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Abstract

Recently a new nonconforming brick element of fourteen DOFs with
quadratic convergence for the energy norm is introduced by Meng, Sheen,
Luo, and Kim [23]. The purpose of this paper is to compare this element
with the brick elements introduced by Smith and Kidger [31]. The above
elements have fourteen degrees of freedom which contain the eight ver-
tex values and the six barycenter values at surfaces. The underlying
element are based on P2. The finite element of Meng-Sheen-Luo-Kim
adds the span of four polynomials {xyz, x[x2− 3

5 (y2 + z2)], y[y2 − 3
5 (x2 +

z2)], z[z2 − 3
5
(x2 + y2)]}, while the Smith-Kidger elements add the span

of four other polynomials. In this paper, we particularly consider the
two classes of Smith-Kidger elements. The first and fifth types add
the span of {xyz,x2y, y2, z2x} and the span of {xyz, x2y + xy2, y2z +
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yz2, z2x + zx2}, respectively, while the sixth type adds the span of
{xyz,xy2z2, x2yz2, x2y2zx}. We compare these three elements with the
Meng-Sheen-Luo-Kim element numerically and give rates of convergence
for Poisson equations.

1 Introduction

It seems that at least for the three-rectangular element, the use of serendip-
ity elements provide a more efficient numerical procedure than the usual tri-
linear elements since the serendipity elements have only 14 DOFs while the
conventional trilinear elements contain 27 DOFs. It goes back to Smith and
Kidger [31] who successfully developed three-dimensional brick elements of 14
DOFs. They investigated six most possible 14 DOFs elements systematically
considering the Pascal pyramid, and concluded that the type 1 (as well as type
2) and type 6 elements are successful ones. The type 1 element adds the span
of four nonsymmetric cubic polynomials {xyz, x2y, y2z, z2x} while the type 6
element the span of {xyz, xy2z2, x2yz2, x2y2z} to P2.

Since then, any study of new three dimensional serendipity elements has not
been reported. Only recently a new nonconforming brick element of fourteen
DOFs with quadratic and cubic convergence in the energy and L2 norms is
introduced by Meng, Sheen, Luo, and Kim [23], which has the same type of
DOFs but has only cubic polynomials added to P2.

The purpose of this paper is to compare these elements numerically.
There are several well-known conforming serendipity elements including the

8 node element whose DOFs are the values at the 8 vertices and the 20 node
elements whose DOFs are the values at the 8 vertices and those at the 12 edge
midpoints, respectively. A systematic study on serendipity elements in general
dimension has been reported by Arnold and Awanou [1].

In the meanwhile nonconforming finite element methods have been devel-
oped fast in recent years [16, 17, 26, 32]. The nonconforming finite element
methods successfully provide stable numerical solutions of many practical fluid
flow and solid mechanics problems, such as, [5, 6, 8, 13, 12, 11, 27], for linear
or nonlinear Stokes problems and [2, 4, 10, 20, 22, 19, 24, 38, 15, 37, 3] for
elasticity related problems.

For linear nonconforming finite elements for triangles or tetrahedrons, the
Crouzeix and Raviart element [8] provides stable finite element pairs for Stokes
problems. Wilson defined a 2D nonconforming element on rectangles which
may not converge for arbitrary quadrilaterals; see [30]. For three dimensions,
Wilson also defined a linear-order nonconforming brick element [7, 36] with 11
DOFs whose basis consists of trilinear polynomials plus {1− x2, 1− y2, 1− z2}
on K̂ = [−1, 1]3. This element obtains an O(h) convergence rate in energy
norm. (see [7, Page 217, Remark 4.2.3])
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Concerning quadrilateral nonconforming elements, Han [14] introduced a
rectangular element with local degrees of freedom being five, Rannacher-Turek
[27] presented a rotated Q1 nonconforming element, Douglas-Santos-Sheen-
Ye [9] introduced a nonconforming finite element using the four values at the
midpoints of edges as degrees of freedom, and Park-Sheen presented a P1-
nonconforming finite element on quadrilateral meshes which has the lowest
degrees of freedom [26].

