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Abstract

Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the prime
field of two elements, F2, in k variables x1, x2, . . . , xk, each of degree 1.
We study the hit problem, set up by F. Peterson, of finding a minimal set
of generators for Pk as a module over the mod-2 Steenrod algebra, A. In
this paper, we explicitly determine all admissible monomials for the case
k = 5 in degree 2s+1 + 2s − 5 with s an arbitrary positive integer.

1 Introduction

Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the prime field of
two elements, F2, in k variables x1, x2, . . . , xk, each of degree 1. The mod-2
Steenrod algebra A acts on Pk by the formula

Sqi(xj) =

⎧⎪⎨
⎪⎩
xj, i = 0,
x2
j , i = 1,

0, otherwise,

and subject to the Cartan formula Sqn(fg) =
∑n

i=0 Sq
i(f)Sqn−i(g), for f, g ∈

Pk (see Steenrod-Epstein [12]).
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Many authors study the hit problem of determination of the minimal set
of generators for Pk as a module over the Steenrod algebra, or equivalently, a
basis of F2 ⊗A Pk.

This problem has first been studied by Peterson [8], Wood [16], Singer [11],
Priddy [9], who show its relationship to several classical problems in homotopy
theory.

The tensor product F2 ⊗A Pk has explicitly been calculated by Peterson [8]
for k = 2, Kameko for k = 3 in his thesis [5] and Sum [14] for k = 4.

The hit problem were then investigated by many authors. (See Bruner-
Ha-Hung [1], Carlisle-Wood [2], Crabb-Hubbuck [3], Hung [4], Mothebe [6],
Nam [7], Singer [11], Silverman [10], Walker-Wood [15] and others.)

Peterson conjectured in [8] that as a module over the Steenrod algebra A,
Pk is generated by monomials in degrees n that satisfy α(n + k) � k, where
α(n) denotes the number of ones in dyadic expansion of n, and proved it for
k � 2. The conjecture was established in general by Wood [16].

For any nonnegative integer n, set μ(n) = min{m ∈ Z : α(n + m) � m}.
Denote by (Pk)n and (F2 ⊗A Pk)n the subspaces of degree n homogeneous
polynomials in the spaces Pk and F2 ⊗A Pk respectively.

Theorem 1.1 ([Wood [16]). If μ(n) > k, then (F2 ⊗A Pk)n = 0.

From Theorem 1.1, the hit problem is reduced to the cases of degree n with
μ(n) � k.

In this paper, we explicitly determine all the admissible monomials (see
Section 2) of P5 in degree n = 2s+1 + 2s − 5 with s an arbitrary positive
integer.

For s = 1, the problem is easy. There exist exactly 5 admissible monomials
of degree 1 in P5, namely: x1, x2, x3, x4, x5. For s = 2, we have

Proposition 1.2. There exist exactly 110 admissible monomials of degree 7 in
P5. Consequently dim((F2 ⊗A P5)7 = 110.

The main result of the paper is the following:

Theorem 1.3. For any integer s � 3, there exist exactly 912 admissible mono-
mials of degree 2s+1+2s−5 in P5. Consequently dim(F2⊗AP5)2s+1+2s−5 = 912.

In Section 2, we recall some results on the admissible monomials and hit
monomials in Pk. We prove Proposition 1.2 in Section 3. Theorem 1.3 will be
proved in Section 4.

2 Preliminaries

In this section, we recall some results in Kameko [5], Singer [11] and Sum [13]
on the admissible monomials and the hit monomials in Pk.
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Let αi(a) denote the i-th coefficient in dyadic expansion of a nonnegative
integer a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or
1 and i � 0.

Let x = xa1
1 x

a2
2 . . . xak

k ∈ Pk. Following Kameko [5], we define two sequences
associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .),
σ(x) = (a1, a2, . . . , ak),

where ωi(x) =
∑

1�j�k αi−1(aj), i � 1.

Definition 2.1. Let x, y be the monomials of the same degree in Pk. We say
that x < y if and only if one of the following holds

1. ω(x) < ω(y),
2. ω(x) = ω(y) and σ(x) < σ(y).

Here, the order on the set of sequences of nonnegative integers is the lexico-
graphical one.

Let f, g be homogeneous polynomials of the same degree in Pk. We denote
f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0, then f is called hit.

Definition 2.2. A monomial x is said to be inadmissible if there exists the
monomials y1, y2, . . . , yr such that

x ≡ y1 + y2 + . . .+ yr and yj < x, j = 1, 2, . . . , r.

A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all admissible monomials in Pk is a minimal set of
A-generators of Pk.

Definition 2.3. A monomial x is said to be strictly inadmissible if and only
if there exist monomials y1, y2, . . . , yt such that yj < x, for j = 1, 2, . . . , t and

x = y1 + y2 + . . .+ yt +
∑

1�i<2s

Sqi(fi),

with s � max{i ;ωi(x) > 0} and fi ∈ Pk.

The following theorem is one of our main tools.

