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Abstract
Let Py, := Fa[z1, 22, ..., 2zx] be the polynomial algebra over the prime
field of two elements, F2, in k variables =1, x2,...,xk, each of degree 1.

We study the hit problem, set up by F. Peterson, of finding a minimal set
of generators for Py as a module over the mod-2 Steenrod algebra, A. In
this paper, we explicitly determine all admissible monomials for the case
k=5 in degree 2°! + 2% — 5 with s an arbitrary positive integer.

1 Introduction

Let Py := Fa[x1,x2,..., 2] be the polynomial algebra over the prime field of
two elements, Fo, in k variables =1, s, ..., zg, each of degree 1. The mod-2
Steenrod algebra A acts on Py by the formula

zj, =0,

Sq'(xj) =22, i=1,

0, otherwise,

and subject to the Cartan formula Sq"(fg) = .., Sq¢'(f)Sq" *(g), for f,g €
Py, (see Steenrod-Epstein [12]).
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Many authors study the hit problem of determination of the minimal set
of generators for Py as a module over the Steenrod algebra, or equivalently, a
basis of Fo @ 4 Pj.

This problem has first been studied by Peterson [8], Wood [16], Singer [11],
Priddy [9], who show its relationship to several classical problems in homotopy
theory.

The tensor product Fy ® 4 Py, has explicitly been calculated by Peterson [8]
for k = 2, Kameko for k£ = 3 in his thesis [5] and Sum [14] for k = 4.

The hit problem were then investigated by many authors. (See Bruner-
Ha-Hung [1], Carlisle-Wood [2], Crabb-Hubbuck [3], Hung [4], Mothebe [6],
Nam [7], Singer [11], Silverman [10], Walker-Wood [15] and others.)

Peterson conjectured in [8] that as a module over the Steenrod algebra A,
Py, is generated by monomials in degrees n that satisfy a(n + k) < k, where
a(n) denotes the number of ones in dyadic expansion of n, and proved it for
k < 2. The conjecture was established in general by Wood [16].

For any nonnegative integer n, set u(n) = min{m € Z : a(n +m) < m}.
Denote by (Px), and (Fo ® 4 Py), the subspaces of degree n homogeneous
polynomials in the spaces Py and Fo ® 4 Py respectively.

Theorem 1.1 ([Wood [16]). If u(n) >k, then (F2 ® 4 Px)n = 0.

From Theorem 1.1, the hit problem is reduced to the cases of degree n with
win) < k.

In this paper, we explicitly determine all the admissible monomials (see
Section 2) of Ps in degree n = 25T + 2% — 5 with s an arbitrary positive
integer.

For s = 1, the problem is easy. There exist exactly 5 admissible monomials
of degree 1 in Ps5, namely: x1, T2, 3, T4, 5. For s = 2, we have

Proposition 1.2. There exist exactly 110 admissible monomials of degree 7 in
Ps. Consequently dim((Fy ® 4 Ps)7 = 110.

The main result of the paper is the following:

Theorem 1.3. For any integer s > 3, there exist exactly 912 admissible mono-
mials of degree 2571425 —5 in Ps. Consequently dim(Fo® .4 Ps)gst140:_5 = 912.

In Section 2, we recall some results on the admissible monomials and hit
monomials in Px. We prove Proposition 1.2 in Section 3. Theorem 1.3 will be
proved in Section 4.

2 Preliminaries

In this section, we recall some results in Kameko [5], Singer [11] and Sum [13]
on the admissible monomials and the hit monomials in Pj.
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Let a;(a) denote the i-th coefficient in dyadic expansion of a nonnegative
integer a. That means a = ag(a)2° + a1(a)2! + as(a)22 + ..., for a;(a) =0 or
land i > 0.

Let ¢ = z{'z5? ... z}" € Py. Following Kameko [5], we define two sequences

associated with = by
w(x) = (wi(x),wa(x), ..., wi(x),...),
o(x) = (a1, a9, ...,a),

where w;(x) = Z1gjgk a;—1(a;), i > 1.