Quadratic nonconforming elements on triangles and simplices have been in-
troduced by Fortin and Soulie [13] and Fortin [12], respectively. Lee and Sheen
[21] proposed a quadratic nonconforming element on rectangular meshes, cor-
responding to the triangular Fortin-Soulie element, and Kim et al. [18] con-
structed a piecewise P2-nonconforming finite element for general quadrilateral
meshes.

For biharmonic problems, the Morley–type element [25, 29] on triangular
meshes has been generalized to three and any dimension [34, 35] based on
simplicial meshes by Wang and Xu. Similarly, for rectangular meshes, the
incomplete biquadratic element [28] has been generalized to three dimensions
by Wang, Shi and Xu [33].

The plan of this paper is as follows. In § 2, we define a quadratic noncon-
forming brick element. In §3, we will introduce an interpolation operator and
provide convergence analysis of optimal order. Finally, in §4 we conclude our
results.

2 The quadratic nonconforming brick elements

Let K̂ = [−1, 1]3 and denote the vertices and face-centroids by Vj , 1 ≤ j ≤ 8,
and Mk, 1 ≤ k ≤ 6, respectively. (see Fig. 1)

M1

M2

M4

M5

M3

M6

V7 V5

V1V3

V8 V6

V2V4

Figure 1: Vj denotes the vertices, j = 1, 2, . . . , 8, and Mk denotes the face-
centroid, k = 1, 2, . . . , 6.
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2.1 The Smith-Kidger elements

Smith and Kidger [31] defined the following six 14-node elements:

P̂
(1)
SK = P2(K̂) ⊕ Span{xyz, x2y, y2z, z2x}, (1a)

P̂
(2)
SK = P2(K̂) ⊕ Span{xyz, xy2, yz2, zx2}, (1b)

P̂
(3)
SK = P2(K̂) ⊕ Span{xyz, x3, y3, z3}, (1c)

P̂
(4)
SK = P2(K̂) ⊕ Span{xyz, x2yz, xy2z, xyz2}, (1d)

P̂
(5)
SK = P2(K̂) ⊕ Span{xyz, x2y + xy2, y2z + yz2 , z2x+ zx2}, (1e)

P̂
(6)
SK = P2(K̂) ⊕ Span{xyz, xy2z2, x2yz2 , x2y2z}, (1f)

whose DOFs are the function values at the eight vertices and the six face-
centroids. They reported that Type 3 element fails and inadmissible, and
Type 1 and Type 2 elements produce similar results to Type 3 element but
better results than Type 4 element, although Type 1 and Type 2 elements are
not symmetric but Type 4 element is symmetric. Type 5 element fails the
MacNeal and Harder patch test, while Type 6 element passes it. However, we
will present numerical results in $ 4, where it turns out that Type 6 element
does not give better results than Type 4 element. Also, we point out the basis
functions given in the paper [31] do not belong to P̂

(6)
SK . Indeed, we observe that

Type 1 (and 2) and Type 5 elements give optimal convergence results both in
L2 and H1 norms at least for the second-order elliptic problems, while Type 6
element loses one order of accuracy in each norm.

2.2 Meng-Sheen-Luo-Kim nonconforming brick element

Meng, Sheen, Luo, and Kim [23] introduced the following elements. Set
θ(x, y, z) = x[x2 − 3

5 (y2 + z2)]. Then define the 14-node elements by

P̂
(k)
MSLK = P2(K̂) ⊕ Span{xyz, θ(x, y, z), θ(y, z, x), θ(z, x, y)}, k = 1, 2.

with the following two types of DOFs:

1. Σ̂(1)

K̂
(φ̂) = {φ̂(Vi), i = 1, 2, . . . , 8; φ̂(Mj), , j = 1, 2, . . . , 6} for all φ̂ ∈

P̂
(1)
MSLK ;

2. Σ̂(2)

K̂
(φ̂) = {φ̂(Vi), i = 1, 2, . . . , 8; 1

|Fj|
∫

Fj
φ̂ dσ, j = 1, 2, . . . , 6} for all φ̂ ∈

P̂
(2)
MSLK .

Then the following propositions hold, which confirm that the Meng-Sheen-Luo-
Kim brick elements fulfill the patch test.
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Proposition 1. [23] By Fk denote the face containing the centroid Mk and
by V Fk

j , j = 1, 2, 3, 4 denote the vertices on the surface Fk. If p ∈ P̂
(1)
MSLK and

p(V Fk

j ) = 0, j = 1, 2, 3, 4, p(Mk) = 0, then

∫
Fk

p(x, y, z)q(x, y, z) dσ = 0, k = 1, 2, . . . , 6, (2)

for all q ∈ P1(R3).