Theorem 2.4 (Kameko [5], Sum [13]). Let x, y, w be monomials in Pk such
that ωi(x) = 0 for i > r > 0, ωs(w) �= 0 and ωi(w) = 0 for i > s > 0.

i) If w is inadmissible, then xw2r

is also inadmissible.
ii) If w is strictly inadmissible, then xw2r

y2r+s

is inadmissible.

Now, we recall a result of Singer [11] on the hit monomials in Pk.
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Definition 2.5. A monomial z = xa1
1 x

a2
2 . . . xak

k is called the spike if bj =
2sj − 1 for sj a nonnegative integer and j = 1, 2, . . . , k. If z is the spike with
s1 > s2 > . . . > sr−1 � sr > 0 and sj = 0 for j > r then it is called the
minimal spike.

The following is a criterion for the hit monomials in Pk.

Theorem 2.6 (Singer [11]). Suppose x ∈ Pk is a monomial of degree n,
where α(n + k) � k. Let z be the minimal spike of degree n. If ω(x) < ω(z)
then x is hit.

One of the main tools in the study of the hit problem is Kameko’s squaring
operation S̃q

0

∗ : F2 ⊗A Pk → F2 ⊗A Pk. This homomorphism is induced by the

F2-linear map, also denoted by S̃q
0

∗ : Pk → Pk, given by

S̃q
0

∗(x) =

{
y, if x = x1x2 . . . xky

2 ,

0, otherwise,

for any monomial x ∈ Pk. Note that S̃q
0

∗ is not an A-homomorphism. However,

S̃q
0

∗Sq
2t = SqtS̃q

0

∗, and S̃q
0

∗Sq
2t+1 = 0 for any nonnegative integer t.

Theorem 2.7 (Kameko [5]). Let m be a positive integer. If μ(2m+ k) = k,

then (S̃q
0

∗)m : (F2 ⊗A Pk)2m+k → (F2 ⊗A Pk)m is an isomorphism of F2-vector
spaces.

For latter use, we set

P 0
k = 〈{x = xa1

1 x
a2
2 . . . xak

k ; a1a2 . . . ak = 0}〉,
P+
k = 〈{x = xa1

1 x
a2
2 . . . xak

k ; a1a2 . . . ak > 0}〉.
It is easy to see that P 0

k and P+
k are the A-submodules of Pk. Furthermore,

we have
F2 ⊗A Pk = (F2 ⊗A P 0

k ) ⊕ (F2 ⊗A P+
k ).

For a polynomial f in Pk, we denote by [f ] the class in F2⊗APk represented
by f .

For 1 � i � k, define the homomorphism fi = fk;i : Pk−1 → Pk of algebras
by substituting

fi(xj) =

{
xj, if 1 � j < i,

xj+1, if i � j < k.

It is easy to see that

Proposition 2.8. If Bk−1(n) is the set of all admissible monomials of degree
n in Pk−1, then f(Bk−1(n)) := ∪1�i�kfi(Bk−1(n)) is the set of all admissible
monomials of degree n in P 0

k .
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For any I = (i0, i1, . . . , ir), 0 < i0 < i1 < . . . < ir � k, 0 � r < k, we
define the homomorphism pI : Pk → Pk−1 of algebras by substituting

pI(xj) =

⎧⎪⎨
⎪⎩
xj, if 1 � j < i0,∑

1�s�r xis−1, if j = i0,

xj−1, if i0 < j � k.

Then pI is a homomorphism of A-modules. In particular, for I = (i), we have
p(i)(xi) = 0.

3 Proof of Proposition 1.2

From now on, denote by Bk(n) the set of all admissible monomials of degree n
in Pk.

According to a result in Sum [14], there exist exactly 35 admissible mono-
mials of degree 7 in P4, namely:

x7
i , 1 � i � 4, x1x

2
2x

2
3x

2
4,

xix
6
j , 1 � i < j � 4,

xix
2
jx

4
� , 1 � i < j < � � 4,

xix
3
jx

3
� , 1 � i, j, � � 4, i �= j �= � �= i,

xix
2
jx�xm, (i, j, �,m) is a permutation of (1,2,3,4) such that i < j.

By a direct computation we see that f(B4(7)) is the set consisting of 100
admissible monomials in (P 0

5 )7. Now we determine all admissible monomials
in (P+

5 )7.

Lemma 3.1. If x is an admissible monomials of degree 7 in P5 then either
ω(x) = (3, 2) or ω(x) = (5, 1).

Proof. Since ω1(x) is odd we have ω1(x) = 1 or ω1(x) = 3 or ω1(x) = 5.
If ω1(x) = 1, then x = xiy

2 with y a monomial of degree 3 in P5. This
contradicts the fact that x ∈ P+

5 .
If ω1(x) = 3, then x = xixjx�y

2 with y a monomial of degree 2 in P5. Since
x is admissible, according to Theorem 2.4, y is admissible. Hence y = xmxn,
where (i, j, �,m, n) is a permutation of (1, 2, 3, 4, 5). So we have ω(x) = (3, 2).

