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Abstract
We study the Peterson hit problem of finding a minimal set of genera-
tors for the polynomial algebra Py := Fa[z1, z2,...,2k] as a module over

the mod-2 Steenrod algebra, A. In this paper, we explicitly determine a
minimal set of A-generators with k& = 5 in degree 15. Using this results
we show that the fifth Singer transfer is an isomorphism in this degree.

1 Introduction and statement of results

Let Vi be an elementary abelian 2-group of rank k. Denote by BV} the classi-
fying space of Vj. It may be thought of as the product of k£ copies of the real
projective space RP*. Then

Pk = H*(ka) = Fg[xl,xg, . ..,xk],

a polynomial algebra on k generators x1, xo, ..., xk, each of degree 1. Here the

cohomology is taken with coefficients in the prime field Fy of two elements.
Being the cohomology of a space, Pj; is a module over the mod 2 Steenrod

algebra A. The action of A on Py can explicitly be given by the formula

Ty, 1= 0,
Sq'(xj) =22, i=1,
0, otherwise,
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48 On the Peterson hit problem of five variables...

and subject to the Cartan formula Sq"(fg) = .., Sq¢'(f)Sq"*(g), for f,g €
Py, (see Steenrod-Epstein [22]).

A polynomial f in Py is called hit if it can be written as a finite sum
[ =>,205¢"(fi) for some polynomials f;. That means f belongs to AT Py,
where A" denotes the augmentation ideal in 4. We are interested in the hit
problem, set up by F. Peterson, of finding a minimal set of generators for the
polynomial algebra Pj as a module over the Steenrod algebra. In other words,
we want to find a basis of the Fo-vector space Fo @ 4 Py := QP

Let GLx = GLk(F2) be the general linear group over the field Fo. This
group acts naturally on Py by matrix substitution. Since the two actions of A
and G Ly upon P, commute with each other, there is an action of GLj on QPj.
The subspace of degree n homogeneous polynomials (Py), and its quotient
(QPyx), are GLy-subspaces of the spaces P, and QP respectively.

The hit problem was first studied by Peterson [15], Wood [26], Singer [20],
and Priddy [16], who showed its relationship to several classical problems re-
spectively in cobordism theory, modular representation theory, Adams spectral
sequence for the stable homotopy of spheres, and stable homotopy type of classi-
fying spaces of finite groups. The tensor product Q Py was explicitly calculated
by Peterson [15] for k = 1,2, by Kameko [10] for & = 3, and recently by us [23]
for k = 4.

Many authors was then investigated the hit problem. (See Boardman [1],
Bruner-Ha-Hung [2], Crabb-Hubbuck [5], Ha [6], Hung [7, 8], Kameko [10, 11],
Nam [13, 14], Repka-Selick [18], Singer [21], Silverman [19], Wood [26, 27] and
others.)

One of our main tools for studying the hit problem is the so-called Kameko
squaring operation

Sq¢" :Fy ® PH.(BVy) —TFy ® PH.(BV).
C;L)c GLk:

Here H,.(BVj) is homology with Fy coefficients, and PH.(BV}) denotes the
primitive subspace consisting of all elements in the space H.(BV}), which are
annihilated by every positive-degree operation in the mod 2 Steenrod algebra;

therefore, Fo @ PH,(BV}) is dual to QPkG Lk The dual of the Kameko squar-
GLy

ing is the homomorphism Sq? : QPkG Le QPkG Lk This homomorphism is
—~0

given by the following G Li-homomorphism Sq, : QP — QPy. The latter is
—0

given by the Fs-linear map, also denoted by Sq, : Py — Py, given by

S’VO( ) y, ifx=x120... 2332,
* x - .
1 0, otherwise,

—~0
for any monomial x € Pj. Note that Sq, is not an A-homomorphism. However,

—0 —0 “—0
Sq,.5¢* = Sq'Sq, and Sq,Sq*' ™ = 0, for any nonnegative integer t.
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The Kameko squaring operation commutes with the classical squaring op-
eration on the cohomology of the Steenrod algebra through the Singer transfer

Try:Fo @ PHy(BVy) — Ext® T 4(Fy, Fy).
GLy

Boardman [1] used this fact to show that Trs is an isomorphism. Bruner-Ha-
Hung [2] applied it to prove that Try does not detect any element in the usual
family {g;}i>0 of Extj(]FQ,]Fg). Recently, Hung and his collaborators have
completely determined the image of the fourth Singer transfer Try (in [2], [§],
[6], [14], [9]). Singer showed in [20] that Trs is not an epimorphism in degree 9.
n [17], Quynh proved that Trs is also not an epimorphism in degree 11. The
Singer transfer was also investigated by Chon-Ha [3, 4].

