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Abstract

We study the Peterson hit problem of finding a minimal set of genera-
tors for the polynomial algebra Pk := F2[x1, x2, . . . , xk] as a module over
the mod-2 Steenrod algebra, A. In this paper, we explicitly determine a
minimal set of A-generators with k = 5 in degree 15. Using this results
we show that the fifth Singer transfer is an isomorphism in this degree.

1 Introduction and statement of results

Let Vk be an elementary abelian 2-group of rank k. Denote by BVk the classi-
fying space of Vk. It may be thought of as the product of k copies of the real
projective space RP

∞. Then

Pk := H∗(BVk) ∼= F2[x1, x2, . . . , xk],

a polynomial algebra on k generators x1, x2, . . . , xk, each of degree 1. Here the
cohomology is taken with coefficients in the prime field F2 of two elements.

Being the cohomology of a space, Pk is a module over the mod 2 Steenrod
algebra A. The action of A on Pk can explicitly be given by the formula

Sqi(xj) =

⎧⎪⎨
⎪⎩
xj, i = 0,
x2
j , i = 1,

0, otherwise,
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48 On the Peterson hit problem of five variables...

and subject to the Cartan formula Sqn(fg) =
∑n

i=0 Sq
i(f)Sqn−i(g), for f, g ∈

Pk (see Steenrod-Epstein [22]).
A polynomial f in Pk is called hit if it can be written as a finite sum

f =
∑

i>0 Sq
i(fi) for some polynomials fi. That means f belongs to A+Pk,

where A+ denotes the augmentation ideal in A. We are interested in the hit
problem, set up by F. Peterson, of finding a minimal set of generators for the
polynomial algebra Pk as a module over the Steenrod algebra. In other words,
we want to find a basis of the F2-vector space F2 ⊗A Pk := QPk.

Let GLk = GLk(F2) be the general linear group over the field F2. This
group acts naturally on Pk by matrix substitution. Since the two actions of A
and GLk upon Pk commute with each other, there is an action of GLk on QPk.
The subspace of degree n homogeneous polynomials (Pk)n and its quotient
(QPk)n are GLk-subspaces of the spaces Pk and QPk respectively.

The hit problem was first studied by Peterson [15], Wood [26], Singer [20],
and Priddy [16], who showed its relationship to several classical problems re-
spectively in cobordism theory, modular representation theory, Adams spectral
sequence for the stable homotopy of spheres, and stable homotopy type of classi-
fying spaces of finite groups. The tensor product QPk was explicitly calculated
by Peterson [15] for k = 1, 2, by Kameko [10] for k = 3, and recently by us [23]
for k = 4.

Many authors was then investigated the hit problem. (See Boardman [1],
Bruner-Hà-Hung [2], Crabb-Hubbuck [5], Hà [6], Hung [7, 8], Kameko [10, 11],
Nam [13, 14], Repka-Selick [18], Singer [21], Silverman [19], Wood [26, 27] and
others.)

One of our main tools for studying the hit problem is the so-called Kameko
squaring operation

Sq0 : F2 ⊗
GLk

PH∗(BVk) → F2 ⊗
GLk

PH∗(BVk).

Here H∗(BVk) is homology with F2 coefficients, and PH∗(BVk) denotes the
primitive subspace consisting of all elements in the space H∗(BVk), which are
annihilated by every positive-degree operation in the mod 2 Steenrod algebra;
therefore, F2 ⊗

GLk

PH∗(BVk) is dual to QPGLk

k . The dual of the Kameko squar-

ing is the homomorphism Sq0∗ : QPGLk

k → QPGLk

k . This homomorphism is

given by the following GLk-homomorphism S̃q
0

∗ : QPk → QPk. The latter is

given by the F2-linear map, also denoted by S̃q
0

∗ : Pk → Pk, given by

S̃q
0

∗(x) =

{
y, if x = x1x2 . . . xky

2 ,

0, otherwise,

for any monomial x ∈ Pk. Note that S̃q
0

∗ is not an A-homomorphism. However,

S̃q
0

∗Sq
2t = SqtS̃q

0

∗ and S̃q
0

∗Sq
2t+1 = 0, for any nonnegative integer t.
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The Kameko squaring operation commutes with the classical squaring op-
eration on the cohomology of the Steenrod algebra through the Singer transfer

Trk : F2 ⊗
GLk

PHd(BVk) → Extk,k+dA (F2 ,F2).

Boardman [1] used this fact to show that Tr3 is an isomorphism. Bruner-Hà-
Hung [2] applied it to prove that Tr4 does not detect any element in the usual
family {gi}i>0 of Ext4A(F2,F2). Recently, Hung and his collaborators have
completely determined the image of the fourth Singer transfer Tr4 (in [2], [8],
[6], [14], [9]). Singer showed in [20] that Tr5 is not an epimorphism in degree 9.
In [17], Quỳnh proved that Tr5 is also not an epimorphism in degree 11. The
Singer transfer was also investigated by Chon-Hà [3, 4].

In this paper, we explicitly determine all the admissible monomials (see
Section 2) of P5 in degree 15. Using this results, we prove that the fifth Singer
transfer is an isomorphism in this degree. We have

Theorem 1.1. There exist exactly 432 admissible monomials of degree 15 in
P5. Consequently dim(QP5)15 = 432.

By using Theorem 1.1, we compute (QP5)GL5
15 .