If ω1(x) = 5, then x = x1x2x3x4x5x
2
i , 1 � i � 5. Hence ω(x) = (5, 1). �

Lemma 3.2. The following monomials are strictly inadmissible:

x1x
2
2x

2
3x4x5, x

2
1x

2
i xjx�xm, (i, j, �,m) is a permutation of (2, 3, 4, 5).
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Proof. By a direct computation, we have

x1x
2
2x

2
3x4x5 = x1x

2
2x3x

2
4x5 + x1x

2
2x3x4x

2
5 + x1x2x

2
3x

2
4x5 + x1x2x

2
3x4x

2
5

+ x1x2x3x
2
4x

2
5 + Sq1(x2

1x2x3x4x5) + Sq2(x1x2x3x4x5),

x2
1x

2
i xjx�xm = x1x

2
i x

2
jx�xm + x1x

2
ixjx

2
�xm + x1x

2
i xjx�x

2
m + Sq1(x1x

2
ixjx�xm).

The lemma is proved. �
Let x be a monomial of degee 7 in P+

5 . If ω(x) = (5, 1) then x is a spike.
Hence x is admissible. If x is admissible and ω(x) = (3, 2), then by Lemma
3.2, x is one of 5 monomials:

a1 = x1x2x3x
2
4x

2
5, a2 = x1x2x

2
3x4x

2
5, a3 = x1x2x

2
3x

2
4x5,

a4 = x1x
2
2x3x4x

2
5, a5 = x1x

2
2x3x

2
4x5.

Now we prove that the set {[ai], 1 � i � 5} is linearly independent in F2⊗AP5.
Suppose that

S = γ1a1 + γ2a2 + γ3a3 + γ4a4 + γ5a5 ≡ 0.

By a direct computation, we have

p(1,2)(S) ≡ (γ1 + γ2 + γ3)x1x
2
2x

2
3x

2
4 + γ4x

3
1x2x3x

2
4 + γ5x

3
1x2x

2
3x4 ≡ 0,

p(1,3)(S) ≡ (γ1 + γ4 + γ5)x1x
2
2x

2
3x

2
4 + γ2x1x

3
2x3x

2
4 + γ3x1x

3
2x

2
3x4 ≡ 0.

From these above equalities, one gets γ1 = γ2 = γ3 = γ4 = γ5 = 0. The
proposition is proved.

4 Proof of Theorem 1.3

Note that

2s+1 + 2s − 5 = 2s+1 + 2s−1 + 2s−2 + 2s−3 + 2s−3 − 5.

If s > 3, then μ(2s+1 + 2s − 5) = 5. According to Theorem 2.7, the squaring
operation

S̃q
0

∗ : (F2⊗AP5)2s+1+2s−5 −→ (F2⊗AP5)2s+2s−1−5

is an isomorphism. Hence (F2⊗AP5)2s+1+2s−5
∼= (F2⊗AP5)19 for any s > 3.

So, we need only to prove the theorem for s = 3.
Since the squaring operation S̃q

0

∗ : (F2⊗AP5)19 −→ (F2⊗AP5)7 is an epi-
morphism, we have

(F2⊗AP5)19
∼= Ker(S̃q

0

∗) ⊕ (F2⊗AP5)7

= (F2⊗AP 0
5 )19 ⊕ (Ker(S̃q

0

∗) ∩ (F2⊗AP+
5 )19) ⊕ (F2⊗AP5)7.



40 The admissible monomial basis for the polynomial algebra of...

According to a result in Sum [14], there exist exactly 140 admissible mono-
mials of degree 19 in P4. A direct computation using Proposition 2.8, one
gets

Proposition 4.1. There exist exactly 550 admissible monomials of degree 19
in P 0

5 . Consequently dim(F2 ⊗A P 0
5 )19 = 550.

Now we explicitly determine Ker(S̃q
0

∗) ∩ (F2⊗AP+
5 )19.

Lemma 4.2. Let x be an admissible monomial of degree 19 in P5. If [x] ∈
Ker(S̃q

0

∗), then either ω(x) = (3, 2, 1, 1) or ω(x) = (3, 2, 3) or ω(x) = (3, 4, 2).

Proof. Observe that z = x15
1 x

3
2x3 is the minimal spike of degree 9 in P5 and

ω(z) = (3, 2, 1, 1). Since ω1(x) is odd, using Theorem 2.6 and the fact that

[x] ∈ KerS̃q
0

∗, we obtain ω1(x) = 3. Hence x = xixjx�y
2 , where y is a monomial

of degree 8 and 1 � i < j < � � 5. Since x is admissible, by Theorem 2.4,
y is also admissible. Applying Theorem 2.6, we see that either ω1(y) = 2 or
ω1(y) = 4. If ω1(y) = 2, then y = xixjy

2
1 with y1 a monomial of degree 3 in

P5 and i < j. Then either ω(y1) = (1, 1) or ω(y1) = (3). If ω1(y) = 4, then
y = xixjx�y

2
2 with y2 a monomial of degree 2 in P5 and i < j < �. Then

ω(y2) = (2). The lemma is proved. �
Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of nonnegative integers such that

ωi = 0 for i
 0. Define deg ω =
∑
i>0 2i−1ωi. We set

(F2⊗APk)(ω) = Span{[x] ∈ F2⊗APk : x is an admissible monomial and
ω(x) = ω},

and (F2⊗AP+
k )(ω) = ((F2⊗APk)(ω)) ∩ (F2⊗AP+

k ). It is easy to see that

(F2⊗APk)n =
⊕

deg ω=n

(F2⊗APk)(ω).