Proposition 2. [23] If p ∈ P̂
(2)
MSLK and p(V Fk

j ) = 0, j = 1, 2, 3, 4,
∫
Fk
p dσ = 0,

then

∫
Fk

p(x, y, z)q(x, y, z) dσ = 0, k = 1, 2, . . . , 6, (3)

for all q ∈ P1(R3).

The basis functions for the element P̂
(1)
MSLK whose DOFs are the values at

the eight vertices and the six surface-centroids are given as follows:

φ̂V
1,1,1(x, y, z) =

1

48

(
− 3 + 5(x+ y + z) + 3η(x, y, z) + 6(xy+ xz + yz + xyz)

−5θ(x, y, z) − 5θ(y, z, x) − 5θ(z, x, y)
)
.

φ̂V
1,1,−1(x, y, z) =

1

48

(
− 3 + 5(x+ y − z) + 3η(x, y, z) + 6(xy− xz − yz − xyz)

−5θ(x, y, z) − 5θ(y, z, x) + 5θ(z, x, y)
)
,

φ̂V
1,−1,1(x, y, z) =

1

48

(
− 3 + 5(x− y + z) + 3η(x, y, z) + 6(−xy + xz − yz − xyz)

−5θ(x, y, z) + 5θ(y, z, x) − 5θ(z, x, y)
)
,

φ̂V
1,−1,−1(x, y, z) =

1

48

(
− 3 + 5(x− y − z) + 3η(x, y, z) + 6(−xy − xz + yz + xyz)

−5θ(x, y, z) + 5θ(y, z, x) + 5θ(z, x, y)
)
,

φ̂V
−1,1,1(x, y, z) =

1

48

(
− 3 + 5(−x+ y + z) + 3η(x, y, z) + 6(−xy − xz + yz − xyz)

+5θ(x, y, z) − 5θ(y, z, x) − 5θ(z, x, y)
)
,

φ̂V
−1,1,−1(x, y, z) =

1

48

(
− 3 + 5(−x+ y − z) + 3η(x, y, z) + 6(−xy + xz − yz + xyz)

+5θ(x, y, z) − 5θ(y, z, x) + 5θ(z, x, y)
)
,
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φ̂V
−1,−1,1(x, y, z) =

1

48

(
− 3 + 5(−x− y + z) + 3η(x, y, z) + 6(xy − xz − yz + xyz)

+5θ(x, y, z) + 5θ(y, z, x) − 5θ(z, x, y)
)
,

φ̂V
−1,−1,−1(x, y, z) =

1

48

(
− 3 + 5(−x− y − z) + 3η(x, y, z) + 6(xy+ xz + yz − xyz)

+5θ(x, y, z) + 5θ(y, z, x) + 5θ(z, x, y)
)
.

φ̂F
1,0,0(x, y, z) =

1

12

(
3 + x+ 3ζ(x,y, z) + 5θ(x, y, z)

)
.

φ̂F
−1,0,0(x, y, z) =

1

12

(
3 − x+ 3ζ(x,y, z) − 5θ(x, y, z)

)
,

φ̂F
0,1,0(x, y, z) =

1

12

(
3 + y + 3ζ(y, z, x) + 5θ(y, z, x)

)
,

φ̂F
0,−1,0(x, y, z) =

1

12

(
3 − y + 3ζ(y, z, x) − 5θ(y, z, x)

)
,

φ̂F
0,0,1(x, y, z) =

1

12

(
3 + z + 3ζ(z, x, y) + 5θ(z, x, y)

)
,

φ̂F
0,0,−1(x, y, z) =

1

12

(
3 − z + 3ζ(z, x, u) − 5θ(z, x, y)

)
,

where η(x, y, z) = x2 + y2 + z2 and θ(x, y, z) = x3 − 3
5(y2 + z2) and the

basis function corresponding to the node (1, 1, 1) is denoted by φ̂V
1,1,1, and that

corresponding to the surface-centroid by φ̂F
1,0,0.