Definition 2.1. Let =,y be the monomials of the same degree in P;. We say
that < y if and only if one of the following holds

Lo w(z) < w(y),

2. w(z) =w(y) and o(z) < o(y).
Here, the order on the set of sequences of nonnegative integers is the lexico-
graphical one.

Let f, g be homogeneous polynomials of the same degree in P;. We denote
f=gifandonlyif f —ge ATP,. If f =0, then f is called hit.

Definition 2.2. A monomial z is said to be inadmissible if there exists the
monomials y1,ys, - - .,y such that

T=Yyr+ye+...tyrandy; <z, j=1,2,...,7
A monomial z is said to be admissible if it is not inadmissible.

Obviously, the set of all admissible monomials in Py is a minimal set of
A-generators of Py.

Definition 2.3. A monomial z is said to be strictly inadmissible if and only
if there exist monomials y1, %2, ...,y such that y; <z, for j =1,2,...,¢t and

rT=y1+y2+...+y + Z Sqi(fi),
1<i<2s

with s < max{i ;w;(z) > 0} and f; € Py.
The following theorem is one of our main tools.

Theorem 2.4 (Kameko [5], Sum [13]). Let z,y, w be monomials in Py such
that wi(x) =0 fori>r >0, ws(w) # 0 and w;(w) =0 fori> s> 0.

i) If w is inadmissible, then zw? is also inadmissible.

ii) If w is strictly inadmissible, then wary2r+S is inadmissible.

Now, we recall a result of Singer [11] on the hit monomials in Pj.
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Definition 2.5. A monomial z = z{'z5... 23" is called the spike if b; =
2% —1 for s; a nonnegative integer and j = 1,2,..., k. If z is the spike with

51 > 82 > ...> 8_1 = 8 > 0and s; =0 for j > r then it is called the
minimal spike.

The following is a criterion for the hit monomials in Pj.
Theorem 2.6 (Singer [11]). Suppose x € Py is a monomial of degree n,

where a(n + k) < k. Let z be the minimal spike of degree n. If w(z) < w(2)
then x is hit.

One of the main tools in the study of the hit problem is Kameko’s squaring
—0
operation Sq, : Fo ® 4 Px — Fs ® 4 P;. This homomorphism is induced by the
—~0
Fs-linear map, also denoted by Sq, : P, — Py, given by

S’VO( ) y, ifx=x120... 2132,
* x = .
1 0, otherwise,

for any monomial z € Py. Note that S’TJS is not an A-homomorphism. However,
S’TJSSth = Sqt,%g, and S’TJSSq%“ = 0 for any nonnegative integer t.

Theorem 2.7 (Kameko [5]). Let m be a positive integer. If p(2m + k) = k,
then (S’Eg)m i (Fa @4 Pr)omtk — (Fo @4 Pr)m is an isomorphism of Fa-vector

spaces.

For latter use, we set

P)=({z =225 ... 20" ; a1az...a; = 0}),

Pt ={z=2V23...2" ; aras...a > 0}).

It is easy to see that P and P,j are the A-submodules of Pj. Furthermore,
we have
Fo @4 P, = (Fo ©4 ) ® (F2 ©4 By).

For a polynomial f in Py, we denote by [f] the class in Fo ® 4 Py represented

by f.
For 1 < ¢ < k, define the homomorphism f; = fi.; : Py—1 — Py of algebras
by substituting

It is easy to see that

Proposition 2.8. If Bi_1(n) is the set of all admissible monomials of degree
n in Py_1, then f(Br—1(n)) := Uigickfi(Br—1(n)) is the set of all admissible
monomials of degree n in PY.



38 The admissible monomial basis for the polynomial algebra of...

For any I = (ig,i1,...,0r), 0 < ig < i1 < ... <4 <k, 0<r <k, we
define the homomorphism py : Py — Py_; of algebras by substituting

;) if1< 5 <o,
pr(z;) = Zlgsgrxis—la if j = o,
Tj-1, if 10 <j <k.