Applying Lemma 4.2, one gets

Ker(S̃q
0

∗) ∩ (F2⊗AP+
5 )19 = ((F2⊗AP+

5 )(3, 2, 1, 1))⊕
⊕ ((F2⊗AP+

5 )(3, 2, 3))⊕ ((F2⊗AP+
5 )(3, 4, 2)).

Proposition 4.3. (F2⊗AP+
5 )(3, 2, 1, 1) is an F2-vector space of dimension 150

with a basis consisting of all the classes represented by the following admissible
monomials:
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a1 = x1x2x3x
2
4x

14
5 a2 = x1x2x3x

14
4 x

2
5 a3 = x1x2x

2
3x4x

14
5 a4 = x1x2x

2
3x

14
4 x5

a5 = x1x2x
14
3 x4x

2
5 a6 = x1x2x

14
3 x

2
4x5 a7 = x1x

2
2x3x4x

14
5 a8 = x1x

2
2x3x

14
4 x5

a9 = x1x
14
2 x3x4x

2
5 a10 = x1x

14
2 x3x

2
4x5 a11 = x1x2x3x

6
4x

10
5 a12 = x1x2x

6
3x4x

10
5

a13 = x1x2x
6
3x

10
4 x5 a14 = x1x

6
2x3x4x

10
5 a15 = x1x

6
2x3x

10
4 x5 a16 = x1x2x

2
3x

2
4x

13
5

a17 = x1x2x
2
3x

13
4 x

2
5 a18 = x1x

2
2x3x

2
4x

13
5 a19 = x1x

2
2x3x

13
4 x

2
5 a20 = x1x

2
2x

13
3 x4x

2
5

a21 = x1x
2
2x

13
3 x

2
4x5 a22 = x1x2x

2
3x

3
4x

12
5 a23 = x1x2x

2
3x

12
4 x

3
5 a24 = x1x2x

3
3x

2
4x

12
5

a25 = x1x2x
3
3x

12
4 x

2
5 a26 = x1x

2
2x3x

3
4x

12
5 a27 = x1x

2
2x3x

12
4 x

3
5 a28 = x1x

2
2x

3
3x4x

12
5

a29 = x1x
2
2x

3
3x

12
4 x5 a30 = x1x

2
2x

12
3 x4x

3
5 a31 = x1x

2
2x

12
3 x

3
4x5 a32 = x1x

3
2x3x

2
4x

12
5

a33 = x1x
3
2x3x

12
4 x

2
5 a34 = x1x

3
2x

2
3x4x

12
5 a35 = x1x

3
2x

2
3x

12
4 x5 a36 = x1x

3
2x

12
3 x4x

2
5

a37 = x1x
3
2x

12
3 x

2
4x5 a38 = x3

1x2x3x
2
4x

12
5 a39 = x3

1x2x3x
12
4 x

2
5 a40 = x3

1x2x
2
3x4x

12
5

a41 = x3
1x2x

2
3x

12
4 x5 a42 = x3

1x2x
12
3 x4x

2
5 a43 = x3

1x2x
12
3 x

2
4x5 a44 = x3

1x
12
2 x3x4x

2
5

a45 = x3
1x

12
2 x3x

2
4x5 a46 = x1x2x

2
3x

4
4x

11
5 a47 = x1x

2
2x3x

4
4x

11
5 a48 = x1x

2
2x

4
3x4x

11
5

a49 = x1x
2
2x

4
3x

11
4 x5 a50 = x1x2x

2
3x

5
4x

10
5 a51 = x1x

2
2x3x

5
4x

10
5 a52 = x1x

2
2x

5
3x4x

10
5

a53 = x1x
2
2x

5
3x

10
4 x5 a54 = x1x2x

2
3x

6
4x

9
5 a55 = x1x2x

6
3x

2
4x

9
5 a56 = x1x2x

6
3x

9
4x

2
5

a57 = x1x
2
2x3x

6
4x

9
5 a58 = x1x

6
2x3x

2
4x

9
5 a59 = x1x

6
2x3x

9
4x

2
5 a60 = x1x

6
2x

9
3x4x

2
5

a61 = x1x
6
2x

9
3x

2
4x5 a62 = x1x2x

2
3x

7
4x

8
5 a63 = x1x2x

7
3x

2
4x

8
5 a64 = x1x2x

7
3x

8
4x

2
5

a65 = x1x
2
2x3x

7
4x

8
5 a66 = x1x

2
2x

7
3x4x

8
5 a67 = x1x

2
2x

7
3x

8
4x5 a68 = x1x

7
2x3x

2
4x

8
5

a69 = x1x
7
2x3x

8
4x

2
5 a70 = x1x

7
2x

2
3x4x

8
5 a71 = x1x

7
2x

2
3x

8
4x5 a72 = x1x

7