In this paper, we explicitly determine all the admissible monomials (see
Section 2) of Ps in degree 15. Using this results, we prove that the fifth Singer
transfer is an isomorphism in this degree. We have

Theorem 1.1. There exist exactly 432 admissible monomials of degree 15 in
Ps. Consequently dim(QPs )15 = 432.

By using Theorem 1.1, we compute (QP;,)%L"’.

Theorem 1.2. (QP;J%L"’ is an Fay-vector space of dimension 2 with a basis
consisting of the 2 classes represented by the following polynomials:
p= x%5 + x§5 + x§5 + x}f + xé5 + xlx;l + x1x§4 + xlx}f + xlxé4 + x2x§4

14 14 14 14 14 2 12 2,12 2 12
+ Xoxy + X2y + T3x, + X3T5 + TaXy + X1T5X37 + X125, + 12505

2 12 2,12 2,12 2 12 2,12 2,12 2 12
+ 21237, + T12305" + 210405 + Tox3%, + Tox3x5" + Xox x5 + X3T Ty
2. 4 2. 4 2. 4 2,4 2,4 2.4 4 4
+ x1x2x3x§l + x1x2x3x§ + x1x2x4x§ + x1x3x4x§ + x2x3x4x§ + T125T324 75,
_ 6,.6 6. .6 6,.6 6 6 6. .6
q = T1X2X3X4T5 + T1T2X3X4%5 + L1T2T3T 45 + L1 XT3T4T5 + T1XoX3L4T5
4 4 4 4 4
+ xlxgxgm% + xlxgxgx4x5 + xlxgx§x4x5 + xlxgx§x4x5 + xfx2x3x4xg
3 6,.4 3. 4., .6 3, .46 3.4 6 3,4, .6
+ T]X2X3T4 X5 + X]X2T3X4T5 + TIT2X3T 45 + TIXoT3T4T 5 + TITHX3L4T5
4.4 4.4 4.4 4., 4 4.4
+ x1x§x§x4x5 + xfx2x§x4x5 + xfx§x3x4x5 + xfxgx3x4x5 + xfx§x3x4x5
4 4 4.3 4
+ xfx2x§x4x5 + xfx2x§x4x5.
Using Theorem 1.2, we prove the following which was proved in Hung [8]
by using computer computation.

Theorem 1.3 (Hung [8]). The fifth Singer transfer

Trs: Fo ® PHi5(BVs) — Ext*(F2,Fo)
GL5

s an isomorphism.
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This paper is organized as follows. In Section 2, we recall some needed
information on the admissible monomials in Py and Singer criterion on the hit
monomials. We prove Theorem 1.1 in Section 3 by explicitly determine all the
admissible monomials of degree 15. Theorems 1.2 and 1.3 will be proved in
Sections 4.

2 Preliminaries

In this section, we recall some results in Kameko [10] and Singer [21] which will
be used in the next sections.

Notation 2.1. Let «;(a) denote the i-th coefficient in dyadic expansion of a
nonnegative integer a. That means a = ag(a)2° 4+ a1(a)2! + as(a)2? + ..., for
a;(a)=0,1and i > 0.

Let = x{'z3? ... a}* € Py. Set Ij(x) = {j € Ni : a;(a;) = 0}, for i > 0.
Then we have

For a polynomial f in Py, we denote by [f] the class in Fo ® 4 Py, represented
by f. For a subset S C Py, we denote

[S]=Alf]: f €S} C QP

Definition 2.2. For a monomial z = z{'z5*...2}" € P}, we define two se-

quences associated with = by

w(x) = (wi(x),wa(x), ..., wi(x),...),

o(x) = (a1, a9, ...,ax),

where w;(z) = >, ¢ cp@i1(a;) = deg X, (2, i > 1.

The sequence w(x) is called the weight vector of = (see Wood [27]). The
weight vectors and the sigma vectors can be ordered by the left lexicographical
order.

Let w = (w1, wa, . . .,wi,...) be a sequence of nonnegative integers such that
w; = 0 for i > 0. Define degw =, ;2" 'w;. Denote by Py(w) the subspace
of Py, spanned by all monomials y such that degy = degw, w(y) < wand P, (w)
the subspace of P spanned by all monomials y € Py(w) such that w(y) < w.
Denote by A7 the subspace of A spanned by all S¢/ with 1 < j < 2°. Define

QPy(w) = Pe(w)/ (AT P N Pp(w)) + Py (w))-

Then we have
(ka)n - @degw:nQPk(w).
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Definition 2.3. Let x be a monomial and f, g two homogeneous polynomials
of the same degree in P,. We define f = g if and only if f —g € ATP,. If
f =0 then f is called hit.