Then p; is a homomorphism of A-modules. In particular, for I = (i), we have
piy(z:) = 0.

3 Proof of Proposition 1.2

From now on, denote by By (n) the set of all admissible monomials of degree n
in Pk.

According to a result in Sum [14], there exist exactly 35 admissible mono-
mials of degree 7 in P, namely:

al, 1<i <4, riadadad,

zixd, 1<i < j <4,

xix?xﬁ, 1<i<y<l<4,

wrad, 1<i,j, 0 <4, i #j#LF4,

xix?xgxm, (i, 4,¢,m) is a permutation of (1,2,3,4) such that i < j.

By a direct computation we see that f(B4(7)) is the set consisting of 100
admissible monomials in (PY)7. Now we determine all admissible monomials
in (P 5+ )7-

Lemma 3.1. If x is an admissible monomials of degree 7 in Ps then either
w(z) = (3,2) orw(z) = (5,1).

Proof. Since w(x) is odd we have wy(z) =1 or wy(z) = 3 or wy(x) = 5.

If wi(z) = 1, then x = x;9? with ¥ a monomial of degree 3 in Ps. This
contradicts the fact that x € Pi'.

If wi(x) = 3, then x = z;x;x,y* with y a monomial of degree 2 in Ps. Since
x is admissible, according to Theorem 2.4, y is admissible. Hence y = z,,,xy,
where (7, j,¢,m,n) is a permutation of (1,2,3,4,5). So we have w(x) = (3, 2).

If wy(x) =5, then = z120w3247527, 1 <4< 5. Hence w(z) = (5,1). O

Lemma 3.2. The following monomials are strictly inadmissible:

TITITIT4Ts, VIXT T T4, (1, 7,4, m) is a permutation of (2,3,4,5).
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Proof. By a direct computation, we have
2,2 2 2 2 2 2.2 2 2
T1THT3X4L5 = T1X3X3TLT5 + T1T5T3T4TE + T1T2T3X4 X5 + T1X2T3T4X5
2 2 1,2 2
+ x1xoxsrirs + Sq¢ (xixex32475) + Sq° (T122237475),
2.2 2,2 2 2 2 2 1 2
TITFL;TTm = T1T;T;LTm + 1T X T + T1X;T 5T T, + Sq (xlxi xjxgxm).

The lemma, is proved. u

Let = be a monomial of degee 7 in Pi". If w(x) = (5,1) then x is a spike.
Hence z is admissible. If z is admissible and w(z) = (3,2), then by Lemma
3.2, x is one of 5 monomials:

2.2 2 2 2.2
A1 = T1X2X3T YTy, A2 = T1X2X3T4T5, A3 = T1X2X3T4T5,
— 2 2 _ 2 2
4 = T1T3T3T4T5, A5 = T1ToT3T4T5.

Now we prove that the set {[a;], 1 < ¢ < 5} is linearly independent in Fo® 4 Ps.
Suppose that

S =ma1 + a2 + Y303 + Y404 + 505 = 0.
By a direct computation, we have
pa.2)(S) = (11 + 12 +3)T123050% + Naatrexsrt + Ysaireair, =0,
P1,3)(S) = (n + 74+ ¥5)T1x3235] + yemiziasw] + Y35 TETs = 0.

From these above equalities, one gets 71 = 7% = 73 = 74 = 75 = 0. The
proposition is proved.

4  Proof of Theorem 1.3

Note that
24 420 -5 =25 2571 4 9572 4 9973 1 9579 5,
If s > 3, then (25t + 2% — 5) = 5. According to Theorem 2.7, the squaring
operation
SN'QS P (F2®@aPs5)s+1 4255 — (F2®@aP5)2s 10515

is an isomorphism. Hence (Fo®4Ps)gs+149s_5 = (Fa®4P5)19 for any s > 3.
So, we need only to prove the theorem for s = 3.