2x

8
3x4x

2
5

a73 = x1x
7
2x

8
3x

2
4x5 a74 = x7

1x2x3x
2
4x

8
5 a75 = x7

1x2x3x
8
4x

2
5 a76 = x7

1x2x
2
3x4x

8
5

a77 = x7
1x2x

2
3x

8
4x5 a78 = x7

1x2x
8
3x4x

2
5 a79 = x7

1x2x
8
3x

2
4x5 a80 = x7

1x
8
2x3x4x

2
5

a81 = x7
1x

8
2x3x

2
4x5 a82 = x1x2x

3
3x

4
4x

10
5 a83 = x1x

3
2x3x

4
4x

10
5 a84 = x1x

3
2x

4
3x4x

10
5

a85 = x1x
3
2x

4
3x

10
4 x5 a86 = x3

1x2x3x
4
4x

10
5 a87 = x3

1x2x
4
3x4x

10
5 a88 = x3

1x2x
4
3x

10
4 x5

a89 = x3
1x

4
2x3x4x

10
5 a90 = x3

1x
4
2x3x

10
4 x5 a91 = x1x2x

3
3x

6
4x

8
5 a92 = x1x2x

6
3x

3
4x

8
5

a93 = x1x2x
6
3x

8
4x

3
5 a94 = x1x

3
2x3x

6
4x

8
5 a95 = x1x

3
2x

6
3x4x

8
5 a96 = x1x

3
2x

6
3x

8
4x5

a97 = x1x
6
2x3x

3
4x

8
5 a98 = x1x

6
2x3x

8
4x

3
5 a99 = x1x

6
2x

3
3x4x

8
5 a100 = x1x

6
2x

3
3x

8
4x5

a101 = x1x
6
2x

8
3x4x

3
5 a102 = x1x

6
2x

8
3x

3
4x5 a103 = x3

1x2x3x
6
4x

8
5 a104 = x3

1x2x
6
3x4x

8
5

a105 = x3
1x2x

6
3x

8
4x5 a106 = x1x

2
2x

5
3x

2
4x

9
5 a107 = x1x

2
2x

5
3x

9
4x

2
5 a108 = x1x

2
2x

3
3x

4
4x

9
5

a109 = x1x
2
2x

4
3x

3
4x

9
5 a110 = x1x

2
2x

4
3x

9
4x

3
5 a111 = x1x

3
2x

2
3x

4
4x

9
5 a112 = x1x

3
2x

4
3x

2
4x

9
5

a113 = x1x
3
2x

4
3x

9
4x

2
5 a114 = x3

1x2x
2
3x

4
4x

9
5 a115 = x3

1x2x
4
3x

2
4x

9
5 a116 = x3

1x2x
4
3x

9
4x

2
5

a117 = x3
1x

4
2x3x

2
4x

9
5 a118 = x3

1x
4
2x3x

9
4x

2
5 a119 = x3

1x
4
2x

9
3x4x

2
5 a120 = x3

1x
4
2x

9
3x

2
4x5

a121 = x1x
2
2x

3
3x

5
4x

8
5 a122 = x1x

2
2x

5
3x

3
4x

8
5 a123 = x1x

2
2x

5
3x

8
4x

3
5 a124 = x1x

3
2x

2
3x

5
4x

8
5

a125 = x1x
3
2x

5
3x

2
4x

8
5 a126 = x1x

3
2x

5
3x

8
4x

2
5 a127 = x3

1x2x
2
3x

5
4x

8
5 a128 = x3

1x2x
5
3x

2
4x

8
5

a129 = x3
1x2x

5
3x

8
4x

2
5 a130 = x3

1x
5
2x3x

2
4x

8
5 a131 = x3

1x
5
2x3x

8
4x

2
5 a132 = x3

1x
5
2x

2
3x4x

8
5

a133 = x3
1x

5
2x

2
3x

8
4x5 a134 = x3

1x
5
2x

8
3x4x

2
5 a135 = x3

1x
5
2x

8
3x

2
4x5 a136 = x1x

3
2x

3
3x

4
4x

8
5

a137 = x1x
3
2x

4
3x

3
4x

8
5 a138 = x1x

3
2x

4
3x

8
4x

3
5 a139 = x3

1x2x
3
3x

4
4x

8
5 a140 = x3

1x2x
4
3x

3
4x

8
5

a141 = x3
1x2x

4
3x

8
4x

3
5 a142 = x3

1x
3
2x3x

4
4x

8
5 a143 = x3

1x
3
2x

4
3x4x

8
5 a144 = x3

1x
3
2x

4
3x

8
4x5

a145 = x3
1x

4
2x3x

3
4x

8
5 a146 = x3

1x
4
2x3x

8
4x

3
5 a147 = x3

1x
4
2x

3
3x4x

8
5 a148 = x3

1x
4
2x

3
3x

8
4x5

a149 = x3
1x

4
2x

8
3x4x

3
5 a150 = x3

1x
4
2x

8
3x

3
4x5.

