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Abstract
In this paper, we introduce a new class of generalized Hermite-Euler

polynomials and derive some implicit summation formulae and symmet-
ric identities by applying the generating functions. These results ex-
tend some known summations and identities of generalized Hermite-Euler
polynomials studied by Dattoli et al, Natalini et al,Zhang et al, Yang and
Yang et al and Pathan.

1. INTRODUTION

The 2-variable Kampe de Feriet generalization of the Hermite polynomials
[ 4 ] reads

Hn(x, y) = n!
[ n
2 ]∑

r=0

yrxn−2r

r!(n− 2r)!
(1.1)

These polynomials are usually defined by the generating function

ext+yt
2

=
∞∑
n=0

Hn(x, y)
tn

n!
(1.2)
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and reduce to the ordinary Hermite polynomials Hn(x) for y = 1.

For each integer k ≥ 0, Sk(n) =
n∑
i=0

ik is called sum of integer powers, or simply

power sum. The exponential generating function for Sk(n) is

∞∑
n=0

Sk(n)
tk

k!
= 1 + et + e2t + · · · + ent =

e(n+1)t − 1
et − 1

(1.3)

The classical Bernoulli polynomials Bn(x) and classical Euler polynomials
En(x) together with their familiar generalizations Bαn (x) and Eαn (x) (of real or
complex) of order α are usually defined by means of the following generating
functions (see for details [2,3,4,12,15,16] ,see also [10,13,17,18,19,20,21,22,23,24,
25]): (

t

et − 1

)
=

∞∑
n=0

Bn
tn

n!
(1.4)

(
t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
(1.5)

(
2

et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
(1.6)

(
t

et − 1

)α
ext =

∞∑
n=0

Bαn (x)
tn

n!
(| t |< 2π; 1α = 1) (1.7)

and
(

2
et + 1

)α
ext =

∞∑
n=0

Eαn (x)
tn

n!
(| t |< 2π; 1α = 1) (1.8)

So that obviously

Bn(x) = B1
n(x) and En(x) = E1

n(x)(nεN) (1.9)

where
N0 = N ∪ {0} (N = 1, 2, 3, · · ·).

For the classical Bernoulli numbers Bn and classical Euler numbers En, we
readily find from (1.9) that

B1
n(0) = Bn(0) = Bn and E

1
n(0) = En(0) = En (nεN) (1.10)

Some generalized forms of Bernoulli polynomials and numbers recently ap-
peared in literature. We recall for example, the generalized Bernoulli polyno-
mials B[α,m−1]

n (x), m ≥ 1 studied by Natalini and Bernardini [11] defined (in a
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suitable neighborhood t=0)by means of the generating function

G[α,m−1](x, t) =

⎛
⎜⎜⎝ tm

et −
m−1∑
h=0

th

h!

⎞
⎟⎟⎠
α

ext =
∞∑
n=0

B[α,m−1]
n (x)

tn

n!
(1.11)

For m = α = 1, (1.11) reduces to the generating function (1.5) of the classical
Bernoulli polynomials Bn(x). The Mittag-Leffler function

E1,m+1(t) =
tm

et −
m−1∑
h=0

th

h!

(1.12)

was considered in the general form by Agarwal [1] (see also [14]).

Lately Kurt [9] presented a new interesting class of generalized Euler poly-
nomials. Explicitly he introduced the next definition.

Definition. For arbitrary real or complex parameter α, the generalized Euler
polynomialsE[m−1,α]

n (x), mεN , are defined in a suitable neighborhood of t = 0
by means of the generating function

G[α,m−1](x, t) =

⎛
⎜⎜⎝ 2m

et +
m−1∑
h=0

th

h!

⎞
⎟⎟⎠
α

ext =
∞∑
n=0

E[α,m−1]
n (x)

tn

n!
, | t |< 2π, 1α = 1

(1.13)
It is easy to see that if we set m = 1 in (1.13) then it reduces to the generat-
ing function (1.8) of the classical Euler polynomials Eαn (x), where α is real or
complex parameter.
It may be remarked that since G[α,m−1](x, t) = A(t)ext, the generalized poly-
nomials E[α,m−1]

n (x) belongs to the class of polynomials. The generalized Euler
numbers E[α,m−1]

n are defined by setting x = 0 in (1.13) and assuming

E[α,m−1]
n = E[α,m−1]

n (0)

