.3)

where BH,εt is a semimartingale

dBH,εt = αϕεtdt+ εαdWt, α = H − 1/2.

Thus
dXε

t = f(t, Xε
t )dt+ c(t)Xε

tdWt, (5.4)

where
f(t, Xε

t ) = g(t, Xε
t ) + αc(t)ϕεtX

ε
t ,

c(t) = εαγ(t).

For the convenience we put Xε
0 = X0.

Now, we denote

Gt = exp(−
∫ t

0

c(s)dWs +
1
2

∫ t

0

c2(s)ds), (5.5)

and
Y εt = GtX

ε
t (5.6)

We have

d(GtXε
t ) = Xε

tdGt + GtdX
ε
t + dGtdX

ε
t

= Xε
t (c

2(t)Gt − cGtdWt) + Gt(f(t, Xε
t ) + c(t)Xε

t dWt) − c2(t)Xε
tGtdt

= Gtf(t, Xε
t )dt.

Then dY εt = Gtf(t, Xε
t )dt or Y εt is the solution of an ordinary differential

equation
dY εt
dt

= Gtf(t, Xε
t ). (5.7)

Since Xε
t = G−1

t Y εt we see that the solution of the approximate equation is
defined by

Xε
t = Y εt exp(

∫ t

0

c(s)dWs − 1
2

∫ t

0

c2(s)ds), (5.8)

where Y εt is the solution of (5.7) and c(t) = εαγ(t).
By a similar way as in Sections 3 and 4 we can get at last

Theorem 5.1 The solution of (5.1) can be given by

Xt = L2 − lim
ε→0

Xε
t , (5.9)
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where

Xε
t = X0Y

ε
t

Nt∏
k=1

(1 + Uk) exp(
∫ t

0

c(s)dWs − 1
2

∫ t

0

c2(s)ds), (5.10)

c(t) = εH−1/2γ(t) and Y εt is the solution of (5.7).

6. Jumps fractional stochastic differential equation

In this section we discuss the general form

dXt = a(t, Xt)dt+ b(t, Xt)dBHt + c(t, Xt−)dNt (6.1)

where a(t, x), b(t, x), c(t, x) are coefficients which satisfy some conditions that
assure the existence and uniqueness for solution of (6.1), c(t, x) is the jump size
coefficient.

The approximation of (6.1) is

dXε
t = a(t, Xε

t )dt+ b(t, Xε
t )dB

H,ε
t + c(t, Xε

t−)dNt (6.2)

where

BH,εt =
∫ t

0

(t− s+ ε)H−1/2dWt.

Suppose that under some conditions imposed on a(t, x), b(t, x) and c(t, x) as in
[11], the solution of (6.1) can be considered as L2-limit of the solution of (6.2)
when ε → 0.

There is no explicit solution of (6.2) in general, so a numerical method
is needed. We follow the method of [1] to present a numerical scheme for
calculating the solution of (6.2). We have already,

dBH,εt = αϕεtdt+ εαdWt with ϕεt =
∫ t

0

(t− s+ ε)α−1dWs.

Denote
a(t, Xε

t ) = a(t, Xε
t ) + αϕεtb(t, X

ε
t )

b(t, Xε
t ) = εαb(t, Xε

t ).

We have
dXε

t = a(t, Xε
t )dt+ b(t, Xε

t )dWt + c(t, Xε
t−)dNt (6.3)

Suppose jumps appear at times τ1, τ2, ..., τn,...
On the intervals [τn−1, τn), Xt is continuous and satisfies the equation

dXε
t = a(t, Xε

t )dt+ b(t, Xε
t )dWt.

At t = τn,
ΔXε

t = c(t, Xε
t−)ΔNt or Xε

t = Xε
t− + c(t, Xε

t−),
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where ΔNt is the integer jump in Nt at time t, and c(t, Xε
t−) is the size of the

jump.
Now we try to use MAPLE procedures to find the numerical solution for

(6.3).
The scheme is considered with t ∈ [0, T ] and a partition 0 < t1 < t2 < ... <

tNT = T .
Denote

Δn = tn+1 − tn

ΔWn = Wn+1 −Wn

ΔNn = Nn+1 −Nn

and Yn is the approximation to the solution of Xε
t .

We use the Euler scheme to scalar jump-diffusion of (6.2)

Yn+1 = Yn + a(tn, Yn)Δn + b(tn, Yn)ΔWn + c(t, Yn)ΔNn,

for n = 0, 1, 2, ...NT − 1.

Euler − jump := proc(a : algebraic, b : algebraic, c : algebraic)
localtemp, h;

temp := Y [n+ 1] = Y [n] + a ∗ dt+ b ∗ dW [n] + c ∗ dN [n];
temp := subs(x = Y [n], temp)

end :
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