We need the following for the proof of the proposition.

Lemma 4.4. The following monomials are strictly inadmissible:
x2
ixj , i < j; x2

ixjx�, i < j < �; x2
i xjx�x

3
m, i < j < �, m �= i, j, �.
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Proof. We have

x2
ixj = xix

2
j + Sq1(xixj),

x2
i xjx� = xix

2
jx� + xixjx

2
� + Sq1(xixjx�),

x2
ixjx�x

3
m = xix

2
jx�x

3
m + xixjx

2
�x

3
m + xixjx�x

4
m + Sq1(xixjx�x3

m).

The lemma follows. �

Proof of Proposition 4.3. Let x be a monomial in P5 and ω(x) = (3, 2, 1, 1).
Then x is a permutation of one of the following monomials:

x1x2x3x
2
4x

14
5 x1x2x3x

6
4x

10
5 x1x2x

2
3x

2
4x

13
5 x1x2x

2
3x

3
4x

12
5 x1x2x

2
3x

4
4x

11
5

x1x2x
2
3x

5
4x

10
5 x1x2x

2
3x

6
4x

9
5 x1x2x

2
3x

7
4x

8
5 x1x2x

3
3x

4
4x

10
5 x1x2x

3
3x

6
4x

8
5

x1x
2
2x

2
3x

5
4x

9
5 x1x

2
2x

3
3x

4
4x

9
5 x1x

2
2x

3
3x

5
4x

8
5 x1x

3
2x

3
3x

4
4x

8
5.

A direct computation using Theorem 2.4 and Lemmas 3.2, 4.4 shows that
if x �= at, 1 � t � 150, then x is inadmissible.

Now, we prove that the set {[at] : 1 � t � 150} is linearly independent in
F2⊗AP5. Suppose there is a linear relation

S =
∑

1�t�150

γtat ≡ 0,

with γt ∈ F2.
By a direct computation from the relations p(i,j)(S) ≡ 0, 1 � i < j � 5,

and p(1,2,3)(S) ≡ 0, one gets γt = 0 for all t. The proposition is proved. �

Proposition 4.5. (F2⊗AP+
5 )(3, 2, 3) is an F2-vector space of dimension 47

with a basis consisting of all the classes represented by the following admissible
monomials:
b1 = x1x

2
2x

4
3x

5
4x

7
5 b2 = x1x

2
2x

4
3x

7
4x

5
5 b3 = x1x

2
2x

5
3x

4
4x

7
5 b4 = x1x

2
2x

5
3x

7
4x

4
5

b5 = x1x
2
2x

7
3x

4
4x

5
5 b6 = x1x

2
2x

7
3x

5
4x

4
5 b7 = x1x

7
2x

2
3x

4
4x

5
5 b8 = x1x

7
2x

2
3x

5
4x

4
5

b9 = x7
1x2x

2
3x

4
4x

5
5 b10 = x7

1x2x
2
3x

5
4x

4
5 b11 = x1x

2
2x

5
3x

5
4x

6
5 b12 = x1x

2
2x

5
3x

6
4x

5
5

b13 = x1x
3
2x

4
3x

4
4x

7
5 b14 = x1x

3
2x

4
3x

7
4x

4
5 b15 = x1x

3
2x

7
3x

4
4x

4
5 b16 = x1x

7
2x

3
3x

4
4x

4
5

b17 = x3
1x2x

4
3x

4
4x

7
5 b18 = x3

1x2x
4
3x

7
4x

4
5 b19 = x3

1x2x
7
3x

4
4x

4
5 b20 = x3

1x
7
2x3x

4
4x

4
5

b21 = x7
1x2x

3
3x

4
4x

4
5 b22 = x7

1x
3
2x3x

4
4x

4
5 b23 = x1x

3
2x

4
3x

5
4x

6
5 b24 = x1x

3
2x

4
3x

6
4x

5
5

b25 = x1x
3
2x

5
3x

4
4x

6
5 b26 = x1x

3
2x

5
3x

6
4x

4
5 b27 = x1x

3
2x

6
3x

4
4x

5
5 b28 = x1x

3
2x

6
3x

5
4x

4
5

b29 = x1x
6
2x

3
3x

4
4x

5
5 b30 = x1x

6
2x

3
3x

5
4x

4
5 b31 = x3

1x2x
4
3x

5
4x

6
5 b32 = x3

1x2x
4
3x

6
4x

5
5

b33 = x3
1x2x

5
3x

4
4x

6
5 b34 = x3

1x2x
5
3x

6
4x

4
5 b35 = x3

1x2x
6
3x

4
4x

5
5 b36 = x3

1x2x
6
3x

5
4x

4
5

b37 = x3
1x

5
2x3x

4
4x

6
5 b38 = x3

1x
5
2x3x

6
4x

4
5 b39 = x3

1x
5
2x

6
3x4x

4
5 b40 = x3

1x
5
2x

2
3x

4
4x

5
5

b41 = x3
1x

5
2x

2
3x

5
4x

4
5 b42 = x3

1x
3
2x

4
3x

4
4x

5
5 b43 = x3

1x
3
2x

4
3x

5
4x

4
5 b44 = x3

1x
3
2x

5
3x

4
4x

4
5

b45 = x3
1x

4
2x

3
3x

4
4x

5
5 b46 = x3

1x
4
2x

3
3x

5
4x

4
5 b47 = x3

1x
5
2x

3
3x

4
4x

4
5.