For α = 1, (1.13) reduces to the generating function

G[m−1](x, t) =
2m

et +
m−1∑
h=0

th

h!

ext =
∞∑
n=0

E[m−1]
n (x)

tn

n!
, | t |< 2π (1.14)
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and further for m = 1 and x = 0 in (1.13) gives generalized Euler numbers
Eαn . The following connection between Euler and Bernoulli polynomials follows
readily from the definitions (1.5) and (1.6)

En(x) =
2n+1

n+ 1
[Bn(

x+ 1
2

) −Bn(
x

2
)] (1.15)

which exhibits the fact that every Bernoulli polynomials is expressible in
terms of Euler polynomials. Dattoli et al [5] introduced a new classes of
Hermite-Bernoulli polynomials HBn(x, y), useful to evaluate partial sums of
Hermite polynomials. A generalization of the Bernoulli polynomials Bn(x)
and consequently, Bernoulli numbers Bn is defined by Natalini and Bernardini
[11] starting from suitable generating functions. Another generalized form of
Hermite-Bernoulli polynomials of Natalini and Bernardini [11] can be found
in a recent paper of Pathan [13] (see also Khan et al [8]). Recently, Zhang
and Yang [23,24,25] also established symmetric identities of the generalized
Bernoulli and Apostol-Bernoulli polynomials. Many of these generalized poly-
nomials extend appropriately to generalized Euler polynomials.

Motivated by their importance and potential for applications in certain
problems in number theory,combinatorics, classical and numerical analysis and
physics, several families of generalized Euler numbers and polynomials and gen-
eralized Hermite-Euler polynomials were recently studied by many authors. We
introduce in this paper, a new class of generalized Hermite-Euler polynomials,
a countable set of polynomials HEn(x, y) generalizing all the Euler polynomials
and their generalizations (1.6),(1.8),(1.13) and (1.14) and Hermite polynomials
of 2-variables Hn(x, y) specified by the generating relation (1.2).

The object of this paper is to present a systematic account of these fami-
lies in a unified and generalized form.We develop some elementary properties
and derive the implicit summation formulae for the generalized Hermite-Euler
polynomials by using different analytical means on their respective generating
functions. The approach given in recent papers of Khan et al [8] and Pathan
[13] has indeed allowed the derivation of implicit summation formulae in the
two-variable Hermite-Euler Polynomials. In addition to this, some relevant
connections between Hermite and Euler polynomials and symmetric identities
are given.

2. A NEW CLASS OF GENERALIZED HERMITE-EULER POLY-
NOMIALS

Definition. The generalized Hermite-Euler polynomials HE
[α,m−1]
n (x, y),

m ≥ 1 for a real or complex parameter α defined by means of the generating
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function defined in a suitable neighborhood of t = 0

G[α,m−1](x, y, t) = eyt
2
G[α,m−1](x, t) =

⎛
⎜⎜⎝ 2m

et +
m−1∑
h=0

th

h!

⎞
⎟⎟⎠
α

ext+yt
2

=
∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!
(2.1)

Notice that (2.1) contains as its special cases not only generalized Euler poly-
nomials E[α,m−1]

n (x) (c.f.Eq.(1.13)) but also Kampe de Feriet generalization of
the Hermite polynomials Hn(x, y)(c.f.Eq.(1.2)). For m = 1, we obtain from
(2.1) (

2
et + 1

)α
ext+yt

2
=

∞∑
n=0

HE
(α)
n (x, y)

tn

n!
(2.2)

which is a generalization of the generating function of Dattoli et al [5, p.386(1.6)]
in the form (

2
et + 1

)
ext+yt

2
=

∞∑
n=0

HEn(x, y)
tn

n!
(2.3)

In particular in terms of generalized Euler numbers E(α)
n−s and Hermite polyno-

mials Hs(x, y), Hermite Euler polynomials HE
(α)
n (x, y) are represented as

HE
(α)
n (x, y) =

n∑
s=0

(
n
s

)
E

(α)
n−sHs(x, y)

It is possible to define generalized Hermite-Euler numbers HE
[α,m−1]
n assuming

that
HE

[α,m−1]
n (0, 0) = HE

[α,m−1]
n

Taking α = m = 1 and x = 0 in (2.1) gives the result

[ n
2 ]∑

m=0

(
n
m

)
ym = HB

(
n0, y) (2.4)