Theorem 1.2. (QP5)GL5
15 is an F2-vector space of dimension 2 with a basis

consisting of the 2 classes represented by the following polynomials:

p = x15
1 + x15

2 + x15
3 + x15

4 + x15
5 + x1x

14
2 + x1x

14
3 + x1x

14
4 + x1x

14
5 + x2x

14
3

+ x2x
14
4 + x2x

14
5 + x3x

14
4 + x3x

14
5 + x4x

14
5 + x1x

2
2x

12
3 + x1x

2
2x

12
4 + x1x

2
2x

12
5

+ x1x
2
3x

12
4 + x1x

2
3x

12
5 + x1x

2
4x

12
5 + x2x

2
3x

12
4 + x2x

2
3x

12
5 + x2x

2
4x

12
5 + x3x

2
4x

12
5

+ x1x
2
2x

4
3x

8
4 + x1x

2
2x

4
3x

8
5 + x1x

2
2x

4
4x

8
5 + x1x

2
3x

4
4x

8
5 + x2x

2
3x

4
4x

8
5 + x1x

2
2x

4
3x

4
4x

4
5,

q = x1x2x3x
6
4x

6
5 + x1x2x

6
3x4x

6
5 + x1x2x

6
3x

6
4x5 + x1x

6
2x3x4x

6
5 + x1x

6
2x3x

6
4x5

+ x1x
3
2x

6
3x4x

4
5 + x1x

3
2x

6
3x

4
4x5 + x1x

6
2x

3
3x4x

4
5 + x1x

6
2x

3
3x

4
4x5 + x3

1x2x3x
4
4x

6
5

+ x3
1x2x3x

6
4x

4
5 + x3

1x2x
4
3x4x

6
5 + x3

1x2x
4
3x

6
4x5 + x3

1x
4
2x3x4x

6
5 + x3

1x
4
2x3x

6
4x5

+ x1x
3
2x

3
3x

4
4x

4
5 + x3

1x2x
3
3x

4
4x

4
5 + x3

1x
3
2x3x

4
4x

4
5 + x3

1x
3
2x

4
3x4x

4
5 + x3

1x
3
2x

4
3x

4
4x5

+ x3
1x

4
2x

3
3x4x

4
5 + x3

1x
4
2x

3
3x

4
4x5.

Using Theorem 1.2, we prove the following which was proved in Hung [8]
by using computer computation.

Theorem 1.3 (Hung [8]). The fifth Singer transfer

Tr5 : F2 ⊗
GL5

PH15(BV5) → Ext5,20
A (F2,F2)

is an isomorphism.
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This paper is organized as follows. In Section 2, we recall some needed
information on the admissible monomials in Pk and Singer criterion on the hit
monomials. We prove Theorem 1.1 in Section 3 by explicitly determine all the
admissible monomials of degree 15. Theorems 1.2 and 1.3 will be proved in
Sections 4.

2 Preliminaries

In this section, we recall some results in Kameko [10] and Singer [21] which will
be used in the next sections.

Notation 2.1. Let αi(a) denote the i-th coefficient in dyadic expansion of a
nonnegative integer a. That means a = α0(a)20 + α1(a)21 +α2(a)22 + . . . , for
αi(a) = 0, 1 and i � 0.

Let x = xa1
1 x

a2
2 . . . xak

k ∈ Pk. Set Ii(x) = {j ∈ Nk : αi(aj) = 0}, for i � 0.
Then we have

x =
∏
i�0

X2i

Ii(x)
.

For a polynomial f in Pk, we denote by [f ] the class in F2⊗APk represented
by f . For a subset S ⊂ Pk, we denote

[S] = {[f ] : f ∈ S} ⊂ QPk.

Definition 2.2. For a monomial x = xa1
1 x

a2
2 . . . xak

k ∈ Pk, we define two se-
quences associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .),
σ(x) = (a1, a2, . . . , ak),

where ωi(x) =
∑

1�j�k αi−1(aj) = degXIi−1(x), i � 1.
The sequence ω(x) is called the weight vector of x (see Wood [27]). The

weight vectors and the sigma vectors can be ordered by the left lexicographical
order.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of nonnegative integers such that
ωi = 0 for i� 0. Define degω =

∑
i>0 2i−1ωi. Denote by Pk(ω) the subspace

of Pk spanned by all monomials y such that deg y = deg ω, ω(y) � ω and P−
k (ω)

the subspace of Pk spanned by all monomials y ∈ Pk(ω) such that ω(y) < ω.
Denote by A+

s the subspace of A spanned by all Sqj with 1 � j < 2s. Define

QPk(ω) = Pk(ω)/((A+Pk ∩ Pk(ω)) + P−
k (ω)).

Then we have
(QPk)n = ⊕deg ω=nQPk(ω).
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Definition 2.3. Let x be a monomial and f, g two homogeneous polynomials
of the same degree in Pk. We define f ≡ g if and only if f − g ∈ A+Pk. If
f ≡ 0 then f is called hit.

We recall some relations on the action of the Steenrod squares on Pk.

Proposition 2.4. Let f be a homogeneous polynomial in Pk.
i) If i > deg f then Sqi(f) = 0. If i = deg f then Sqi(f) = f2.
ii) If i is not divisible by 2s then Sqi(f2s

) = 0 while Sqr2
s

(f2s

) = (Sqr(f))2
s

.

Definition 2.5. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.6. A monomial x is said to be inadmissible if there exist mono-
mials y1, y2, . . . , yt such that yj < x for j = 1, 2, . . . , t and x ≡ y1 +y2 + . . .+yt.

A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Pk is a
minimal set of A-generators for Pk in degree n.

The following theorem is a modification of a result in [10].

Theorem 2.7 (Kameko [10], Sum [24]). Let x, w be monomials in Pk
such that ωi(x) = 0 for i > r > 0. If w is inadmissible, then xw2r

is also
inadmissible.

Proposition 2.8 ([24]). Let x be an admissible monomial in Pk. Then we
have

i) If there is an index i0 such that ωi0(x) = 0, then ωi(x) = 0 for all i > i0.
ii) If there is an index i0 such that ωi0(x) < k, then ωi(x) < k for all i > i0.

Now, we recall a result of Singer [21] on the hit monomials in Pk.