We recall some relations on the action of the Steenrod squares on Pj.

Proposition 2.4. Let f be a homogeneous polynomial in Pj,.
i) If i > deg f then Sq'(f) = 0. If i = deg f then Sq'(f) = f2.
i) Ifi is not divisible by 2° then Sq*(f2°) = 0 while Sq"% (f27) = (Sq" (f))*".

Definition 2.5. Let z,y be monomials of the same degree in P,. We say that
x < y if and only if one of the following holds
i) wz) <w(y);
il) w(z) = w(y) and o(z) < o(y).
Definition 2.6. A monomial x is said to be inadmissible if there exist mono-
mials y1,¥y2,...,ye such that y; <z forj=1,2,...,tandx =y +ya+... +y.
A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Py is a
minimal set of A-generators for Py in degree n.
The following theorem is a modification of a result in [10].

Theorem 2.7 (Kameko [10], Sum [24]). Let x,w be monomials in Pj
such that wi(z) = 0 for i > r > 0. If w is inadmissible, then zw? is also
inadmissible.

Proposition 2.8 ([24]). Let = be an admissible monomial in Py. Then we
have
i) If there is an index ig such that w;,(x) = 0, then w;(xz) =0 for all i > ig.
ii) If there is an index iy such that w;,(x) < k, then w;(x) < k for all i > ig.

Now, we recall a result of Singer [21] on the hit monomials in Pj.

Definition 2.9. A monomial z = %252 ... 2 is called a spike if b; = 2% — 1
for s; a nonnegative integer and j =1,2,...,k. If z is a spike with s; > s >

...> 5801258 >0and s; =0 for j > r, then it is called a minimal spike.
The following is a criterion for the hit monomials in Pj.
Theorem 2.10 (Singer [21]). Suppose x € Py is a monomial of degree n,
where pu(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z) then x
is hit.
For latter use, we set
P) = {z=a{25?.. .2 ; a1az...a, = 0}),
P,j ={z=al"23*.. . 27" ; ajaz...ap > 0}).

It is easy to see that P and P,j are the A-submodules of Pj. Furthermore,
we have the following.
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Proposition 2.11. We have a direct summand decomposition of the Fy-vector
spaces

QP = QP ® QP .
Here QP = PYJ AT .PY and QP = P /AT.P}.

For 1 <7 < k, define the homomorphism f; = fi.; : Py—1 — Pj of algebras

by substituting
T, flgj<
filwj)=4" L
Tjp1, ifi<j<

It is easy to see that

Proposition 2.12. If Bi_1(n) is the set of all admissible monomials of degree
n in Py_1, then f(Br—1(n)) := Uigi<kfi(Br—1(n)) is the set of all admissible
monomials of degree n in PP.

For 1 <1 < k, define ¢; : QP — Q Py, the homomorphism induced by the
A-homomorphism @, : P, — Pk, which is determined by @,(z1) = 21 + x2,
pi(z;) = xj for j > 1, and P(z) = zi—1,Ps(wi1) = i, Py(z;) = x; for
j#i,1—1, 1 <i< k. Note that the general linear group G Ly, is generated by
©;, 0 <i <k and the symmetric group Xy, is generated by p;, 1 <i < k.

For any I = (ig,i1,...,0r), 0 < ig < i1 < ... < 4. <k, 0<r <k, we
define the homomorphism py : P, — Pj_1 of algebras by substituting

;) if 1< <o,
pl(xﬂ) = Zlgsgr‘xis—l5 lfj :iO)
Tj-1, if 10 <j < k.

Then p; is a homomorphism of A-modules. In particular, for I = (i), we have
piy(z:) = 0.

3 Proof of Theorem 1.1

In this section, we explicitly determine all the admissible monomials of degree
15.
—0
Consider the Kameko homomorphism (Sg¢,)3 : (QPs5)15 — (QPs)s. Since
this homomorphism is an epimorphism, we have

(QPs)15 = Ker(S4.)2® (QPs)s = (QP)15® (QP)15 NKer(57,)2) @ (QPs)s.

By Proposition 2.12, to compute (QP2)15 we need to compute

(QPy)15 = (QP1) s ® (QPy)Ts.
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Using Kameko’s results in [10], we have
15 15 15 14 14 14 2 12
B3(15) :{331 y Loy Tg , X1Lg , L1X3 ,X2T3 , T1ToT3 ,

7.7 7 77T 3,5,.7 ..3,.7..5 7,35
.731.732.733,331.732.733,331332333,331.732.233,331332333,331332333}.

By a direct computation using Proposition 2.12, we see that f(Bs(15)) is
the set consisting of 38 admissible monomials in (PY)15.