It is not difficult to prove a theorem which generalizes some results involving
implicit summations of Hermite-Euler polynomials and numbers by using eit =
cos t + i sin t and the result

∞∑
n=0

f(n) =
∞∑
n=0

f(2n) +
∞∑
n=0

f(2n + 1) (2.5)
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Since(
2i

eit + 1

)α

=

(
2i(cos t + 1 − i sin t)

(cos t + 1 + i sin t)(cos t + 1 − i sin t)

)α

=

(
2i(cos t + 1 − i sin t)

(cos t + 1)2 + (sin t)2

)α

=

(
(2 sin t) + 2i(cos t + 1)

Ω

)α

(2.6)

where Ω = (cos t+ 1)2 + (sin t)2

Therefore using the definition (2.1) and results (2.5) and (2.6), we have

Theorem 2.1 For a positive integer α ≥ 1, the following implicit summa-
tion formula involving generalized Hermite-Euler polynomials HE

(α)
n (x, y) holds

true:

eixt−yt
2
(

(2 sin t) + 2i(cos t+ 1)
Ω

)α

=
∞∑
n=0

HE
(α)
2n (x, y)

(−1)nt2n

(2n)!
+ i

∞∑
n=0

HE
(α)
2n+1(x, y)

(−1)nt2n+1

(2n+ 1)!
(2.7)

where Ω = (cos t+ 1)2 + (sin t)2

In case we make use of (2.7) with α = 1 and then compare real and imag-
inary parts, we shall get the following result involving Hermite-Euler polyno-
mials HEn(x, y) of Dattoli et al [5].
Corollary 2.1 The following implicit summation formulae for Hermite-Euler
polynomials HEn(x, y) holds true:

∞∑
n=0

HE2n(x, y)
(−1)nt2n

(2n)!
=

e−yt
2

Ω
2[sin(t − xt) + sinxt] (2.8)

∞∑
n=0

HE2n+1(x, y)
(−1)nt2n+1

(2n+ 1)!
=

e−yt
2

Ω
2[cos(t− xt) − cos xt] (2.9)

where Ω = (cos t+ 1)2 + (sin t)2

Remark 1 On setting α = 0 in (2.7) and comparing real and imaginary
parts we get the following well-known results of Hermite polynomials (see also
Khan et al [8, p.410(1.20)and (1.21)]) in the following form

e−yt
2

cosxt =
∞∑
n=0

H2n(x, y)
(−1)nt2n

(2n)!

e−yt
2

sinxt =
∞∑
n=0

H2n+1(x, y)
(−1)nt2n+1

(2n+ 1)!
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Remark 2 On setting x = 0 and y = 0 in the above results (2.8) and (2.9),
we get the following well known classical results involving Euler numbers

tan(
t

2
) =

∞∑
n=0

E2n
(−1)nt2n

(2n)!
,

cos t− 1
cos t+ 1

=
∞∑
n=0

E2n
t2n+1

(2n+ 1)!

Remark 3 When α is a positive integer say equal to p, it is possible to give
some of the results for Hermite polynomials Hn(x, y). First we prove the fol-
lowing theorem.

Theorem 2.2 For a positive integer p ≥ 1 the following implicit summation
formula involving generalized Hermite-Euler polynomials HE

[p,m−1]
n (x, y) holds

true:

Hn(x, y) =
n∑
k=0

(
n
k

)(
k!

(k +m)!

)p
HE

[p,m−1]
n−pk (x, y) (2.10)

Proof. By exploiting the generating function (2.1), we can write

ext+yt
2

=

⎛
⎜⎜⎝

∞∑
h=m

th

h! + 2
m−1∑
h=0

th

h!

2m

⎞
⎟⎟⎠

p

∞∑
n=0

HE
[p,m−1]
n (x, y)

tn

n!
(2.11)

Setting h by h+m in the sum
∞∑
h=m

th

h! to get r.h.s, we get

ext+yt
2

=

⎛
⎜⎜⎝

∞∑
h=m

th+m

(h+m)!
+ 2

m−1∑
h=0

th

h!

2m

⎞
⎟⎟⎠

p

∞∑
n=0

HE
[p,m−1]
n (x, y)

tn

n!
(2.12)

which on using (1.2) yields

∞∑
n=0

Hn(x, y)
tn

n!
=

⎛
⎜⎜⎝

∞∑
h=m

th

h!
+ 2

m−1∑
h=0

th

h!