The basis functions for the element P̂
(2)
MSLK whose DOFs are the values at

the eight vertices and the six average surface integrals are given as follows:

ψ̂V
1,1,1(x, y, z) =

1

32

(
− 5 + 3x+ 3y + 3z + 3η(x, y, z) + 4xy+ 4xz + 4yz + 4xyz

−5θ(x, y, z) − 5θ(y, z, x) − 5θ(z, x, y)
)
,

ψ̂V
1,1,−1(x, y, z) =

1

32

(
− 5 + 3x+ 3y − 3z + 3η(x, y, z) + 4xy− 4xz − 4yz − 4xyz

−5θ(x, y, z) − 5θ(y, z, x) + 5θ(z, x, y)
)
,

ψ̂V
1,−1,1(x, y, z) =

1

32

(
− 5 + 3x− 3y + 3z + 3η(x, y, z) − 4xy+ 4xz − 4yz − 4xyz

−5θ(x, y, z) + 5θ(y, z, x) − 5θ(z, x, y)
)
,

ψ̂V
1,−1,−1(x, y, z) =

1

32

(
− 5 + 3x− 3y − 3z + 3η(x, y, z) − 4xy− 4xz + 4yz + 4xyz

−5θ(x, y, z) + 5θ(y, z, x) + 5θ(z, x, y)
)
,

ψ̂V
−1,1,1(x, y, z) =

1

32

(
− 5 − 3x+ 3y + 3z + 3η(x, y, z) − 4xy− 4xz + 4yz − 4xyz

+5θ(x, y, z) − 5θ(y, z, x) − 5θ(z, x, y)
)
,
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ψ̂V
−1,1,−1(x, y, z) =

1

32

(
− 5 − 3x+ 3y − 3z + 3η(x, y, z) − 4xy + 4xz − 4yz + 4xyz

+5θ(x, y, z) − 5θ(y, z, x) + 5θ(z, x, y)
)
,

ψ̂V
−1,−1,1(x, y, z) =

1

32

(
− 5 − 3x− 3y + 3z + 3η(x, y, z) + 4xy − 4xz − 4yz + 4xyz

+5θ(x, y, z) + 5θ(y, z, x) − 5θ(z, x, y)
)
,

ψ̂V
−1,−1,−1(x, y, z) =

1

32

(
− 5 − 3x− 3y − 3z + 3η(x, y, z) + 4xy + 4xz + 4yz − 4xyz

+5θ(x, y, z) + 5θ(y, z, x) + 5θ(z, x, y)
)
,

ψ̂F
1,0,0(x, y, z) =

1

8

(
3 + x+ 3ζ(x, y, z) + 5θ(x, y, z)

)
,

ψ̂F
−1,0,0(x, y, z) =

1

8

(
3 − x+ 3ζ(x, y, z) − 5θ(x, y, z)

)
,

ψ̂F
0,1,0(x, y, z) =

1

8

(
3 + y + 3ζ(y, z, x) + 5θ(y, z, x)

)
,

ψ̂F
0,−1,0(x, y, z) =

1

8

(
3 − y + 3ζ(y, z, x) − 5θ(y, z, x)

)
,

ψ̂F
0,0,1(x, y, z) =

1

8

(
3 + z + 3ζ(z, x, y) + 5θ(z, x, y)

)
,

ψ̂F
0,0,−1(x, y, z) =

1

8

(
3 − z + 3ζ(z, x, y) − 5θ(z, x, y)

)
,

where ψ̂V
1,1,1 denotes the basis function corresponding to the node (1, 1, 1),

ψ̂F
1,0,0 denotes the basis function corresponding to the surface integral contain-

ing the centroid (1, 0, 0), and so on.

2.3 Nonconforming brick element spaces

Assume that Ω ∈ R
3 is a parallelepiped domain with boundary Γ. Let

(Th)h>0 be a regular family of triangulation of Ω into parallelepipeds Kj , j =
1, 2, . . . , NK, where h = maxK∈Th hK with hK = diam(K). For each K ∈ Th,
let FK : K̂ → R

3 be an invertible affine mapping such that

K = FK(K̂),

and denote φK = φ̂ ◦ F−1
K : K → R for all φ̂ ∈ P̂, whose collection will be

designated by
PK = Span{φK, φ̂ ∈ P̂},

where P̂ can be P̂
(1)
SK , P̂

(5)
SK , P̂

(6)
SK , P̂

(1)
MSLK, or P̂

(2)
MSLK .