—~—0
Since the squaring operation Sq, : (Fo®4Ps5)19 — (Fo®4P5)7 is an epi-
morphism, we have

—0
(F2®@4Ps)19 = Ker(Sq,,) ® (F2®4Ps)7
—0
= (F2®AP5O)19 ® (Ker(Sq,) N (F2@4P5 )10) ® (F2®.4Ps5)7.
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According to a result in Sum [14], there exist exactly 140 admissible mono-
mials of degree 19 in P,. A direct computation using Proposition 2.8, one
gets

Proposition 4.1. There exist exactly 550 admissible monomials of degree 19
in PY. Consequently dim(Fy ® 4 PY)19 = 550.

—~—0
Now we explicitly determine Ker(Sq,) N (Fa®4P5 )19.

Lemma 4.2. Let x be an admissible monomial of degree 19 in Ps. If [x] €
—~—0
Ker(Sq,), then either w(z) = (3,2,1,1) or w(z) = (3,2,3) or w(x) = (3,4, 2).

Proof. Observe that z = x}°x3z3 is the minimal spike of degree 9 in Ps and
w(z) = (3,2,1,1). Since wq(x) is odd, using Theorem 2.6 and the fact that
—~0
[z] € KerSg,, we obtain wi(z) = 3. Hence z = z;xj24y*, where y is a monomial
of degree 8 and 1 < i < j < £ < 5. Since x is admissible, by Theorem 2.4,
y is also admissible. Applying Theorem 2.6, we see that either wi(y) = 2 or
wi(y) = 4. If wi(y) = 2, then y = z;z;y7 with y; a monomial of degree 3 in
Ps and i < j. Then either w(y;) = (1,1) or w(y1) = (3). If wi(y) = 4, then
y = x;x;xey5 with yo a monomial of degree 2 in Ps and i < j < £. Then
w(y2) = (2). The lemma is proved. O
Let w = (w1, ws, . . .,w;,...) be a sequence of nonnegative integers such that
w; = 0 for 7> 0. Define degw = Y, ; 2° 'w;. We set
(Fa®.4Py)(w) = Span{[z] € Fa®4 Py : « is an admissible monomial and
w(z) = w},
and (Fa@4 P ) (w) = (F2@4Pg)(w)) N (Fa@4P;). Tt is easy to see that

(Fa®@APy)n = @ (Fo®@4Pr)(w).

deg w=n

Applying Lemma 4.2, one gets

Ker(Sq,) N (Fa©4 Py 1o = (Fawa Py )(3,2,1, 1))
S2) ((F2®AP5+)(3a 2, 3)) S ((F2®AP5+)(3a 4, 2))

Proposition 4.3. (Fa®4P5)(3,2,1,1) is an Fa-vector space of dimension 150
with a basis consisting of all the classes represented by the following admissible
monomials:
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ay = 331.23233333233%4

as = .231.23233%433433%

ag = .231.23%433333433%
— 6,.10

13 = T1X2X3T4 T5

— 2,.13,.2
17 = T1X2X3T 41 T

ag1 = .231.23%33%3332335
a5 — .231.23233%33411233%
a29 = .231.23%33%33}12335
azs = .231.23%33333411233%
azy = .231.23%33%2332335
aq1 = .23:%33233%334112335
A45 — .23:%3352333332335
49 = .231.23%33%33}11335
as3 — .231.23%33233}10335
as7 = xlxgxgx?lxg
ag1 — xlxgxngx5
ags — xlxgxngxg
a9 — xlxgxgxﬁxg
ars = xlxgxgx2x5
arr = J?IJ?QJ?%J?ZJ%
agl — xzx§x3x2x5
ags — .231.23%33%334110335
agg — .23:%33333333433%0
ags — xlxgxgxﬁxg