Lemma 3.1. If z is an admissible monomial of degree 15 in Py then either
w(z)=(1,1,1,1) or w(z) = (3,2,2).

Proof. Since deg x is odd, we have wy(z) =1 or wy(z) = 3.

Suppose wy (r) = 1, then x = z;y? with y a monomial of degree 7. Since x is
admissible, by Theorem 2.7, y is admissible. If y ¢ P;" then from Kameko [10],
w(y) = (1,1,1) or w(y) = (3,2). A direct computation shows that x = z;1>
is inadmissible for all monomials y in Py with w(y) = (3,2). Hence w(x) =
(1,1,1,1). If y € P;", then y is a permutation of one of the following monomial
T1227375, T122730], T1x3rde]. By a direct computation we see that z = z;y?
is inadmissible.

If wi(z) = 3, then = x;2;9%,4 < j with y a monomial of degree 6 in P.
By Theorem 2.7, y is admissible. So w1(y) = 2 or wy(y) = 4. If wy(y) = 4, then
by Proposition 2.8, = is inadmissible. Hence wi(y) = 2 and w(z) = (3,2, 2).
The lemma is proved. u

Proposition 3.2. (QP;")15 is an Fa-vector space of dimension 37 with a basis
consisting of all the classes represented by the admissible monomials d;, 1 <
1 < 37, which are determined as follows:

6,7 7.6 2..5,.7 2,75 3,.4,.7
1. myaxoxie) 2. xywoxiTy 3. xiw5T3Ty 4. x1x2x3x471 5. mwsTsT)
6. vix3xdal 7. vwdalad 8. masalrt 9. mpaSzsxl 10 zyaSadal

1. zy28zley 12, malzsa§ 13, mpalzia) 14, m2lz3x) 15, py2la8ay
16. z3xozan]  17. 23xozial  18. afwoala] 19 afwoxlia}  20. afzdziax)
21. x3zdxdat  22. xdzrdzsa] 23, adzdadal 24, xdaxdalyy 25, xdadwsal
26. wixdrial 27, wixdadal 28, adadaSes 29, atalrsat 30. ataleizy
31. alwowsa§ 32, alwondzl  33. zlweadx} 34, 2lzeaSxs 35, aladzsa)

36. x1zdrir,  37. xiziriad.

Proof. From the proof of Lemma 3.1, if = is an admissible monomial of degree
15 in Py, then z is a permutation of one of the following monomials:

6.7 257 3,47 3.5.6 2355 3.3 405
T1T2X3T 4, T1ToT3Ty, T1THT3T,, T1THTRT,, TITHL3T,, T]THT3Ty.

By a direct computation we see that if x # d;, 1 <t < 37, then x is inadmis-
sible.
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Now we prove that the set {[d;] : 1 < ¢ < 37} is linearly independent in
QPAI|r . Suppose there is a linear relation

S = Z ’)/tdt = O, (31)

1<t<37

with Y € IFs.
By Kameko [10], B3(15) is the set consisting of 7 monomials:

7,7 3,.5,.7 3,75
V1 = T1THTg, V2 = T|THT3, V3 = T{TyT5,

7o T 7.3..5 7.7 2,12
Vg = T1T2T3, V5 = T1THT3, Vg = T1T9x3, V7 = T1T5T3 .

By a direct computation, we explicitly compute p;(S) in terms of vy, ve, ... v7.
From the relations p;(S) = 0 for I = (4,5) with 1 < ¢ < j < 4 and for
I =(1,4,7) with 2 < i < j <4, onegets v =0 fort#£1,2,09, 11, 12, 15,
16, 19, 22, 24, 29, 30, 31 and Y1 = Y9 = Y16 = 722, VY2 = Y11 = Y19 = 724,
Y2 = Y15 = Y20 = 730, 131 = Y34 = Y35 = 736. Hence the relation (3.1)
becomes

Y161 + 202 + 71205 + 73104 + 37d37 = 0, (3.2)

where

01 =di +do 4 dig + daz, 02 =da + di1 + dig + day,
03 = d12 + di5 + dog + dzo, 04 = d31 + dz4 + d3s5 + d3g.