Let NV and NF denote the numbers of vertices and faces, respectively.
Then set

Vh = {V1, V2, . . . , VNV
: the set of all vertices of K ∈ Th},

Fh = {F1, F2, . . . , FNF
: the set of all faces of K ∈ Th},

Mh = {M1,M2, . . . ,MNF
: the set of all face-centroids on Fh}.
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We are now in a position to define the following nonconforming finite ele-
ment spaces:

NCh = {φ : Ω → R| φ|K ∈ PK∀K ∈ Th, φ is continuous at all Vj ∈ Vh,Mk ∈ Mh},
NCh

0 = {φ ∈ NCh| φ(V ) = 0 ∀Vj ∈ Vh ∩ Γ and φ(M ) = 0 ∀Mk ∈ Mh ∩ Γ}.
Obviously,

dim(NCh) = NV + NF , and dim(NCh
0 ) = N i

V +N i
F ,

where N i
V and N i

F mean the numbers of interior vertices and faces, respec-
tively. NCh and NCh

0 will serve as the nonconforming spaces for Neumann and
Dirichlet problems, respectively.

2.4 Nonconforming brick element methods

Consider the following Dirichlet problem:

−∇ · (α∇u) + βu = f, Ω, (4a)
u = 0, Γ, (4b)

with α = (αjk), αjk, β ∈ L∞(Ω), j, k = 1, 2, 3, 0 < α∗|ξ|2 ≤ ξtα(x)ξ ≤
α∗|ξ|2 < ∞, ξ ∈ R

3, β(x) ≥ 0, x ∈ Ω, and f ∈ H1(Ω). We will assume that
the coefficients are sufficiently smooth and that the elliptic problem (4) has an
H3(Ω)-regular solution so that u with ‖u‖3 ≤ C‖f‖1. The weak problem is
then given as usual: find u ∈ H1

0 (Ω) such that

a(u, v) = (f, v), v ∈ H1
0(Ω), (5)

where a : H1
0(Ω) × H1

0 (Ω) → R is the bilinear form defined by a(u, v) =
(α∇u,∇v) + (βu, v) for all u, v ∈ H1

0 (Ω). Our nonconforming method for
Problem (4) states as follows: find uh ∈ NCh

0 such that

ah(uh, vh) = (f, vh), vh ∈ NCh
0 , (6)

where
ah(u, v) =

∑
K∈Th

aK(u, v),

with aK being the restriction of a to K.
Then we have the following optimal order of convergence theorem.

Theorem 1. [23] Let u ∈ H3(Ω) ∩H1
0(Ω) and uh ∈ NCh

0 satisfy (5) and (6),
respectively. Then we have the energy- and L2-norm error estimates:

||u− uh||h ≤ Ch2||u||H3(Ω),

||u− uh||0 ≤ Ch3||u||H3(Ω).
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Instead of the Dirichlet problem, if the following Neumann problem

−∇ · (α∇u) + βu = f, Ω, (7a)
ν · (α∇u) + γu = g, Γ. (7b)

is considered, the weak problem (5) is then replaced by finding u ∈ H1(Ω)
such that

an(u, v) = (f, v) + 〈g, v〉, v ∈ H1(Ω), (8)

where an is the bilinear form defined by an(u, v) = (α∇u,∇v)+(βu, v)+〈γu, v〉
for all u, v ∈ H1(Ω), and 〈·, ·〉 is the paring between H−1/2(Γ) and H1/2(Γ).
Thus, the nonconforming method for Problem (7) states as follows: find uh ∈
NCh such that

an
h(uh, vh) = (f, vh) + 〈g, vh〉, vh ∈ NCh. (9)

Then all the arguments given above for Dirichlet case hold analogously, which
are omitted here, and therefore we have the results as follows.

Theorem 2. [23] Let u ∈ H3(Ω) and uh ∈ NCh satisfy (8) and (9), respec-
tively. Then we have the energy- and L2-norm error estimates:

||u− uh||h ≤ Ch2||u||H3(Ω),

||u− uh||0 ≤ Ch3||u||H3(Ω).

