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Abstract

In this note, we prove that for a finitely generated, quasi-projective
duo right R-module M which is a self-generator, if every prime submodule
of M is M -cyclic, then every submodule of M is M -cyclic.

1 Introduction

In 1949, Irving Kaplansky[5] proved that a commutative ring is a principal
domain if and only if every prime ideal is principal. After that, I.S.Cohen
(1950) proved that a commutative ring R is noetherian if and only if every
prime ideal of R is finitely generated. Since then, many authors have been
trying to transfer Kaplansky-Cohen’s theorem to non-commutative cases. In
1975, V.R.Chandran [3] proved that this theorem is true for the class of duo
rings. B. Zabavsky et al. proved that a ring is right Noetherian if and only if
every almost prime right ideal is finitely generated. In 2010, Manuel L. Reyes
proved that a right Noetherian ring is a principal right ideal ring if and only if
all of its maximal right ideals are principal.
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2 Kaplansky-Cohen’s Theorem

A right R−module is called duo module if every its submodule is a fully in-
variant submodule. In particular, a ring is called a right duo ring if every right
ideal is two sided. A ring is called a duo ring if it is a left and right duo ring.
In 1975, V.R.Chandran (see [3]) proved that in a left duo ring with identity, if
every prime ideal is principal, then every ideal is principal (this can be consid-
ered as a generalization of Kaplansky - Cohen’s theorem for non-commutative
rings). Now we will generalize this result for duo modules.

Following Sanh [7], a fully invariant proper submodule X of a right R-
module M is called a prime submodule of M (we will say that X is prime in
M) if for any ideal I of S = End(MR), and any fully invariant submodule U of
M , I(U) ⊂ X implies that I(M) ⊂ X or U ⊂ X. Especially, an ideal P of R is
a prime ideal if for any ideals I, J of R, IJ ⊂ P implies that I ⊂ P or J ⊂ P .
A right R−module M is called a prime module if 0 is prime in M.

Lemma 2.1 [8, Theorem 1.10].
Let M be a right R- module, S = End(MR) and X is a fully invariant

submodule of M. If X is prime in M, then IX is a prime ideal of S. Conversely,
if M is a self- generator and IX is a prime ideal of S, then X is a prime
submodule of M.

Lemma 2.2 Let M be a right R−module. Then,
(1) If M is a finitely generated quasi-projective duo module, then S =

End(MR) is a right duo ring.
(2) If M is a self-generator and S is right duo, then M is a duo module.

Proof (1) Take any right ideal I of S. Then X = I(M) is a fully invariant sub-
module of M by hypothesis. Since M is finitely generated and quasi-projective,
it follows from [11, Theorem 18.4] that I = IX which a two-sided ideal of S.

(2) For any submodule X of M, we can see that IX is a two-sided ideal of
S by hypothesis. Since M is a self-generator, we get X = IX(M), proving that
X is fully-invariant. �

Recall that a module N is said to be M−generated if there is an epimor-
phism M (I) → N for some index set I. If I is finite, then N is called a finitely
M -generated module. In particular, a module N is called M−cyclic if there is
an epimorphism from M → N.

Lemma 2.3 Let M be a quasi-projective module and X, an M−cyclic submod-
ule of M. Then IX is a principal right ideal of S.

Proof In fact, since X is M−cyclic, there exists an epimorphism ϕ : M → X
such that X = ϕ(M). It follows that ϕS ⊂ IX . By the quasi-projectivity of M,
for any f ∈ IX , we can find a ψ ∈ S such that f = ϕψ, proving that IX = ϕS.
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Theorem 2.4 Let M be a finitely generated, quasi-projective duo right R−module
which is a self-generator. If every prime submodule of M is M -cyclic, then ev-
ery ideal in S is principal.

Proof Let P be a prime ideal of S and X = P (M). Then by Lemma 2.3, IX is
a principal ideal of S. Moreover, from the hypothesis and Lemma 2.2, we can
see that S is right duo. It follows from [3, Theorem 1], that every ideal of S is
principal and our proof is now complete. �

Corollary 2.5 Let M be a finitely generated, quasi-projective duo right R-
module which is a self-generator. If every prime submodule of M is M -cyclic,
then every submodule of M is M -cyclic.

The following Theorem is due to Manuel. L. Reyes [6].

Theorem 2.6 ( [6, Theorem 7.9]) A Noetherian ring is a principal right ideal
ring if and only if its maximal right ideals are principal.

Lemma 2.7 ( [9, Lemma 3.10]) Let M be a quasi-projective, finitely generated
right R−module which is a self-generator. Then the following statements hold:

(1) If X is a maximal submodule of M , then IX is a maximal right ideal of
S;

(2) If P is a maximal right ideal of S, then X = P (M) is a maximal sub-
module of M and P = IX .

Theorem 2.8 Let M be a quasi-projective, finitely generated right R−module
which is a self-generator. If SM and MR are Noetherian and if every maximal
submodule of M is M−cyclic, then S is a right principal ring.

Proof Since M is a quasi-projective, right R−module which is a self-generator
and SM and MR are Noetherian, by [9, Theorem 2.1], S is a right and left
Noetherian ring. Let P be a maximal right ideal of S and X = P (M). Then
X is a maximal submodule of M by Lemma 2.7, and hence X is M− cyclic by
hypothesis. It follows from Lemma 2.3 that IX is a principal right ideal of S.
Therefore, by theorem 2.6 we see that S is a principal right ideal ring. �

The following corollary is an immediately consequence.

Corollary 2.9 Let M be a quasi-projective, finitely generated right R−module
which is a self-generator. If SM and MR are Noetherian and if every maximal
submodule of M is M−cyclic, then every submodule of M is M−cyclic.

Proof By the hypothesis and by the theorem 2.8 above, we see that S =
EndMR is a principal right ideal ring. Let U be a submodule of MR and let
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IU = {f ∈ S/f(M) ⊂ U}. Since S is principal right ideal ring, we have IU
is a principal right ideal of S and IU = ϕS for some ϕ ∈ S. It follows from
[11, Theorem 18.4], that U = IU (M) = ϕS(M) = ϕ(M), proving that U is
M−cyclic, as required. �

3 Another application of Kaplansky-Cohen’s

Theorem for fully bounded modules

We recall that (see [10]) a rightR−moduleM is called a bounded module if every
essential submodule contains a fully invariant submodule which is essential as a
submodule. In particular, a ring R is right bounded if every essential right ideal
of R contains an ideal which is essential as a right ideal. A right R−module M
is called fully bounded if for every prime submodule X of M , the prime factor
module M/X is a bounded module. A ring R is right fully bounded if for
every prime ideal I of R, the prime factor ring R/I is right bounded.

Theorem 3.1 Let M be a quasi-projective, finitely generated right R−module
which is a self-generator. If M is a fully bounded and every prime submodule
of M is M−cyclic, then S is a principal right ideal ring.

Proof By [10], we see that S is a right fully bounded ring. By hypothesis,
every prime submodule of M is M−cyclic, we can see that every prime ideal
of S is a principal ideal by Lemma 2.3. By [6, Theorem 7.9], we can conclude
that S is a right principal right ideal ring, and this completes our proof. �

The following Theorem is a consequence of Theorem 3.1 and it can be
considered as a generalization of Cohen’s theorem for fully bounded modules.

Theorem 3.2 Let M be a quasi-projective, finitely generated right R−module
which is a self-generator. If M is fully bounded and every prime submodule of
M is M−cyclic, then every submodule of M is M−cyclic.
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