Lemma 4.6. The following monomials are strictly inadmissible:

(i) x2
ix

3
jx

3
� , i �= j �= � �= i,
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(ii) x2
i xjx

2
�x

3
m, i < j, i, j �= �,m, � �= m,

(iii) x2
ixjx�x

2
mx

2
n, (i, j, �,m, n) is a permutation of (1, 2, 3, 4, 5) and i < j <

�.

(iv) x3
ix

5
jx

6
�x

5
m, i < j < �, m �= i, j, �,

(v) x3
ix

4
jx

5
�x

7
m, i �= j �= � �= m �= i,

(vi) x3
ix

5
jx

5
�x

6
m, i < j < � < m,

Lemma 4.7. Let (i, j, �,m, n) be a permutation of (1, 2, 3, 4, 5). Then the fol-
lowing monomials are strictly inadmissible:

(i) x4
ixjx

3
�x

4
mx

7
n, x4

ixjx
3
�x

5
mx

6
n, i < j,

(ii) x3
i x

4
jx

5
�x

2
mx

5
n, x

3
i x

4
jx

4
�x

3
mx

5
n i = 1, m > 3.

The above lemmas are proved by a direct computation.

Proof of Proposition 4.5. Let x be a monomial in P5 and ω(x) = (3, 2, 3). Then
x is a permutation of one of the following monomials:

x1x
2
2x

4
3x

5
4x

7
5, x1x

2
2x

5
3x

5
4x

6
5, x1x

3
2x

4
3x

4
4x

7
5, x1x

3
2x

4
3x

5
4x

6
5, x2

1x
3
2x

4
3x

5
4x

5
5, x3

1x
3
2x

4
3x

4
4x

5
5.

By a direct computation using Theorem 2.4 and Lemmas 3.2, 4.4, 4.6, 4.7
we see that if x �= bt, ∀t, 1 � t � 47, then x is inadmissible.

Now, we prove that the set {[bt] : 1 � i � 47} is linearly independent in
F2⊗AP5. Suppose there is a linear relation

S =
∑

1�t�47

γtbt ≡ 0,

with γt ∈ F2, 1 � t � 47.
Computing directly from the relations p(i,j)(S) ≡ 0, 1 � i < j � 5, gives

γt = 0 for all 1 � t � 47. The proposition is proved. �

Proposition 4.8. (F2⊗AP+
5 )(3, 4, 2) is an F2-vector space of dimension 55

with a basis consisting of all the classes represented by the following admissible
monomials:

c1 = x1x
2
2x

2
3x

7
4x

7
5 c2 = x1x

2
2x

7
3x

2
4x

7
5 c3 = x1x

2
2x

7
3x

7
4x

2
5 c4 = x1x

7
2x

2
3x

2
4x

7
5

c5 = x1x
7
2x

2
3x

7
4x

2
5 c6 = x1x

7
2x

7
3x

2
4x

2
5 c7 = x7

1x2x
2
3x

2
4x

7
5 c8 = x7

1x2x
2
3x

7
4x

2
5

c9 = x7
1x2x

7
3x

2
4x

2
5 c10 = x7

1x
7
2x3x

2
4x

2
5 c11 = x1x

2
2x

3
3x

6
4x

7
5 c12 = x1x

2
2x

3
3x

7
4x

6
5

c13 = x1x
2
2x

7
3x

3
4x

6
5 c14 = x1x

3
2x

2
3x

6
4x

7
5 c15 = x1x

3
2x

2
3x

7
4x

6
5 c16 = x1x

3
2x

6
3x

2
4x

7
5

c17 = x1x
3
2x

6
3x

7
4x

2
5 c18 = x1x

3
2x

7
3x

2
4x

6
5 c19 = x1x

3
2x

7
3x

6
4x

2
5 c20 = x1x

7
2x

2
3x

3
4x

6
5

c21 = x1x
7
2x

3
3x

2
4x

6
5 c22 = x1x

7
2x

3
3x

6
4x

2
5 c23 = x3

1x2x
2
3x

6
4x

7
5 c24 = x3

1x2x
2
3x

7
4x

6
5

c25 = x3
1x2x

6
3x

2
4x

7
5 c26 = x3

1x2x
6
3x

7
4x

2
5 c27 = x3

1x2x
7
3x

2
4x

6
5 c28 = x3

1x2x
7
3x

6
4x

2
5
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c29 = x3
1x

7
2x3x

2
4x

6
5 c30 = x3

1x
7
2x3x

6
4x

2
5 c31 = x7

1x2x
2
3x

3
4x

6
5 c32 = x7

1x2x
3
3x

2
4x

6
5

c33 = x7
1x2x

3
3x

6
4x

2
5 c34 = x7

1x
3
2x3x

2
4x

6
5 c35 = x7

1x
3
2x3x

6
4x

2
5 c36 = x1x

3
2x

3
3x

6
4x

6
5

c37 = x1x
3
2x

6
3x

3
4x

6
5 c38 = x1x

3
2x

6
3x

6
4x

3
5 c39 = x3

1x2x
3
3x

6
4x

6
5 c40 = x3

1x2x
6
3x

3
4x

6
5

c41 = x3
1x2x

6
3x

6
4x

3
5 c42 = x3

1x
3
2x3x

6
4x

6
5 c43 = x3

1x
5
2x

2
3x

2
4x

7
5 c44 = x3

1x
5
2x

2
3x

7
4x

2
5

c45 = x3
1x

5
2x

7
3x

2
4x

2
5 c46 = x3

1x
7
2x

5
3x

2
4x

2
5 c47 = x7

1x
3
2x

5
3x

2
4x

2
5 c48 = x3

1x
3
2x

5
3x

2
4x

6
5

c49 = x3
1x

3
2x

5
3x

6
4x

2
5 c50 = x3

1x
5
2x

2
3x

3
4x

6
5 c51 = x3

1x
5
2x

2
3x

6
4x

3
5 c52 = x3

1x
5
2x

3
3x

2
4x

6
5

c53 = x3
1x

5
2x

3
3x

6
4x

2
5 c54 = x3

1x
5
2x

6
3x

2
4x

3
5 c55 = x3

1x
5
2x

6
3x

3
4x

2
5.

Lemma 4.9. Let (i, j, �,m, n) be a permutation of (1, 2, 3, 4, 5). Then the fol-
lowing monomials are strictly inadmissible:

(i) x2
ixjx�xmx

3
n, i < j < � < m,

(ii) xix6
jx

3
�x

2
mx

7
n, i < j < �, xix

6
jx

3
�x

3
mx

6
n, i = 1, j = 2.

Proof. We prove the lemma for x = x1x
6
2x

3
3x

2
4x

7
5. The others can be proved by

a similar computation. A direct computation shows

x = x1x
5
2x

4
3x

2
4x

7
5 + x1x

5
2x

3
3x

2
4x

8
5 + x2

1x
3
2x

3
3x

2
4x

9
5 + x2

1x
4
2x

4
3x

2
4x

7
5 + x2

1x
4
2x

3
3x

2
4x

8
5

+ x2
1x

3
2x

4
3x

2
4x

8
5 + x4

1x
4
2x

3
3x4x

7
5 + x4

1x
3
2x

4
3x4x

7
5 + x4

1x
3
2x

3
3x4x

8
5 + x1x

4
2x

3
3x

4
4x

7
5

+ x1x
3
2x

4
3x

4
4x

7
5 + x1x

3
2x

3
3x

4
4x

8
5 + x1x

4
2x

5
3x

2
4x

7
5 + x1x

3
2x

5
3x

2
4x

8
5 + x1x

3
2x

6
3x

2
4x

7
5

+ Sq1(x1x
5
2x

3
3x

2
4x

7
5 + x4

1x
3
2x

3
3x4x

7
5 + x1x

3
2x

3
3x

4
4x

7
5 + x1x

3
2x

5
3x

2
4x

7
5)

+ Sq2(x1x
3
2x

3
3x

2
4x

7
5).

Hence x is strictly inadmissible. �

Proof of Proposition 4.8. Let x be a monomial in P5 and ω(x) = (3, 4, 2). Then
x is a permutation of one of the following monomials:

x1x
2
2x

2
3x

7
4x

7
5, x1x

2
2x

3
3x

6
4x

7
5, x1x

3
2x

3
3x

6
4x

6
5, x2

1x
2
2x

3
3x

5
4x

7
5, x2

1x
3
2x

3
3x

5
4x

6
5.

By a direct computation using Theorem 2.4 and Lemma 4.9, we see that if
x �= ct, 1 � t � 55, then x is inadmissible.

Now, we prove that the set {[ct] : 1 � t � 55} is linearly independent in
F2⊗AP5. Suppose there is a linear relation

S =
∑

1�t�55

γtct ≡ 0,

with γt ∈ F2, 1 � t � 55.
By a direct computation from the relations p(i,j)(S) ≡ 0, 1 � i < j � 5, one

gets γt = 0 for all t. The proposition is proved. �
Combining Propositions 1.2, 4.1, 4.3, 4.5, 4.8, we obtain

B5(19) = f(B4(19)) ∪ {ai : 1 � i � 150}∪
∪ {bj : 1 � j � 47} ∪ {c� : 1 � � � 55} ∪ ψ(B5(7)),
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where ψ : P5 → P5 is the homomorphism determined by ψ(x) = x1x2x3x4x5x
2

for all x ∈ P5. For s > 3, we have

B5(2s+1 + 2s − 5) = ψs−3(B5(19)).

Theorem 1.3 is proved.
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