— 6 3.8
ag7 = T1TT3T 4Ty

aijpolr — .23133333%33433%
alos = x%xgxgx§x5
ai09 = T1T5T3THL
ai113 = xlxgxéx?lxg
a117 = xfx%xgxixg
a121 = xlxgxgxixg
ai125 — xw%x%xix%
a129 — x%xgxgxﬁxg
a133 — xfxgx§x§x5
ai137 — xlxgxéxixg
a141 = x%xgxéxﬁxg
145 = wiwsraries

— 34,8 3
a149 — x1x2x3x4x5

ag = .231.23233333411433%
ag — .231.23233%4332335

ajp = .231.23%4333332335
a14 = 331.23333333433%0
aig — 331.23%33333233%3
ag9 = 331.23233%.23233%2
26 — 331.23%33333233%2
aszp — .231.23%33%233433%
az4 = 33133%33%%433%2
aszg — 33:%33233333233%2
a4 = x§x2x§2x4x§
46 — .231.23233%3333351)1
asp — 331.23233%.23233%0
a54 — xlxgxgx?lxg
asg — xlxgxngxg
ag2 — xlxgxngxg
age — .23133%335334332
aro = x1$g$§$4$§
ar4 = xzxgxngxg
arg = x1x2x§x4x§
aga — 331.23233%33333%0
age — 33:%33233333333%0
agp — xfx%xgxi0x5
agyg — xlxgxgxgxg

— 6 8.3
ag8 = T1TT3T 4Ty

— 6,.8,..3
ajp2 — .231.232333334335

a106 = T1T3T3T1T3
a0 = xw%x%xix%
a114 = x:fxgx%xﬁxg
aj118 — x%x%x;ﬂ??ﬂ?%
a1292 = xw%x%xﬁx%
a126 — xlxgxgxﬁxg
ai130 = x%xgxgxixg
a134 = x?x‘;’xgmlxg
a138 — xlxgxéxﬁxg
142 = x%x%xgxﬁxg
a146 — x%x%xgxﬁxg

8.3

— 3.4
150 = T1TT3TYT5.

az = 331.23233%.23433%4

ar = 33133%33333433%4
— 6,.10

aylp = .231.232333334335

— 6 10
a15 = T1TyX3T 4 T5

— 2 13,.2
19 = T1T3X3T4 T§

— 2,..12,..3
23 = T1X2X3T 4 Ty

_ 2 12,.3
27 = T1T3X3T, Ty

— 2,.12..3
31 = T1T3T3"TyTs

— 3,.2,.12
a35 = T1TxT3T41 T

— 3 12,.2
a39 = T1T2X3T4 T

43 = .23:%33233%2332335
a47 = 33133333333333%1
as1 = .231.23%33333233%0
ass — xlxgxngxg

as9 — xlxgxgx?lxg
ag3 — xlxgxngxg
a7 — .231.23%33533481335
a7l = .231.23;33%33481335
ars = .2313323333348133%
arg = .231332332332335

— 3 4,..10
ag3 = T1TX3T 4Ty

— 3 4 10
ag7 = T1X2T3T4T5
— 3.,.6,.8
91 = T1T2X3L 4T

— 3.6 8
95 = T1ToX3T4T5
— 6.3 8
ag9 = T1T X 3T4T5

— 3 6,..8
103 = T1T2X3T 4T

— 2,.5,.9,.2
107 = T1T3T3T 1T
3,.2..4,..9

111 = T1ToX3T 4T

— 3 4,..2,..9
A115 = T1X2X3T 4Ty

— 23.4..9 2
aj19g = x1x2x3x4x5

a123 = xlxgxgxﬁxg
a7 = x%xgxgxixg
ai131 — x%xgxgxﬁxg
ai35 = TiwsriTiTs
a139 — xfxgxgxﬁxg
a143 = Tir3riTend

34,3 8

a147 = x1x2x3x4x5

We need the following for the proof of the proposition.