Definition 2.9. A monomial z = xb11 x
b2
2 . . . xbk

k is called a spike if bj = 2sj − 1
for sj a nonnegative integer and j = 1, 2, . . . , k. If z is a spike with s1 > s2 >
. . . > sr−1 � sr > 0 and sj = 0 for j > r, then it is called a minimal spike.

The following is a criterion for the hit monomials in Pk.

Theorem 2.10 (Singer [21]). Suppose x ∈ Pk is a monomial of degree n,
where μ(n) � k. Let z be the minimal spike of degree n. If ω(x) < ω(z) then x
is hit.

For latter use, we set

P 0
k = 〈{x = xa1

1 x
a2
2 . . . xak

k ; a1a2 . . . ak = 0}〉,
P+
k = 〈{x = xa1

1 x
a2
2 . . . xak

k ; a1a2 . . . ak > 0}〉.
It is easy to see that P 0

k and P+
k are the A-submodules of Pk. Furthermore,

we have the following.
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Proposition 2.11. We have a direct summand decomposition of the F2-vector
spaces

QPk = QP 0
k ⊕QP+

k .

Here QP 0
k = P 0

k /A+.P 0
k and QP+

k = P+
k /A+.P+

k .

For 1 � i � k, define the homomorphism fi = fk;i : Pk−1 → Pk of algebras
by substituting

fi(xj) =

{
xj, if 1 � j < i,

xj+1, if i � j < k.

It is easy to see that

Proposition 2.12. If Bk−1(n) is the set of all admissible monomials of degree
n in Pk−1, then f(Bk−1(n)) := ∪1�i�kfi(Bk−1(n)) is the set of all admissible
monomials of degree n in P 0

k .

For 1 � i � k, define ϕi : QPk → QPk, the homomorphism induced by the
A-homomorphism ϕi : Pk → Pk, which is determined by ϕ1(x1) = x1 + x2,
ϕ1(xj) = xj for j > 1, and ϕi(xi) = xi−1, ϕi(xi−1) = xi, ϕi(xj) = xj for
j �= i, i− 1, 1 < i � k. Note that the general linear group GLk is generated by
ϕi, 0 � i � k and the symmetric group Σk is generated by ϕi, 1 < i � k.

For any I = (i0, i1, . . . , ir), 0 < i0 < i1 < . . . < ir � k, 0 � r < k, we
define the homomorphism pI : Pk → Pk−1 of algebras by substituting

pI(xj) =

⎧⎪⎨
⎪⎩
xj, if 1 � j < i0,∑

1�s�r xis−1, if j = i0,

xj−1, if i0 < j � k.

Then pI is a homomorphism of A-modules. In particular, for I = (i), we have
p(i)(xi) = 0.

3 Proof of Theorem 1.1

In this section, we explicitly determine all the admissible monomials of degree
15.

Consider the Kameko homomorphism (S̃q
0

∗)55 : (QP5)15 → (QP5)5. Since
this homomorphism is an epimorphism, we have

(QP5)15
∼= Ker(S̃q

0

∗)55⊕(QP5)5 = ((QP 0
5 )15⊕((QP+

5 )15∩Ker(S̃q
0

∗)55)⊕(QP5)5.

By Proposition 2.12, to compute (QP 0
5 )15 we need to compute

(QP4)15 = (QP4)015 ⊕ (QP4)+15.
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Using Kameko’s results in [10], we have

B3(15) ={x15
1 , x

15
2 , x

15
3 , x1x

14
2 , x1x

14
3 , x2x

14
3 , x1x

2
2x

12
3 ,

x1x
7
2x

7
3, x

7
1x2x

7
3, x

7
1x

7
2x3, x

3
1x

5
2x

7
3, x

3
1x

7
2x

5
3, x

7
1x

3
2x

5
3}.

By a direct computation using Proposition 2.12, we see that f(B3(15)) is
the set consisting of 38 admissible monomials in (P 0

5 )15.

Lemma 3.1. If x is an admissible monomial of degree 15 in P4 then either
ω(x) = (1, 1, 1, 1) or ω(x) = (3, 2, 2).

Proof. Since deg x is odd, we have ω1(x) = 1 or ω1(x) = 3.
Suppose ω1(x) = 1, then x = xiy

2 with y a monomial of degree 7. Since x is
admissible, by Theorem 2.7, y is admissible. If y /∈ P+

4 then from Kameko [10],
ω(y) = (1, 1, 1) or ω(y) = (3, 2). A direct computation shows that x = xiy

2

is inadmissible for all monomials y in P4 with ω(y) = (3, 2). Hence ω(x) =
(1, 1, 1, 1). If y ∈ P+

4 , then y is a permutation of one of the following monomial
x1x2x3x

4
4, x1x2x

2
3x

3
4, x1x

2
2x

2
3x

2
4. By a direct computation we see that x = xiy

2

is inadmissible.
If ω1(x) = 3, then x = xixjy

2, i < j with y a monomial of degree 6 in P4.
By Theorem 2.7, y is admissible. So ω1(y) = 2 or ω1(y) = 4. If ω1(y) = 4, then
by Proposition 2.8, x is inadmissible. Hence ω1(y) = 2 and ω(x) = (3, 2, 2).
The lemma is proved. �

Proposition 3.2. (QP+
4 )15 is an F2-vector space of dimension 37 with a basis

consisting of all the classes represented by the admissible monomials di, 1 �
i � 37, which are determined as follows:

1. x1x2x
6
3x

7
4 2. x1x2x

7
3x

6
4 3. x1x

2
2x

5
3x

7
4 4. x1x

2
2x

7
3x

5
4 5. x1x

3
2x

4
3x

7
4

6. x1x
3
2x

5
3x

6
4 7. x1x

3
2x

6
3x

5
4 8. x1x

3
2x

7
3x

4
4 9. x1x

6
2x3x

7
4 10. x1x

6
2x

3
3x

5
4

11. x1x
6
2x

7
3x4 12. x1x

7
2x3x

6
4 13. x1x

7
2x

2
3x

5
4 14. x1x

7
2x

3
3x

4
4 15. x1x

7
2x

6
3x4

16. x3
1x2x

4
3x

7
4 17. x3

1x2x
5
3x

6
4 18. x3

1x2x
6
3x

5
4 19. x3

1x2x
7
3x

4
4 20. x3

1x
3
2x

4
3x

5
4

21. x3
1x

3
2x

5
3x

4
4 22. x3

1x
4
2x3x

7
4 23. x3

1x
4
2x

3
3x

5
4 24. x3

1x
4
2x

7
3x4 25. x3

1x
5
2x3x

6
4

26. x3
1x

5
2x

2
3x

5
4 27. x3

1x
5
2x

3
3x

4
4 28. x3

1x
5
2x

6
3x4 29. x3

1x
7
2x3x

4
4 30. x3

1x
7
2x

4
3x4

31. x7
1x2x3x

6
4 32. x7

1x2x
2
3x

5
4 33. x7

1x2x
3
3x

4
4 34. x7

1x2x
6
3x4 35. x7

1x
3
2x3x

4
4

36. x7
1x

3
2x

4
3x4 37. x1x

2
2x

4
3x

8
4.

Proof. From the proof of Lemma 3.1, if x is an admissible monomial of degree
15 in P4, then x is a permutation of one of the following monomials:

x1x2x
6
3x

7
4, x1x

2
2x

5
3x

7
4, x1x

3
2x

4
3x

7
4, x1x

3
2x

5
3x

6
4, x

2
1x

3
2x

5
3x

5
4, x

3
1x

3
2x

4
3x

5
4.

By a direct computation we see that if x �= dt, 1 � t � 37, then x is inadmis-
sible.
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Now we prove that the set {[dt] : 1 � t � 37} is linearly independent in
QP+

4 . Suppose there is a linear relation

S =
∑

1�t�37

γtdt ≡ 0, (3.1)

with γt ∈ F2.
By Kameko [10], B3(15) is the set consisting of 7 monomials:

v1 = x1x
7
2x

7
3, v2 = x3

1x
5
2x

7
3, v3 = x3

1x
7
2x

5
3,

v4 = x7
1x2x

7
3, v5 = x7

1x
3
2x

5
3, v6 = x7

1x
7
2x3, v7 = x1x

2
2x

12
3 .

By a direct computation, we explicitly compute pI(S) in terms of v1, v2, . . . v7.
From the relations pI(S) ≡ 0 for I = (i, j) with 1 � i < j � 4 and for
I = (1, i, j) with 2 � i < j � 4, one gets γt = 0 for t �= 1, 2 , 9, 11, 12, 15,
16, 19, 22, 24, 29, 30, 31 and γ1 = γ9 = γ16 = γ22, γ2 = γ11 = γ19 = γ24,
γ12 = γ15 = γ29 = γ30, γ31 = γ34 = γ35 = γ36. Hence the relation (3.1)
becomes

γ1θ1 + γ2θ2 + γ12θ3 + γ31θ4 + γ37d37 ≡ 0, (3.2)

where

θ1 = d1 + d9 + d16 + d22, θ2 = d2 + d11 + d19 + d24,

θ3 = d12 + d15 + d29 + d30, θ4 = d31 + d34 + d35 + d36.

Now, we prove that γ1 = γ2 = γ12 = γ31 = 0.
The proof is divided into 4 steps.
Step 1. Under the homomorphism ϕ1, the image of (3.2) is

γ1θ1 + γ2θ2 + γ12θ3 + γ31(θ4 + θ3) + γ37(d37 + v7) ≡ 0. (3.3)

Since v7 ∈ P 0
4 , γ37 = 0. Combining (3.2) and (3.3), we get

γ31θ3 ≡ 0. (3.4)

If the polynomial θ3 is hit, then we have

θ3 = Sq1(A) + Sq2(B) + Sq4(C),

for some polynomials A ∈ (P+
4 )14, B ∈ (P+

4 )13, C ∈ (P+
4 )11. Let (Sq2)3 act on

the both sides of this equality. We get

(Sq2)3(θ3) = (Sq2)3Sq4(C),

By a direct calculation, we see that the monomial x = x8
1x

7
2x

4
3x

2
4 is a term

of (Sq2)3(θ3). If this monomial is a term of (Sq2)3Sq4(y) for a monomial
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y ∈ (P+
4 )11, then y = x7

2f2(z) with z ∈ P3 and deg z = 4. Using the Cartan
formula, we see that x is a term of x7

2(Sq2)3Sq4(z) = x7
2(Sq2)3(z2) = 0. Hence

(Sq2)3(θ3) �= (Sq2)3Sq4(C),

for all C ∈ (P+
4 )11 and we have a contradiction. So [θ3] �= 0 and γ31 = 0.

Step 2. Since γ31 = 0, the homomorphism ϕ2 sends (3.2) to

γ1θ1 + γ2θ2 + γ12θ4 ≡ 0. (3.5)

Using the relation (3.5) and by the same argument as given in Step 1, we get
γ12 = 0.

Step 3. Since γ31 = γ12 = 0, the homomorphism ϕ3 sends (3.2) to

γ1[θ1] + γ2[θ3] = 0. (3.6)

Using the relation (3.6) and by the same argument as given in Step 2, we obtain
γ3 = 0.

Step 4. Since γ31 = γ12 = γ2 = 0, the homomorphism ϕ4 sends (3.2) to

γ1θ2 = 0.

Using this relation and by the same argument as given in Step 3, we obtain
γ1 = 0. The proposition is proved. �

Corollary 3.3. The set [f(B4(15))] is a basis of the F2-vector space (QP 0
5 )15.