Now, we prove that v1 = 72 = y12 = 731 = 0.
The proof is divided into 4 steps.
Step 1. Under the homomorphism 1, the image of (3.2) is

Y101 + 7202 + Y1203 + Y31 (04 + 03) + y37(d37 +v7) = 0. (3.3)
Since v7 € PY, 437 = 0. Combining (3.2) and (3.3), we get
Y3103 = 0. (3.4)
If the polynomial 65 is hit, then we have
03 = Sq'(A) + S¢*(B) + S¢*(C),

for some polynomials A € (P} )14, B € (P, )13,C € (P} )11. Let (S¢?)® act on
the both sides of this equality. We get

(S4*)°(63) = (S¢*)°Sq*(O),
By a direct calculation, we see that the monomial r = 8272322 is a term
of (Sq?)3(f3). If this monomial is a term of (Sq¢?)2Sq¢*(y) for a monomial
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y € (P )11, then y = 2] fo(2) with z € P3 and degz = 4. Using the Cartan
formula, we see that x is a term of x7(5¢%)3Sq*(2) = 25(S¢?)3(2?) = 0. Hence

(Sq®)%(6s) # (S¢*)*Sq*(C),

for all C' € (P;");; and we have a contradiction. So [f3] # 0 and 31 = 0.
Step 2. Since y31 = 0, the homomorphism @9 sends (3.2) to

1101 + Y202 + 71204 = 0. (3.5)

Using the relation (3.5) and by the same argument as given in Step 1, we get
Y12 = 0.
Step 3. Since y31 = 12 = 0, the homomorphism 3 sends (3.2) to

Y1[01] + 12[05] = 0. (3.6)

Using the relation (3.6) and by the same argument as given in Step 2, we obtain
Y3 = 0.
Step 4. Since 31 = y12 = 72 = 0, the homomorphism ¢4 sends (3.2) to

’)/1(92 =0.

Using this relation and by the same argument as given in Step 3, we obtain
~v1 = 0. The proposition is proved. 1

Corollary 3.3. The set [f(B4(15))] is a basis of the Fa-vector space (QPY)15.
Consequently dim(QP?)15 = 270.

Now we compute (QPs)s = (QP)s © (QP5")s. Using Kameko’s results in
[10], we have Bs(5) = {z1z273, m12323, vzows}. A direct computation, we
easily obtain

B4(5) = f(Bs(5)) U {x1x§x3x4, x1x2x§x4, xlexng}.

This implies dim(QPy)s = 15. It is easy to see that (QPs)s = ([z122037475]).
So we get
B5(5) = f(B4 (5)) U {x1x2x3x4x5}.

Combining this with Proposition 2.12 we obtain

Proposition 3.4. The set [Bs(5)] is a basis of the Fo-vector space (QPs)s.
Consequently dim(QPs)s = 46.

—0
Now we compute (QP5")15 NKer(Sq,)2.

Lemma 3.5. If z is an admissible monomial of degree 15 in P and [x] €
—~0
Ker(Sq,), then w(z) is one of the sequences: (1,1,3), (3,2,2), (3,4,1).
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—~0
Proof. Since z € P5” and [z] € Ker(Sq,), using Proposition 2.8, we see that =
is a permutation of one of the following monomials:

2,47 2,2 3.7 6,.6 2,56 3,.4,.6
x1x2x3x4x5, x1x2x3x4x5, x1x2x3x4x5, x1x2x3x4x5, x1x2x3x4x5,
2,2 4.6 2,3.3.6 2,22 .3 6 2,255 2,3,.4,.5
L1TX3L L5,  X1XX3L L5,  XIXRLIL4L5, X1XLIL4L5,  L1XL3LLAL5,

2,2.3.3.5 24,44 2,23 4 4 3..3,.4,..4
TITHTRTYTE, T1TZT3T4T5, TIT5TRT L5 T1THT3T4T5.

We have

2.2 4 2.2 2 1.2 4 2, .2
rrsrieird = viadeieiad + Sqt (vivewsaial + vivsaial)

2 4 2
+ Sq (x1x2x3x4xg + x1x2x3x4x§)

2,2 .3 4 4 2.4 4 4 1 2.3 4 4
TIXZTZT4Ts = T105T30 405 + Sq (x1252052,25)
2.2 2 2.2 4 1 2 2
pivdrieied = vadeieial 4+ Sqt (vixdriadal).
Since w(zir3zizixd) = (1,3,0,1) < (1,3,2,0) = w(z123rizixd),
2 4 4 4\ "_ _ 2.2 3 44 2,946\ _
w(zizsrsryrs) = (1,1,3) < (1,3,2) = w(ziziasryrs), w(zizriaies) =

(1,3,2) < (1,5,1) = w(x?zdzix3z?), if the monomial z is a permutation of

one of the monomials z1x372rixl, v2x3rdzird, ¥222232328, then z is inad-

missible. The lemma follows. U
From Lemma 3.5, we have

(QP;)15 N Ker(Sq,)% = (QP) NQPs(1,1,3))@
@ ((QP) NQP5(3,4,1) & (QP) NQP5(3,2,2)).

Proposition 3.6. QP N QPs(1,1,3) = ([r123r3rixd]).