41

a4 = .231.23233%334114335
ag — .231.23%333334114335

a1 = 331.23233333433%0
a1 — 331.23233%.23233%3
a0 = .231.23%33%333433%
ag4 = 331.23233%33233%2
a28 — 331.23%33%33433%2
azg = xlxgxngx%Q
aze — .231.23%33%233433%

— 3 2 12
40 = x1x2x3x4x5

— 312 2
a44 = T1T5 x3x4x5

2,4 11

A48 — x1x2x3x4x5
— 2,..5 10
A52 = T1T3X3T4T5
— 6,.9,..2
a56 = T1X2T3T 1Ty

— 6,..9 2
g = T1TT3T4T5

— 78,2
agq4 = T1X2X3T 4T

— 7 2.8
a8 = T1ToX3T 1Ty
— 7,8 2
72 = 1T T 3T4Ty

_ T 2 8
a76 = T{T2T5T4TE

— 78 2
agp — .231332333334335

— 3.4 10
agq4 — x1x2x3x4x5

— 3 4,10
agg = Tr1x2x3Ty Ts5

— 6,.3 .8
92 = T1T2X3T YTy

— 3.,.6,..8
96 = T1ToX 3T T5

— 6.3..8
ajoo — .231.232333334335

— 43 6 8
104 = T1T2X3X4T5

— 2,..3,.4,..9
ajpos — .231.232333334335
3,.4,2..9

a112 = .231.232333334335

— 3 4,..9..2
116 = T1X2X3L T

— p3,4..9..2
120 = T1ToX3TLT5

a124 = xw%x%xix%
a128 = x%xgxngxg
a132 = x%x‘;’xgmlxg
a136 — xlxgxgxﬁxg
a140 = x:fxgx%xixg
144 = x§x§x§x§x5

— 3.,4..3..8
a148 - x1x2x3x4x5

Lemma 4.4. The following monomials are strictly inadmissible:

2ixy, 0 < j; xiwime, 0 < j<l; ximimexd), i <j<l, m#i,jL
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Proof. We have

2 2 1
rir; = zx; + 9q (Tizj),

2 ) 2, g,
TiTjTe = Tx T+ 12577 + Sq (xizjze),

2 2 2 4 1
T3 xjxgx?n = xixjxgx,gn + xixjxex?n + 2,7 T0x,, + Sq (xixjxgx?n).
The lemma follows. U

Proof of Proposition 4.3. Let & be a monomial in Ps and w(z) = (3,2,1,1).
Then z is a permutation of one of the following monomials:

331.23233333233%4 331.23233333233%0 331.23233%.23233%3 331.23233%.23233%2 xlxgxgxﬁxél
331.23233%.23233%0 xlxgxgxf{xg xlxgxngxg 331.23233%33333%0 xlxgxgxf{xg
4 3.5 4,.8

rizdrdale)  wadedriz) wixdaiaiad wiadadaial.

A direct computation using Theorem 2.4 and Lemmas 3.2, 4.4 shows that
if x # ag, 1 <t <150, then z is inadmissible.

Now, we prove that the set {[a:] : 1 < ¢t < 150} is linearly independent in
Fo® .4 Ps. Suppose there is a linear relation

S = Z YeQr = 0,

1<t<150

with Yt € Fs.
By a direct computation from the relations p(; ;)(S) = 0,1 < i < j < 5,
and p(1,2,3)(S) = 0, one gets 44 = 0 for all £. The proposition is proved. O