2m

⎞
⎟⎟⎠

p

∞∑
n=0

HE
[p,m−1]
n (x, y)

tn

n!
(2.13)

Now replacing h by k and n by n-kp-mp, using (2.1) and the lemma [3, p.101(1)]
in the right hand side of above equation (2.13) and then comparing the coeffi-
cients tn, we get (2.10).
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Remark 1. From equation (2.10), since Hn(x, 0) = xn, we get the following
result in the special case when y=0 and p=1.

xn =
n∑
k=0

(
n
k

)
k!

(k +m)!
E

[m−1]
n−k (x) (2.14)

Remark 2. Taking p = 1 in Theorem 2.2 gives the representation of
Hermite polynomials in terms of finite sums of generalized Euler polynomials
E

[m−1]
n (x) of Natalini and Bernardini [11]

Hn(x, y) =
n∑
k=0

(
n
k

)
k!

(k + m)!H
E

[m−1]
n−k (x, y) (2.15)

Theorem 2.3. The following implicit summation formulae for Hermite-Euler
polynomials HE

[α,m−1]
n (x, y) holds true:

HE
[α,m−1]
n (x, y) =

n∑
r=0

(
n
r

)
k!

(k +m)!
E

[α,m−1]
n−r (x− z)Hr(z, y) (2.16)

Proof. By exploiting the generating function (1.2), we can write equation
(2.1) as

⎛
⎜⎜⎝ 2m

et +
m−1∑
h=0

th

h!

⎞
⎟⎟⎠
α

e(x−z)tezt+yt
2

=
∞∑
n=0

E[α,m−1]
n (x−z) t

n

n!

∞∑
r=0

Hr(z, y)
tr

r!
(2.17)

Now replacing n by n-r, using (2.1) and the lemma [3,p.101(1)] in the right
hand side of equation (2.17), we get

∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!
=

∞∑
n=0

n∑
r=0

E
[α,m−1]
n−r (x − z)Hr(z, y)

tn

(n− r)!r!

On equating the coefficients of the like powers of t, we get (2.16)
Remark 1. Letting z = x in (2.16) gives

HE
[α,m−1]
n (x, y) =

n∑
r=0

(
n
r

)
E

[α,m−1]
n−r (x− z)Hr(x, y) (2.18)
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For α = 1, compare this result with a known result of Pathan [13] for Bernoulli
polynomials which further form = 1 gives a known result of Dattoli [5,p.386(1.7)].
Further taking y = 0 in formula (2.16), we obtain

HE
[α,m−1]
n (x) =

n∑
r=0

(
n
r

)
E

[α,m−1]
n−r (x− z) (2.19)

Theorem 2.4. The following implicit summation formulae for Hermite-Euler
polynomials HE

[α,m−1]
n (x, y) holds true:

HE
[α,m−1]
n (x+ 1, y) − HE

[α,m−1]
n (x, y) =

n−1∑
m=0

(
n
m

)
HE

[α,m−1]
n−m (x, y) (2.20)

Proof. Using the generating function (2.1), we have

∞∑
n=0

HE
[α,m−1]
n (x + 1, y)

tn

n!
−

∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!
=

⎛
⎜⎜⎜⎝

2m

et +
m−1∑
h=0

th

h!

⎞
⎟⎟⎟⎠

α

(et − 1)ezt+yt2

=
∞∑

n=0

HE
[α,m−1]
n (x, y)

tn

n!

( ∞∑
m=0

tm

m!
− 1

)

=
∞∑

n=0

HE
[α,m−1]
n (x, y)

tn

n!

∞∑
m=0

tm

m!
−

∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!

=

∞∑
n=0

n∑
m=0

HE
[α,m−1]
n−m (x, y)

tn

(n − m)!
−

∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!

Finally, equating the coefficients of the like powers of t, we get (2.20).

Theorem 2.5. The following implicit summation formula for Hermite-Euler
polynomials HE

(α)
n (x, y) holds true:

HE
(α)
n (α− x, y) = (−1)nHE(α)

n (x, y) (2.21)

Proof. We replace -t by t in (2.1) and then subtract the result from (2.1) itself
finding

eyt
2
[(

2
et + 1

)α
ext −

(
2

e−t + 1

)α
e−xt

]
=

∞∑
n=0

[1 − (−1)n]HE(α)
n (x, y)

tn

n!
(2.22)

which is equivalent to
∞∑
n=0

HE
(α)
n (x, y)

tn

n!
−

∞∑
n=0

HE
(α)
n (α− x, y)

tn

n!
=

∞∑
n=0

[1 − (−1)n]HE(α)
n (x, y)

tn

n!