Proof. From the proof of Lemma 3.5, if x is a monomial of degree 15 in P5 and
w(z) = (1,1,3) then x is a permutation of the monomial z;x3z3zir:. By a
direct computation, we have x = z1273z3rjz?, completing the proof. O

Proposition 3.7. QP5+ N QP5(3,4,1) is an Fy-vector space of dimension 40
with a basis consisting of all the classes represented by the admissible monomials
a;, 1 <11 <40, which are determined as follows:

1. mzdadadal 2. madadalad 3. xiadadzial 4. madadadad
5. xwéw%x%x% 6. xlx%x%x%x% 7. xlx%x%x%x% 8. xlx%x%x%x%
9. mazxszzrirs 10, xixszzzire 11 zixsrsxgey 120 vixsrsrias
13. zyrsedz?z® 14, zyxdx32822 15, xadala?ad 16, xiadalada?

L3 Ly Ly L3 L4 Ty 2L3Ly T 23Ty L5

17. madaliada? 18, xpalada?ad 19, zyaladada? 200 zyaladaial
21. x3zoxdzdzl 22, xiwoxiadxl 23, izendalad 24, xlwoxiala?
25. 2iwoxiatad 26, adwoxdala? 27, adwoalwizd  28. adzoalaix?
29. x3zoxiziz?  30. xixdzsnixd 31, ixdwsala? 32, zladxiadxd
33. wixdadaled 34, wiadaiads? 35, xixdadaix?  36. atalrsadad

2,23 T 23,2 T 30.2,.2 7030 2,2
37. xiwowsxiry 38, wywoxzwhwrs 39. wiwownwriri 40. r{wST3TITE.
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Proof. Let x be an admissible monomial of degree 15 in P5 and w(x) = (3,4, 1).
From the proof of Lemma 3.5, x is a permutation of one of the monomials
A direct computation shows that if

2,237 2,.3.3.6
x1x2x3x4x5, x1x2x3x4x5, X
x # ay, 1 <t <40, then z is inadmissible.

2.2.3 .35
1L2L3L4T5-

Now, we prove that the set {[a;] : 1 < t < 40} is linearly independent in

@QPs. Suppose there is a linear relation

S= Z rYtatEOa

1<t<40

with v; € Fy. By a direct computation, we explicitly compute p(; ;)(S) in terms
of d;, 1 < j < 37. From the relations p(; ;)(S) = 0 for 1 < j < 5, we obtain
v = 0 for 1 <t < 40. The proposition is proved.

Proposition 3.8. QP5+ N QP5(3,2,2) is an Fy-vector space of dimension 75
with a basis consisting of all the classes represented by the admissible monomials
by, 1 <t <75, which are determined as follows:

1.

D.

9.
13.
17.
21.
25.
29.
33.
37.
41.
45.
49.
53.
o7.
61.
65.
69.
73.

xlxgxgxgxg

xlxgxngxé

xlxgxgxixg
xlxgxgxﬁxg

ra3rizied

$1$%$§$Z$5
$1$%$g$2$5
xlxgxgxgxé
x1x3x§x4xg
xlxgxngxé
xlxgxgxixg
$1$g$§$3$5
x%xgxgxﬁxg
x%xgxgxﬁxé
$§$2$§$2$5
x?x%xgxﬁxé
x%x%xgxixg
x%x%x%xﬁx5

xzxgxgxixé

2.

6.
10.
14.
18.
22.
26.
30.
34.
38.
42.
46.
50.
54.
58.
62.
66.
70.
4.

xlxgxgxﬁxg

xlxgxgxﬁxg
xlxgxgxﬁxé
xlxgxgxixg
xlxgxgxixé
x1x3x2x4xg
x1x§x§x4x§
xlxgxgxﬁxg
xlxgxéxzxg
xlxgxgx4x§
xlxgxgxﬁxé
xlxgxgxixé
x%xgxgxgxé
x§x2x§x4xg
x?xgxgxixé
x?x%x§x4x§
x%x%xgxixé

r3zdraried

rxoxdwgwd

3.

7.
11.
15.
19.
23.
27.
31.
35.
39.
43.
47.
ol.
55.
59.
63.
67.
71.
75.

xlxgxgxixg
xlxgxgxgxé
$1$2$g$2$5

xlxgxgxgxg

x1x§x§x4xg
xlxgxgxixg
$1$%$§$3$5
xlxgxgxixé

rirriried

$1$g$g$3$5
$1$g$3$2$5
x1x§x§x4x§
x%xgxgxﬁxg
x%xgxéxixg
x§x2x2x4x§
x?x%x§x3x5
x§x§x3x2x5
x%x%x§x4x§
4

$I$2$§$4$5.