Proposition 4.5. (Fo®4P5)(3,2,3) is an Fa-vector space of dimension 47
with a basis consisting of all the classes represented by the following admissible
monomials:

by = mxdzsaial by = xizdrialal by = myadadaial by = 123250
bs = mixdxizial  be = vixdalalat by = xialadaiald bs = z1whr3 T
by = x{@x%xﬁx? big = x{xﬂ%xixé b1 = xw%x%xix? bio = xw%x%xf{x?
b1z = xw%x%xﬁx% b1y = xw%x%xixé bis = xw%x%xﬁxé big = xw%x%xﬁxé
bir = ¥3zezizizl  big = pizowizird  big = diwoxizizrt by = xdxlasaicd
bop = x{xﬂ%xﬁxé booy = xzxgxgxﬁxé boz = xlxgxéxi’xg boy = xw%x%xﬁx?
bog = xlxgxgxﬁxg bog = xw%x%xﬁxé bo7 = xlxgxgxﬁxg bog = xlxgxgxi’xé
boo = mixSrizizl  bao = miaSwizird by = wiwoxizial by = xdzoxialal
bss = T3zexiaiad  bay = pizoxdalad b3y = xirexlaird  byg = xizoxlaiad
by = r3xdraxisd  basg = vizdwsaled  byg = wirdalzart by = 2irdadaial
by = wiedrdaiat by = piadriried  biz = wixdaiaied by = adadadaiad

— 3,4.3.4.5 — 3,4.3.5.4 — 3,5.3,4.4
bys = T334 bas = Ty T5TRT Ty bar = TiTHTITL T,

Lemma 4.6. The following monomials are strictly inadmissible:

(i) 2fajaf, i # 3 # L F#1,
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(11) xlzxjx?x?na 1 <j7 7’7] #(,m, e# m,

(iii) 2?2z ze22 22, (i,j, £, m,n) is a permutation of (1,2,3,4,5) and i < j <

%

Lemma 4.7. Let (i,j,¢,m,n) be a permutation of (1,2,3,4,5). Then the fol-
lowing monomials are strictly inadmissible:
(i) wizjaia,al, vizvjaial,an, i <j,

(ii) x?x?x?x?nxi, xfx?lex?nxz i=1,m>3.

The above lemmas are proved by a direct computation.

Proof of Proposition 4.5. Let x be a monomial in Ps and w(z) = (3,2, 3). Then
x is a permutation of one of the following monomials:

2,.4..5..7 2,..5,.5 .6 34,47 3,4,.5.6 ~2,3.4,5.5 ..3.3.4.4.5
T1TH5TZTYTE, TITZTRTITE, T1THT3TLTE, T1THTFTRTE, TITETZTYLE, TITHLT L.

By a direct computation using Theorem 2.4 and Lemmas 3.2, 4.4, 4.6, 4.7
we see that if z # b, Vt,1 <t < 47, then z is inadmissible.

Now, we prove that the set {[b;] : 1 < ¢ < 47} is linearly independent in
Fo® .4 Ps. Suppose there is a linear relation

S = Z ’)/tthO,

1<t<47

with Y € Fo,1 <t < A47.
Computing directly from the relations p; j(S) = 0,1 < i < j < 5, gives
v =0 for all 1 <t < 47. The proposition is proved. U

Proposition 4.8. (Fa®4P5)(3,4,2) is an Fa-vector space of dimension 55
with a basis consisting of all the classes represented by the following admissible
monomials:

Cc1 = xlxgxngxg Cy = xlxgxgxixg C3 = xlxgxngxg Cq4 = xlxgxgxixg
Cs = xlxgxngxg Cg = xlxgxgxixg C7 = xzxgxgxixg cg = xzxgxngxg
Cg = xzxgxgxixg C10 — xzxgxgxixg C11 = xw%x%xf{x% C12 = xw%x%xix?
C13 — xlxgxgxixg C14 = xw%x%xf{x% C15 = xw%x%xix? Ci6 — xlxgxgxixg
Ci7 = xw%x%xix% C18 — xw%x%xix? C19 — xw%x%xﬁx% Cop — xlxgxgxixg
C21 = xw%x%xix? Co9 = xw%x%xﬁx% Co3 — x:fxgx%xgxg Coq4 = x:fxgx%xeg