3 Numerical comparison of brick elements

In this section, we present numerical results to confirm the theoretical re-
sults obtained in the previous section. In our numerical experiments, we con-
sider two types of meshes: first type of uniform cubic meshes and the second
type of hexahedral meshes such that each h× 2h× h rectangular parallelpiped
is divided into two hexahedrals whose shape are shown in Fig 2. Notice that
the hexahedrals in second type of meshes are not parallelepipes.

Consider the following Dirichlet problem:

−Δu = f, in Ω, (10a)
u = 0, on Γ. (10b)

where Ω = (0, 1)3. The source term f is calculated from the exact solution

u(x, y, z) = e(x+y+z) sin(πx) sin(πy) sin(πz)



72 Numerical study on three-dimensional quadratic ...

3.1 Numerical results for Meng-Sheen-Luo-Kim brick el-
ement

The following Tables 1–2 show the numerical results on the uniform cu-
bic meshes using the Meng-Sheen-Luo-Kim nonconforming brick finite element
with two types of degrees of freedom, addressing the error reduction ratios in
L2- and energy-norm.

meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.4732E−01 - 0.1384E+01 -
8 × 8 × 8 1687 0.6145E−02 2.94 0.3791E+00 1.87

16 × 16 × 16 14895 0.7835E−03 2.97 0.9744E−01 1.96
32 × 32 × 32 125023 0.9857E−04 2.99 0.2454E−01 1.99
64 × 64 × 64 1024191 0.1234E−04 3.00 0.6148E−02 2.00

Table 1: L2- and broken energy-norm errors and their reduction ratios on the
uniform cubic meshes with P̂

(1)
MSLK

meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.4732E−01 - 0.1384E+01 -
8 × 8 × 8 1687 0.6145E−02 2.94 0.3791E+00 1.87

16 × 16 × 16 14895 0.7835E−03 2.97 0.9744E−01 1.96
32 × 32 × 32 125023 0.9857E−04 2.99 0.2454E−01 1.99
64 × 64 × 64 1024191 0.1234E−04 3.00 0.6148E−02 2.00

Table 2: L2-and broken energy-norm errors and their reduction ratios on the
uniform cubic meshes with P̂

(2)
MSLK

Next, the following Tables 3–4 show the numerical results on the non-
uniform meshes (see Fig 2) using the Meng-Sheen-Luo-Kim nonconforming
brick finite element with two types of degrees of freedom, addressing the error
reduction ratios in L2- and energy norms.

Observe that both degrees of freedom for Meng-Sheen-Luo-Kim brick ele-
ment gives optimal convergence results both in L2 and H1 norms at least for
uniform cubic meshes. But both elements lose one order of accuracy in each
norm if the meshes are not of parallelepiped shape. We do not see any differ-
ences in numerical values using either P̂

(1)
MSLK or P̂

(2)
MSLK . This implies that one

can use either face-average values or surface-centroid values associated with six
faces DOFs.
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meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.1099E+00 - 0.2129E+01 -
8 × 8 × 8 1687 0.2293E−01 2.26 0.8453E+00 1.33

16 × 16 × 16 14895 0.5286E−02 2.12 0.3745E+00 1.17
32 × 32 × 32 125023 0.1289E−02 2.04 0.1794E+00 1.06
64 × 64 × 64 1024191 0.3200E−03 2.01 0.8848E−01 1.02

Table 3: L2- and broken energy-norm errors and their reduction ratios on the
non-uniform meshes (θ = 0.5) with P̂

(1)
MSLK

meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.1099E+00 - 0.2129E+01 -
8 × 8 × 8 1687 0.2293E−01 2.26 0.8453E+00 1.33

16 × 16 × 16 14895 0.5286E−02 2.12 0.3745E+00 1.17
32 × 32 × 32 125023 0.1289E−02 2.04 0.1794E+00 1.06
64 × 64 × 64 1024191 0.3200E−03 2.01 0.8848E−01 1.02

Table 4: L2- and broken energy-norm errors and their reduction ratios on the
non-uniform meshes (θ = 0.5) with P̂

(2)
MSLK

Figure 2: The shape of hexahedral element with θ, which is not a parallelepipe.