Consequently dim(QP 0
5 )15 = 270.

Now we compute (QP5)5 = (QP 0
5 )5 ⊕ (QP+

5 )5. Using Kameko’s results in
[10], we have B3(5) = {x1x2x

3
3, x1x

3
2x3, x

3
1x2x3}. A direct computation, we

easily obtain

B4(5) = f(B3(5)) ∪ {x1x
2
2x3x4, x1x2x

2
3x4, x1x2x3x

2
4}.

This implies dim(QP4)5 = 15. It is easy to see that (QP+
5 )5 = 〈[x1x2x3x4x5]〉.

So we get
B5(5) = f(B4(5)) ∪ {x1x2x3x4x5}.

Combining this with Proposition 2.12 we obtain

Proposition 3.4. The set [B5(5)] is a basis of the F2-vector space (QP5)5.
Consequently dim(QP5)5 = 46.

Now we compute (QP+
5 )15 ∩ Ker(S̃q

0

∗)55.

Lemma 3.5. If x is an admissible monomial of degree 15 in P+
5 and [x] ∈

Ker(S̃q
0

∗), then ω(x) is one of the sequences: (1, 1, 3), (3, 2, 2), (3, 4, 1).
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Proof. Since x ∈ P+
5 and [x] ∈ Ker(S̃q

0

∗), using Proposition 2.8, we see that x
is a permutation of one of the following monomials:

x1x2x
2
3x

4
4x

7
5, x1x

2
2x

2
3x

3
4x

7
5, x1x2x3x

6
4x

6
5, x1x2x

2
3x

5
4x

6
5, x1x2x

3
3x

4
4x

6
5,

x1x
2
2x

2
3x

4
4x

6
5, x1x

2
2x

3
3x

3
4x

6
5, x2

1x
2
2x

2
3x

3
4x

6
5, x1x

2
2x

2
3x

5
4x

5
5, x1x

2
2x

3
3x

4
4x

5
5,

x2
1x

2
2x

3
3x

3
4x

5
5, x1x

2
2x

4
3x

4
4x

4
5, x2

1x
2
2x

3
3x

4
4x

4
5 x1x

3
2x

3
3x

4
4x

4
5.

We have

x1x
2
2x

2
3x

4
4x

6
5 = x1x

2
2x

2
3x

2
4x

8
5 + Sq1(x2

1x2x3x
4
4x

6
5 + x2

2x3x
2
4x

8
5)

+ Sq2(x1x2x3x
4
4x

6
5 + x1x2x3x

2
4x

8
5)

x2
1x

2
2x

3
3x

4
4x

4
5 = x1x

2
2x

4
3x

4
4x

4
5 + Sq1(x1x

2
2x

3
3x

4
4x

4
5)

x2
1x

2
2x

2
3x

3
4x

6
5 = x1x

2
2x

2
3x

4
4x

6
5 + Sq1(x1x

2
2x

2
3x

3
4x

6
5).

Since ω(x1x
2
2x

2
3x

2
4x

8
5) = (1, 3, 0, 1) < (1, 3, 2, 0) = ω(x1x

2
2x

2
3x

4
4x

6
5),

ω(x1x
2
2x

4
3x

4
4x

4
5) = (1, 1, 3) < (1, 3, 2) = ω(x2

1x
2
2x

3
3x

4
4x

4
5), ω(x1x

2
2x

2
3x

4
4x

6
5) =

(1, 3, 2) < (1, 5, 1) = ω(x2
1x

2
2x

2
3x

3
4x

6
5), if the monomial x is a permutation of

one of the monomials x1x
2
2x

2
3x

4
4x

6
5, x2

1x
2
2x

3
3x

4
4x

4
5, x2

1x
2
2x

2
3x

3
4x

6
5, then x is inad-

missible. The lemma follows. �
From Lemma 3.5, we have

(QP+
5 )15 ∩ Ker(S̃q

0

∗)55 = ((QP+
5 ) ∩QP5(1, 1, 3))⊕

⊕ ((QP+
5 ) ∩QP5(3, 4, 1))⊕ ((QP+

5 ) ∩QP5(3, 2, 2)).

Proposition 3.6. QP+
5 ∩QP5(1, 1, 3) = 〈[x1x

2
2x

4
3x

4
4x

4
5]〉.

Proof. From the proof of Lemma 3.5, if x is a monomial of degree 15 in P5 and
ω(x) = (1, 1, 3) then x is a permutation of the monomial x1x

2
2x

4
3x

4
4x

4
5. By a

direct computation, we have x ≡ x1x
2
2x

4
3x

4
4x

4
5, completing the proof. �

Proposition 3.7. QP+
5 ∩ QP5(3, 4, 1) is an F2-vector space of dimension 40

with a basis consisting of all the classes represented by the admissible monomials
ai, 1 � i � 40, which are determined as follows:

1. x1x
2
2x

2
3x

3
4x

7
5 2. x1x

2
2x

2
3x

7
4x

3
5 3. x1x

2
2x

3
3x

2
4x

7
5 4. x1x

2
2x

3
3x

3
4x

6
5

5. x1x
2
2x

3
3x

6
4x

3
5 6. x1x

2
2x

3
3x

7
4x

2
5 7. x1x

2
2x

7
3x

2
4x

3
5 8. x1x

2
2x

7
3x

3
4x

2
5

9. x1x
3
2x

2
3x

2
4x

7
5 10. x1x

3
2x

2
3x

3
4x

6
5 11. x1x

3
2x

2
3x

6
4x

3
5 12. x1x

3
2x

2
3x

7
4x

2
5

13. x1x
3
2x

3
3x

2
4x

6
5 14. x1x

3
2x

3
3x

6
4x

2
5 15. x1x

3
2x

6
3x

2
4x

3
5 16. x1x

3
2x

6
3x

3
4x

2
5

17. x1x
3
2x

7
3x

2
4x

2
5 18. x1x

7
2x

2
3x

2
4x

3
5 19. x1x

7
2x

2
3x

3
4x

2
5 20. x1x

7
2x

3
3x

2
4x

2
5

21. x3
1x2x

2
3x

2
4x

7
5 22. x3

1x2x
2
3x

3
4x

6
5 23. x3

1x2x
2
3x

6
4x

3
5 24. x3

1x2x
2
3x

7
4x

2
5

25. x3
1x2x

3
3x

2
4x

6
5 26. x3

1x2x
3
3x

6
4x

2
5 27. x3

1x2x
6
3x

2
4x

3
5 28. x3

1x2x
6
3x

3
4x

2
5

29. x3
1x2x

7
3x

2
4x

2
5 30. x3

1x
3
2x3x

2
4x

6
5 31. x3

1x
3
2x3x

6
4x

2
5 32. x3

1x
3
2x

5
3x

2
4x

2
5

33. x3
1x

5
2x

2
3x

2
4x

3
5 34. x3

1x
5
2x

2
3x

3
4x

2
5 35. x3

1x
5
2x

3
3x

2
4x

2
5 36. x3

1x
7
2x3x

2
4x

2
5

37. x7
1x2x

2
3x

2
4x

3
5 38. x7

1x2x
2
3x

3
4x

2
5 39. x7

1x2x
3
3x

2
4x

2
5 40. x7

1x
3
2x3x

2
4x

2
5.
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Proof. Let x be an admissible monomial of degree 15 in P5 and ω(x) = (3, 4, 1).
From the proof of Lemma 3.5, x is a permutation of one of the monomials
x1x

2
2x

2
3x

3
4x

7
5, x1x

2
2x

3
3x

3
4x

6
5, x2

1x
2
2x

3
3x

3
4x

5
5. A direct computation shows that if

x �= at, 1 � t � 40, then x is inadmissible.
Now, we prove that the set {[at] : 1 � t � 40} is linearly independent in

QP5. Suppose there is a linear relation

S =
∑

1�t�40

γtat ≡ 0,

with γt ∈ F2. By a direct computation, we explicitly compute p(1,j)(S) in terms
of di, 1 � j � 37. From the relations p(1,j)(S) ≡ 0 for 1 � j � 5, we obtain
γt = 0 for 1 � t � 40. The proposition is proved. �

Proposition 3.8. QP+
5 ∩ QP5(3, 2, 2) is an F2-vector space of dimension 75

with a basis consisting of all the classes represented by the admissible monomials
bt, 1 � t � 75, which are determined as follows:

1. x1x2x3x
6
4x

6
5 2. x1x2x

2
3x

4
4x

7
5 3. x1x2x

2
3x

5
4x

6
5 4. x1x2x

2
3x

6
4x

5
5

5. x1x2x
2
3x

7
4x

4
5 6. x1x2x

3
3x

4
4x

6
5 7. x1x2x

3
3x

6
4x

4
5 8. x1x2x

6
3x4x

6
5

9. x1x2x
6
3x

2
4x

5
5 10. x1x2x

6
3x

3
4x

4
5 11. x1x2x

6
3x

6
4x5 12. x1x2x

7
3x

2
4x

4
5

13. x1x
2
2x3x

4
4x

7
5 14. x1x

2
2x3x

5
4x

6
5 15. x1x

2
2x3x

6
4x

5
5 16. x1x

2
2x3x

7
4x

4
5

17. x1x
2
2x

3
3x

4
4x

5
5 18. x1x

2
2x

3
3x

5
4x

4
5 19. x1x

2
2x

4
3x4x

7
5 20. x1x

2
2x

4
3x

3
4x

5
5

21. x1x
2
2x

4
3x

7
4x5 22. x1x

2
2x

5
3x4x

6
5 23. x1x

2
2x

5
3x

2
4x

5
5 24. x1x

2
2x

5
3x

3
4x

4
5

25. x1x
2
2x

5
3x

6
4x5 26. x1x

2
2x

7
3x4x

4
5 27. x1x

2
2x

7
3x

4
4x5 28. x1x

3
2x3x

4
4x

6
5

29. x1x
3
2x3x

6
4x

4
5 30. x1x

3
2x

2
3x

4
4x

5
5 31. x1x

3
2x

2
3x

5
4x

4
5 32. x1x

3
2x

3
3x

4
4x

4
5

33. x1x
3
2x

4
3x4x

6
5 34. x1x

3
2x

4
3x

2
4x

5
5 35. x1x

3
2x

4
3x

3
4x

4
5 36. x1x

3
2x

4
3x

6
4x5

37. x1x
3
2x

5
3x

2
4x

4
5 38. x1x

3
2x

6
3x4x

4
5 39. x1x

3
2x

6
3x

4
4x5 40. x1x

6
2x3x4x

6
5

41. x1x
6
2x3x

2
4x

5
5 42. x1x

6
2x3x

3
4x

4
5 43. x1x

6
2x3x

6
4x5 44. x1x

6
2x

3
3x4x

4
5

45. x1x
6
2x

3
3x

4
4x5 46. x1x

7
2x3x

2
4x

4
5 47. x1x

7
2x

2
3x4x

4
5 48. x1x

7
2x

2
3x

4
4x5

49. x3
1x2x3x

4
4x

6
5 50. x3

1x2x3x
6
4x

4
5 51. x3

1x2x
2
3x

4
4x

5
5 52. x3

1x2x
2
3x

5
4x

4
5

53. x3
1x2x

3
3x

4
4x

4
5 54. x3

1x2x
4
3x4x

6
5 55. x3

1x2x
4
3x

2
4x

5
5 56. x3

1x2x
4
3x

3
4x

4
5

57. x3
1x2x

4
3x

6
4x5 58. x3

1x2x
5
3x

2
4x

4
5 59. x3

1x2x
6
3x4x

4
5 60. x3

1x2x
6
3x

4
4x5

61. x3
1x

3
2x3x

4
4x

4
5 62. x3

1x
3
2x

4
3x4x

4
5 63. x3

1x
3
2x

4
3x

4
4x5 64. x3

1x
4
2x3x4x

6
5

65. x3
1x

4
2x3x

2
4x

5
5 66. x3

1x
4
2x3x

3
4x

4
5 67. x3

1x
4
2x3x

6
4x5 68. x3

1x
4
2x

3
3x4x

4
5

69. x3
1x

4
2x

3
3x

4
4x5 70. x3

1x
5
2x3x

2
4x

4
5 71. x3

1x
5
2x

2
3x4x

4
5 72. x3

1x
5
2x

2
3x

4
4x5

73. x7
1x2x3x

2
4x

4
5 74. x7

1x2x
2
3x4x

4
5 75. x7

1x2x
2
3x

4
4x5.

Proof. Let x be an admissible monomial of degree 15 in P5 and ω(x) = (3, 2, 2).
From the proof of Lemma 3.5, x is a permutation of one of the monomials:

x1x2x
2
3x

4
4x

7
5, x1x2x3x

6
4x

6
5, x1x2x

2
3x

5
4x

6
5, x1x2x

3
3x

4
4x

6
5,

x1x
2
2x

2
3x

5
4x

5
5, x1x

2
2x

3
3x

4
4x

5
5 x1x

3
2x

3
3x

4
4x

4
5.

By a direct computation, we see that if x �= bt, 1 � t � 75, then x is inadmis-
sible.
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Now, we prove that the set {[bt] : 1 � t � 75} is linearly independent in
QP5. Suppose there is a linear relation

S =
∑

1�t�75

γtbt ≡ 0, (3.7)

with γt ∈ F2. By a direct computation, we explicitly compute p(i,j)(S) in terms
of dt, 1 � t � 37. From the relations p(i,j)(S) ≡ 0 for 1 � i < j � 5, one gets
γt = 0 for t /∈ J with

J = {1, 8, 11, 32, 38, 39, 40, 43, 44, 45, 49, 50, 53, 54, 57, 61, 62, 63, 64, 67, 68, 69}
and γt = γ1 for t ∈ J . Hence the relation (3.7) becomes

γ1q ≡ 0,

where q = b1 + b8 + b11 + b32 + b38 + b39 + b40 + b43 + b44 + b45 + b49 + b50 +
b53 + b54 + b57 + b61 + b62 + b63 + b64 + b67 + b68 + b69.

If the polynomial q is hit, then we have

q = Sq1(A) + Sq2(B) + Sq4(C),

for some polynomials A ∈ (P+
5 )14, B ∈ (P+

5 )13, C ∈ (P+
5 )11. Let (Sq2)3 act on

the both sides of this equality. Since (Sq2)3Sq1 = 0 and (Sq2)3Sq2 = 0 we get

(Sq2)3(q) = (Sq2)3Sq4(C).

By a direct calculation, we have

(Sq2)3(q) = D + other terms,

where D = x3
1(x2

2x
8
3x

4
4x

4
5 + x8

2x
2
3x

4
4x

4
5 + x8

2x
4
3x

2
4x

4
5 + x8

2x
4
3x

4
4x

2
5 + x4

2x
8
3x

2
4x

4
5 +

x8
2x

4
3x

4
4x

2
5 + x6

2x
4
3x

4
4x

4
5 + x4

2x
6
3x

4
4x

4
5). Hence there is a polynomial C ′ ∈ (P4)8

such that D is a term of (Sq2)3Sq4(x3
1f1(C ′)). Using the Cartan formula we

see that D is a term of x3
1f1((Sq2)3Sq4(C ′)). A direct computation shows that

D is not a term of x3
1f1((Sq2)3Sq4(C ′)) for any C ′ ∈ (P4)8. Hence

(Sq2)3(q) �= (Sq2)3Sq4(C),

for all C ∈ (P+
5 )11 and we have a contradiction. So [q] �= 0 and γ1 = 0. The

proposition is proved. �

4 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Since S̃q
0

∗ = (S̃q
0

∗)515 : (QP5)15 → (QP5)5 is a homo-
morphism of GL5-modules, we have a direct summand decomposition of the
GL5-modules: (QP5)15 = Ker(S̃q

0

∗)55 ⊕ (QP5)5. Hence

(QP5)GL5
15 = (Ker(S̃q

0

∗)55)GL5 ⊕ (QP5)GL5
5 .
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By a direct computation using Proposition 3.4 we easily obtain (QP5)GL5
5 = 0.

It is easy to see that

Ker(S̃q
0

∗)55 = QP5(1, 1, 1, 1)⊕QP5(1, 1, 3)⊕QP5(3, 2, 2)⊕QP5(3, 4, 1),

where QP5(1, 1, 1, 1)⊕QP5(1, 1, 3), QP5(3, 2, 2) and QP5(3, 4, 1) are the GL5-

submodules of Ker(S̃q
0

∗)55. By a direct computation using Theorem 1.1 and the
homomorphisms ϕi : QP5 → QP5, 1 � i � 5, one gets

(QP5(1, 1, 1, 1)⊕QP5(1, 1, 3))GL5 = 〈[p]〉,
QP5(3, 2, 2)GL5 = 〈[q]〉, QP5(3, 4, 1)GL5 = 0.

The theorem is proved. �

Proof of Theorem 1.3. First of all, we briefy recall the definition of the Singer
transfer. Let P̂1 be the submodule of F2[x1, x

−1
1 ] spanned by all powers xi1

with i � −1. The usual A-action on P1 = F2[x1] is canonically extended to an
A-action on F2[x1, x

−1
1 ] (see Singer [20]). P̂1 is an A-submodule of F2[x1, x

−1
1 ].