M.A.Pathan1 and Waseem A.Khan2 101

and thus by equating coefficients of like powers of t we get (2.21).

3. IMPLICIT FORMULAE INVOLVING HERMITE-EULER POLY-
NOMIALS

This section of the paper is devoted to employing the definition of the
Hermite-Euler polynomials HE

[α,m−1]
n (x, y) to obtain some finite summations.

For the derivation of implicit formulae involving the Hermite-Euler polyno-
mials HE

[α,m−1]
n (x, y) the same considerations as developed for the ordinary

Hermite and related polynomials in Khan et al [8] and Pathan [13] hold as
well. First we prove the following results involving Hermite-Euler polynomials
HE

[α,m−1]
n (x, y).

Theorem 3.1 The following implicit summation formulae for Hermite-Euler
polynomials HE

[α,m−1]
n (x, y) holds true:

HE
[α,m−1]
k+l (z, y) =

k,l∑
n,p=0

k!l!(z − x)n+p
HE

[α,m−1]
k+l−p−n(x, y)

(k − n)!(l− p)!n!p!
(3.1)

Proof. We replace t by t + u and rewrite the generating function (2.1) as
⎛
⎜⎜⎝ (2)m

et+u +
m−1∑
h=0

(t+u)h

h!

⎞
⎟⎟⎠
α

ey(t+u)2 = e−x(t+u)
∞∑

k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!
(3.2)

Replacing x by z in the above equation and equating the resulting equation
to the above equation, we get

e(z−x)(t+u)
∞∑

k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!
=

∞∑
k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!
(3.3)

On expanding exponential function (3.3) gives

∞∑
N=0

[(z − x)(t+ u)]N

N !

∞∑
k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!
=

∞∑
k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!

(3.4)
which on using formula [12,p.52(2)]

∞∑
N=0

f(N)
(x + y)N

N !
=

∞∑
n,m=0

f(n +m)
xn

n!
ym

m!
(3.5)



102 Some implicit summation formulas and symmetric identities for...

in the left hand side becomes

∞∑
n,p=0

(z − x)n+p

n!p!
tnup

∞∑
k,l=0

HE
[α,m−1]
k+l (x, y)

tk

k!
ul

l!
=

∞∑
k,l=0

HE
[α,m−1]
k+l (z, y)

tk

k!
ul

l!

(3.6)
Now replacing k by k-n, l by l-p and using the lemma [12,p.100(1)] in the left
hand side of (3.6), we get

∞∑
n,p=0

∞∑
k,l=0

(z − x)n+p

n!p!
HE

[α,m−1]
k+l−n−p(x, y)

tk

(k − n)!

ul

(l − p)!
=

∞∑
k,l=0

HE
[α,m−1]
k+l (z, y)

tk

k!

ul

l!

(3.7)

Finally on equating the coefficients of the like powers of t and u in the above
equation, we get the required result.

Remark 1. By taking l = 0 in equation (3.1), we immediately deduce the
following result.
Corollary 3.1. The following implicit summation formula for Hermite-Euler
polynomials HE

[α,m−1]
n (x, y) holds true:

HE
[α,m−1]
k (z, y) =

k∑
n=0

(
k
n

)
(z − x)nHE

[α,m−1]
k−n (x, y) (3.8)

Remark 2. On replacing z by z+x and setting y = 0 in Theorem (3.1), we
get the following result involving Hermite-Euler polynomials of one variable

HE
[α,m−1]
k+l (z + x) =

k,l∑
n,m=0

k!l!(z)n+m
HE

[α,m−1]
k+l−m−n(x)

(k − n)!(l−m)!n!m!
(3.9)

whereas by setting z=0 in Theorem 3.1, we get another result involving Hermite-
Euler polynomials of one and two variables

HE
[α,m−1]
k+l (y) =

k,l∑
n,m=0

k!l!(−x)n+m
HE

[α,m−1]
k+l−m−n(x, y)

(k − n)!(l−m)!n!m!
(3.10)

Remark 3. Along with the above results we will exploit extended forms of
Hermite-Euler polynomials HE