3.2 Numerical results for Smith-Kidger brick elements

The following Tables 5–6 show the numerical results for the uniform cubic
meshes and non–uniform meshes using the P̂

(1)
SK brick element, addressing the

error reduction ratios in L2 and energy norms. The following Tables 7–8 show
the numerical results for the uniform cubic meshes and non–uniform meshes
using P̂

(5)
SK brick element, addressing the error reduction ratios in L2 and energy

norms.
The following Tables 9–10 show the numerical results for the uniform cubic
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meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.3287E−01 - 0.1047E+01 -
8 × 8 × 8 1687 0.3960E−02 3.05 0.2625E+00 2.00

16 × 16 × 16 14895 0.4871E−03 3.02 0.6549E−01 2.00
32 × 32 × 32 125023 0.6060E−04 3.01 0.1636E−01 2.00
64 × 64 × 64 1024191 0.7566E−05 3.00 0.4089E−02 2.00

Table 5: L2- and energy-norm errors and their reduction ratios on the uniform
cubic meshes using P̂

(1)
SK

meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.7601E−01 - 0.1806E+01 -
8 × 8 × 8 1687 0.1640E−01 2.21 0.7051E+00 1.36

16 × 16 × 16 14895 0.3901E−02 2.07 0.3191E+00 1.14
32 × 32 × 32 125023 0.9631E−03 2.02 0.1550E+00 1.04
64 × 64 × 64 1024191 0.2401E−03 2.00 0.7693E−01 1.01

Table 6: L2- and energy-norm errors and their reduction ratios on the non-
uniform meshes(θ = 0.5) using P̂

(1)
SK

meshes and non–uniform meshes using P̂
(6)
SK brick element, addressing the error

reduction ratios in L2 and energy norms.
Observe that Type 1 (and 2) and Type 5 elements give optimal conver-

gence results both in L2 and H1 norms at least for the second-order elliptic
problems for uniform cubic meshes. But Type 6 element loses one order of
accuracy in each norm in this case. This element may fail the patch test given
in Propositions 1 and 2, contrary to the claim of passing McNeal and Harder
patch test stated in the paper [31]. The other three elements P̂

(1)
SK , P̂

(2)
SK , and

P̂
(1)
SK may pass the patch test given in Proposition 1, which needs to be in-

vestigated. We also notice that all the elements presented in this subsection
lose one order of accuracy if the meshes are not of parallelepiped shape as the
Meng-Sheen-Luo-Kim brick elements.

4 Conclusions

In this paper we examined four types of nonconforming brick elements with
fourteen degrees of freedom. All the elements perform well to solve Dirich-
let problem with optimal convergence properties. They are readily applicable
to approximating three–dimensional solid mechanics. To compare the Meng-
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meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.3574E−01 - 0.1139E+01 -
8 × 8 × 8 1687 0.4618E−02 2.95 0.3052E+00 1.90

16 × 16 × 16 14895 0.5800E−03 2.99 0.7793E−01 1.97
32 × 32 × 32 125023 0.7254E−04 3.00 0.1960E−01 1.99
64 × 64 × 64 1024191 0.9067E−05 3.00 0.4906E−02 2.00

Table 7: L2- and energy-norm errors and their reduction ratios on the uniform
cubic meshes using P̂

(5)
SK

meshes DOFs ‖u− uh‖0 ratio |u− uh|1,h ratio
4 × 4 × 4 171 0.7827E−01 - 0.1913E+01 -
8 × 8 × 8 1687 0.1666E−01 2.23 0.7892E+00 1.28

16 × 16 × 16 14895 0.3920E−02 2.09 0.3592E+00 1.14
32 × 32 × 32 125023 0.9615E−03 2.03 0.1735E+00 1.05
64 × 64 × 64 1024191 0.2388E−03 2.00 0.8569E−01 1.02

Table 8: L2- and energy-norm errors and their reduction ratios on the non-
uniform meshes(θ = 0.5) using P̂

(5)
SK

Sheen-Luo-Kim elements with Smith-Kidger elements, the former are symmet-
ric and contain cubic polynomials only, while the latter are either nonsymmetric
or contain quintic polynomials. Hence potentially the Meng-Sheen-Luo-Kim el-
ements may behave better for some nonsymmetric problems, but this point is
still under investigation.
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