4.

8.
12.
16.
20.
24.
28.
32.
36.
40.
44.
48.
52.
56.
60.
64.
68.
72.

xlxgxgxgxg

$1$2$g$4$g
xlxgxgxixé
xlxgxngxé
xlxgxéxixg
xlxgxgxixé
xlxgxgxﬁxg
xlxgxgxﬁxé
$1$g$§$2$5
$1$g$3$4$g
x1x3x§x4x§
$1$g$§$3$5
x%xgxgxixé
x%xgxéxixé
$§$2$g$3$5
x?x%x3x4xg
x%x%x§x4x§
x%x%x§x3x5

Proof. Let x be an admissible monomial of degree 15 in P5 and w(x) = (3,2, 2).
From the proof of Lemma 3.5, = is a permutation of one of the monomials:

2..4,..7
x1x2x3x4x5,

2..2..5,.5
x1x2x3x4x5,

6 ,.6
T1X2Xx3T 4Ty,

Ty r3airied

2,..5,.6
x1x2x3x4x5,

4.4

Tririvied.

3,.4,.6
x1x2x3x4x5,

By a direct computation, we see that if  # b, 1 <t < 75, then x is inadmis-

sible.
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Now, we prove that the set {[b;] : 1 < ¢ < 75} is linearly independent in
QPs. Suppose there is a linear relation

S= Z by = 0, (3.7)
1<t<75
with 7; € Fy. By a direct computation, we explicitly compute p(; j)(S) in terms
of dy, 1 <t <37. From the relations p(; ;y(S) = 0 for 1 < i < j <5, one gets
v =0 for t ¢ J with
J ={1,8,11,32,38,39,40,43, 44, 45,49, 50, 53, 54, 57, 61, 62, 63, 64, 67, 68, 69}
and y; = v, for ¢t € J. Hence the relation (3.7) becomes
14q =0,
where ¢ = by + bg + b11 + b3o + bsg + b3g + bag + baz + bag + bas + bag + bso +
bs3 + bs4 + bs7 + b1 + be + bz + bea + bsr + bgs + beo.
If the polynomial ¢ is hit, then we have
q = Sq'(A) + S¢*(B) + S¢*(C),
for some polynomials A € (P")14, B € (P )13,C € (P )11. Let (Sg?)? act on
the both sides of this equality. Since (S¢?)3Sq! = 0 and (S¢?)3S¢® = 0 we get
(S¢*)*(a) = (S¢*)°S¢" (C).
By a direct calculation, we have

(S¢*)3(q) = D + other terms,
where D = z3(a3zfzizt + a8a3zied + afxinial + afafaie? + xfafxia? +
aSrixia? + xSeiziad + 23aSxixt). Hence there is a polynomial C' € (Py)s
such that D is a term of (Sq?)3Sq*(z3f1(C”")). Using the Cartan formula we
see that D is a term of 3 f1((Sq?)3Sq*(C”)). A direct computation shows that

D is not a term of a3 f1((Sq?)3Sq*(C")) for any C’ € (Py)s. Hence

(Sa®)%(q) # (S¢*)*Sq*(C),

for all C' € (P5")11 and we have a contradiction. So [¢] # 0 and y; = 0. The
proposition is proved. [

4 Proof of Theorems 1.2 and 1.3

—~0 —~—0
Proof of Theorem 1.2. Since Sq, = (Sq,)}s : (QPs)15 — (QPs)s5 is a homo-
morphism of G Ls-modules, we have a direct summand decomposition of the

—0
G Ls-modules: (QPs)15 = Ker(Sq,)2 ® (QPs)s. Hence

(QPs)%Es = (Ker(Sq,)3)55 & (QPs)She.
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By a direct computation using Proposition 3.4 we easily obtain (QP5)S™* = 0.

It is easy to see that

—~0
Ker(Sq*)g = QP5(15 1) 1) 1) 2 QP5(15 1) 3) 2 QP5(35 2) 2) 2 QP5(3545 1))

where QP5(1,1,1,1)& QPs(1,1,3), QPs5(3,2,2) and QPs(3,4, 1) are the GLs-

—o
submodules of Ker(Sq,)2. By a direct computation using Theorem 1.1 and the
homomorphisms ¢; : QP5 — QPs, 1 < i <5, one gets

(@P5(1,1,1,1) ® QP5(1,1,3))“" = ([p)),
QP5(3’ 2’ 2)GL5 = <[Q]>, QP5(354a I)GLS =

The theorem is proved. |

Proof of Theorem 1.3. First of all, we briefy recall the definition of the Singer
transfer. Let P, be the submodule of Fy [z1, 27 "] spanned by all powers x}
with ¢ > —1. The usual A-action on P; = Fa[z1] is canonically extended to an
A-action on Fy[zy, 27 '] (see Singer [20]). Py is an A-submodule of Fy [z1,27Y).
The inclusion P; C 131 gives rise to a short exact sequence of A-modules:

0— P, — P, — X 1Fy — 0.