The inclusion P1 ⊂ P̂1 gives rise to a short exact sequence of A-modules:

0 −→ P1 −→ P̂1 −→ Σ−1
F2 −→ 0.

Let e1 be the corresponding element in Ext1
A(Σ−1

F2, P1). Singer set ek =
e1 ⊗ . . .⊗ e1 ∈ ExtkA(Σ−k

F2, Pk). Then, he defined Tr∗k : TorAk (F2,Σ−k
F2) →

TorA0 (F2, Pk) = QPk by Tr∗k(z) = ek ∩z. Its image is a submodule of (QPk)GLk

. The k-th Singer transfer is defined to be the dual of Tr∗k.
The algebra Ext∗,∗A (F2,F2) is described in terms of the mod-2 lambda alge-

bra Λ (see Lin [12]). Recall that Λ is a bigraded differential algebra over F2

generated by λj ∈ Λ1,j, j � 0, with the relations

λjλ2j+1+m =
∑
ν�0

(
m− ν − 1

ν

)
λj+m−νλ2j+1+ν,

for m � 0 and the differential

δ(λk) =
∑
ν�0

(
k − ν − 1
ν + 1

)
λk−ν−1λν ,

for k > 0 and that Hs,t(Λ, δ) = Exts,t+sA (F2 ,F2). It is easy to see that λ2i−1 ∈
Λ1,2i−1, i � 0, and d̄0 = λ6λ2λ

2
3 +λ2

4λ
2
3 +λ2λ4λ5λ3 +λ1λ5λ1λ7 ∈ Λ4,14 are the

cycles in the lambda algebra Λ.

Proposition 4.1 (See Lin [12]). Ext5,20
A (F2 ,F2) = Span{h4

0h4, h1d0}, with
hi = [λ2i−1] ∈ Ext1,2

i

A (F2,F2) and d0 = [d̄0] ∈ Ext4,18
A (F2,F2).
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It is well known that H∗(BVk) is the dual of H∗(BVk) = Pk. So

H∗(BVk) = Γ(a1, a2, . . . , ak)

is the divided power algebra generated by a1, a2, . . . , ak, where ai is dual to xi ∈
Pk with respect to the basis of Pk consisting of all monomials in x1, x2, . . . , xk.
In [3], Chon and Hà defined a homomorphism of algebras

φ = ⊕
k�1

φk : ⊕
k�1

H∗(BVk) → ⊕
k�1

Λk = Λ,

which induces the Singer transfer. Here the homomorphism φk : H∗(BVk) →
Λk is defined by the following inductive formula:

φk(a(I,t)) =

{
λt, if k − 1 = �(I) = 0,∑

i�t φk−1(Sqi−taI)λi, if k − 1 = �(I) > 0,

for any a(I,t) = a
(i1)
1 a

(i2)
1 . . . a

(ik−1)
k−1 a

(t)
k ∈ H∗(BVk) and I = (i1, i2, . . . , ik−1).

Proposition 4.2 (See Chon and Hà [3]). If b ∈ PH∗(BVk), then φk(b) is
a cycle in the lambda algebra Λ and Trk([b]) = [φk(b)].

Now we are ready to prove Theorem 1.3.
According to Theorem 1.2, {[p], [q]} is a basis of (QP5)GL5

15 . Let {p∗, q∗}
be the basis of F2 ⊗

GL5

PH15(BV5) which is dual to {[p], [q]}. It is easy to see

that a(15)
5 ∈ PH15(BV5) and 〈a(15)

5 , p〉 = 1, 〈a(15)
5 , q〉 = 0. Consider the element

b =
∑

I∈J a
I ∈ H15(BV5), where J is the set of all the following sequences:

(1, 1, 1, 6, 6), (1, 2, 2, 5, 5), (1, 2, 1, 6, 5), (1, 1, 2, 5, 6), (1, 4, 2, 5, 3), (1, 4, 1, 6, 3),
(1, 3, 2, 6, 3), (1, 2, 4, 3, 5), (1, 1, 4, 3, 6), (1, 4, 4, 3, 3), (1, 6, 1, 1, 6), (1, 5, 2, 2, 5),
(1, 6, 1, 2, 5), (1, 5, 2, 1, 6), (1, 5, 2, 4, 3), (1, 6, 1, 4, 3), (1, 6, 2, 3, 3), (1, 3, 4, 2, 5),
(1, 3, 4, 1, 6), (1, 3, 3, 2, 6), (1, 3, 4, 4, 3), (1, 1, 6, 1, 6), (1, 2, 5, 2, 5), (1, 2, 6, 1, 5),
(1, 1, 5, 2, 6), (1, 4, 5, 2, 3), (1, 4, 6, 1, 3), (1, 3, 6, 2, 3), (1, 2, 3, 4, 5), (1, 1, 3, 4, 6),
(1, 4, 3, 4, 3), (1, 3, 1, 5, 5), (1, 5, 5, 1, 3), (1, 5, 1, 3, 5), (1, 5, 3, 1, 5), (1, 5, 3, 3, 3).

By a direct computation we see that b ∈ PH15(BV5) and 〈b, p〉 = 0, 〈b, q〉 = 1.
Hence we obtain [a(15)

5 ] = p∗ and [b] = q∗. A direct computation shows

φ5(a(15)
5 ) = λ4

0λ15,

φ5(b) = λ1d̄0 + δ(λ1λ9λ
2
3 + λ1λ3λ9λ3).

Using Proposition 4.2, one gets Tr5(p∗) = Tr5([a(15)
5 ]) = h4

0h4 and Tr5(q∗) =
Tr5([b]) = h1d0. The theorem follows. �
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