— 3 6,.2,.7 — 43 6.7 .2 — 3 712 ,.6 — 43 7162
025 — x1x2x3x4x5 026 x1x2x3x4x5 027 x1x2x3x4x5 028 — x1x2x3x4x5
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Cog — x%xgxgxixg C30 — x%xgxgxf{xg C31 — xzxgxgxixg C3p = xzxgxgxixg

C33 — xzxgxgxfixg C34 — xzxgxgxixg C35 — xzxgxgx?lxg C36 — xlxgxgxgxg

C37 — xlxgxgxﬁxg C38 — xlxgxgxf{xg C39 — x%xgxgxf{xg Cq0 = x%xgxgxixg

C41 = x%xgxgxgxg C42 = x%x%xgxgxg C43 = x%x%x%xix% Cqq4 = x%x%x%xix%

C45 = x%x%x%xix% C46 = x%x%x%xix% Cq7 = x{x%x%xix% C48 = x%x%x%xix?

C49 = x%x%x%xf{x% Cs50 = x%x%x%xix? Cs1 = x%x%x%xﬁx% Cso = x%x%x%xix?
3,.5,.3,.6.2 3,.5.,.6.2.3 3,.5,.6,.3,.2

C53 = T{THTZT4TE  C54 = TITHTRTLTE  Cr5 = TITHT3THTE.

Lemma 4.9. Let (i,j,¢,m,n) be a permutation of (1,2,3,4,5). Then the fol-
lowing monomials are strictly inadmissible:

(i) 22zjzezmad, i <j<l<m,

(ii) xix?x?x?nxz, 1< g <U{, J;ix?x?x?nx%, i1=1,j=2.
Proof. We prove the lemma for x = z12$23232I. The others can be proved by
a similar computation. A direct computation shows

5.4 27 532 8 23,329 2,44 27 24,3 2 8
T = T1ToX3X4 05 + L1XT3L4T5 + TIXT3L4T5 + T]ToX 3L Ty + TIToX3X 4Ty

2,342 4.4 4.3 4 4 4,3 4.7
+ x1x§x3x4x§ + x1x2x§x4xg + xlxgxgmxg + xlxgxgmxg + 2125237475
4,4 4 45,2 2 6..2,..7
+ x1x§x3x4xg + xw%x%mw? + x1x2x2x4xg + xlxgxg@lxg + x1x§x3x4x5
1 2 4 4 527
+ 8¢t (zadasaial + aiedeiraxl + riadadaeial + xadaiaial)
2 3..3,.2..7
+ Sq* (z1x5x5TiTs).
Hence z is strictly inadmissible. O

Proof of Proposition 4.8. Let x be a monomial in Ps and w(z) = (3,4, 2). Then
x is a permutation of one of the following monomials:

2.2 ,.7,.7 2.3 ,.6,.7 3.3 1.6,.6 2,.2,.3,.5,.7 2..3:3,.5,.6
T1T3T3T X5, T1XZX3T4T5, T1TXX3T4T5, TIXX3T4T5, TITX3I3TLT5.

By a direct computation using Theorem 2.4 and Lemma 4.9, we see that if
T # ¢, 1 <t <55, then z is inadmissible.

Now, we prove that the set {[c;] : 1 < ¢t < 55} is linearly independent in
Fo® .4 Ps. Suppose there is a linear relation

S = Z ’)/tCtEO,

1<t<55

with Y € Fo, 1 <t <55.
By a direct computation from the relations p¢; ;)(S) = 0,1 <@ < j <5, one
gets 1 = 0 for all ¢. The proposition is proved. O
Combining Propositions 1.2, 4.1, 4.3, 4.5, 4.8, we obtain

B5(19) = f(B4(19)) U {a; : 1 <i < 150}U
Ut 1< <ATU{er: 1< <55} Un(Bs(T)),
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where 1) : Ps — Ps is the homomorphism determined by 1 (z) = z122x3147572
for all x € P5. For s > 3, we have

Bs(2°*! 4 2° = 5) = °*(B5(19)).

Theorem 1.3 is proved.
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