Let e; be the corresponding element in Extil(E‘l]Fg,Pl). Singer set e =
e1®...0e € Ext(2*Fy, Py). Then, he defined Tr} : Torf (Fa, 2 FFy) —
Tory' (Fa, Py) = QP by Tri(z) = e, Nz. Its image is a submodule of (QP;,)¢L*
. The k-th Singer transfer is defined to be the dual of Try.

The algebra Ext’;"(F2, Fz) is described in terms of the mod-2 lambda alge-
bra A (see Lin [12]). Recall that A is a bigraded differential algebra over Fo
generated by \; € A1, j > 0, with the relations

m—v—1
AjA2ji1em = ( . >/\j+m—u/\2j+1+m

v=>0
for m > 0 and the differential

k—v—1
5(Ak>:z( Vil )Ak_u_m,

V>0

for k > 0 and that H*!(A,d) = Extj{”s(]FQ, Fy). Tt is easy to see that \yi_; €
AL2 715 >0, and do = AgAaAZ +AINZ + Ao dads Az + A As A Ay € AB are the
cycles in the lambda algebra A.

Proposition 4.1 (See Lin [12]). EXti{QO(FQ,FQ) = Span{hghy, hado}, with
hi = Dai_1] € Exty? (Fy, ) and do = [do] € Ext{'®(Fy, Fy).
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It is well known that H,(BVy) is the dual of H*(BV}) = P;. So
H.(BVy) =T(a1,as,...,ax)

is the divided power algebra generated by aq, as, .. ., ax, where a; is dual to x; €
Py with respect to the basis of Py consisting of all monomials in x1, o, ..., zk.
In [3], Chon and Ha defined a homomorphism of algebras

o= @D ¢p: ® H.(BVy) — @ A=A,
k E>1 E>1

>1

which induces the Singer transfer. Here the homomorphism ¢y : H,.(BVy) —
Ay, is defined by the following inductive formula:

(1) At ifk—1=4¢(1I)=0,
Pr(a™) = L '
Yist Oe-1(Sg el )Ny, itk —1=(I) >0,

for any al't) = agil)agm .. .a,(fle)a,(:) € H.(BVy) and I = (i1,42,...,0x—1)-
Proposition 4.2 (See Chon and Ha [3]). Ifb € PH,.(BV}), then ¢(b) is
a cycle in the lambda algebra A and Try([b]) = [¢r(D)].

Now we are ready to prove Theorem 1.3.
According to Theorem 1.2, {[p], [¢]} is a basis of (QP5)$%. Let {p*,q¢*}
be the basis of Fo ® PH;5(BV5) which is dual to {[p], [¢]}. It is easy to see
GLs

that aéw) € PH,5(BV5) and <aé15) p) =1, <aé15), q) = 0. Consider the element
b=3,c 0’ € Hi5(BVs), where J is the set of all the following sequences:

(1,1,1,6,6), (1,2,2,5,5), (1,2,1,6,5), (1,1,2,5,6), (1,4,2,5,3), (1,4,1,6,3),
(1,3,2,6,3), (1,2,4,3,5), (1,1,4,3,6), (1,4,4,3,3), (1,6,1,1,6), (1,5,2,2,5),
(1,6,1,2,5), (1,5,2,1,6), (1,5,2,4,3), (1,6,1,4,3), (1,6,2,3,3), (1,3,4,2,5),
(1,3,4,1,6), (1,3,3,2,6), (1,3,4,4,3), (1,1,6,1,6), (1,2,5,2,5), (1,2,6,1,5),
(1,1,5,2,6), (1,4,5,2,3), (1,4,6,1,3), (1,3,6,2,3), (1,2,3,4,5), (1,1,3,4,6),
(1,4,3,4,3), (1,3,1,5,5), (1,5,5,1,3), (1,5,1,3,5), (1,5,3,1,5), (1,5,3,3,3).

By a direct computation we see that b € PHy5(BV5) and (b, p) =0, (b,q) = 1.

15
af'™)

Hence we obtain | = p* and [b] = ¢*. A direct computation shows

¢5(a"™) = Aiis,
¢5(b) = )\16{0 + 5()\1)\9)\% + )\1)\3)\9)\3).

Using Proposition 4.2, one gets Trs(p*) = Tr5([aé15)]) = hghs and Tr5(q*) =
Tr5([b]) = hidp. The theorem follows. O
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