[α,m−1]
n (x) by setting y=0 in the Theorem (3.1)

to get

HE
[α,m−1]
k+l (y) =

k,l∑
n,m=0

k!l!(z − x)n+m
HE

[α,m−1]
k+l−m−n(x)

(k − n)!(l−m)!n!m!
(3.11)
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Remark 4. A straightforward expression of the HEn(x, y) is suggested by a
special case of the Theorem (3.1) for α,m = 1 in the following form

HEk+l(z, y) =
k,l∑

n,m=0

(
k
n

)(
l
m

)
(z − x)n+m

HEk+l−m−n(x, y) (3.12)

where HEk+l(x, y) denotes the Hermite-Euler polynomials defined by (2.3).

Theorem 3.2 The following implicit summation formula involving Hermite-
Euler polynomials HE

[α,m−1]
n (x, y) holds true:

HE
[α,m−1]
k+l (z + x, u+ y) =

n∑
m=0

(
n
m

)
HEn−m(x, y)Hm(z, u) (3.13)

Proof. We replace x by x+z and y by y+u in (2.1), use (1.2) and rewrite the
generating function as
⎛
⎜⎜⎝ 2m

et +
m−1∑
h=0

th

h!

⎞
⎟⎟⎠
α

e(xt+yt
2
ezt+ut

2
=

∞∑
n=0

HE
[α,m−1]
n (x, y)

tn

n!

∞∑
m=0

Hm(z, u)
tm

m!

=
∞∑
n=0

HE
[α,m−1]
n (x + z, y + u)

tn

n!
(3.14)

Now replacing n by n-m and comparing the coefficients of t, we get the result
(3.13).

Theorem 3.3 The following implicit summation formula involving Hermite-
Euler polynomials HE

[α,m−1]
n (y, x) holds true:

HE
[α,m−1]
n (y, x) =

[ n
2 ]∑

k=0

E
[α,m−1]
n−2k (y)

xk

(n − 2k)!k!
(3.15)

Proof. We replace x by y and y by x in equation (2.1) to get

∞∑
n=0

HE
[α,m−1]
n (y, x)

tn

n!
=

∞∑
n=0

E[α,m−1]
n (y)

tn

n!

∞∑
k=0

xkt2k

k!
(3.16)

Now replacing n by n-2k and comparing the coefficients of t, we get the
result (3.15).
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4. GENERAL SYMMETRY IDENTITIES

In this section, we give general symmetry identities for the generalized Hermite-
Euler polynomials HE

[α,m−1]
n (x, y) by applying the generating function (1.13)

and (2.1). Throughout this section α will be taken as an arbitrary real or com-
plex parameter.

Theorem 4.1 For all integers a > 0, b > 0, n ≥ 0 and m ≥ 1, the following
identity holds true:

n∑
k=0

HE
[α,m−1]
n−k (bx, b2y)HE

[α,m−1]
k (ax, a2y)

akbn−k

(n− k)!k!

=
n∑
k=0

HE
[α,m−1]
n−k (ax, a2y)HE

[α,m−1]
k (bx, b2y)

bkan−k

(n− k)!k!
(4.1)

Proof. Start with

g(t) =

⎛
⎜⎜⎝ 22m

(eat +
m−1∑
h=0

ahth

h! )(ebt +
m−1∑
h=0

bhth

h! )

⎞
⎟⎟⎠
α

eabxt+a
2b2yt2 (4.2)

Then the expression for g(t) is symmetric in a and b and we can expand g(t)
into series in two ways to obtain

g(t) =
∞∑
n=0

HE
[α,m−1]
n (bx, b2y)

(at)n

n!

∞∑
k=0

HE
[α,m−1]
k (ax, a2y)

(bt)k

k!

=
∞∑
n=0

n∑
k=0

HE
[α,m−1]
n−k (bx, b2y)

(a)n−k

(n − k)!H
E

[α,m−1]
k (ax, a2y)

(b)k

k!
(t)n

n!

On the similar lines we can show that

g(t) =
∞∑
n=0

HE
[α,m−1]
n (ax, a2y)

(b)n−k

(n− k)!H
E

[α,m−1]
k (bx, b2y)

(a)k

k!
(t)n

n!

By comparing the coefficients of t on the right hand sides of the last two equa-
tions we arrive the desired result.

Remark 1. For α = 1, the above result reduces to a similar known result
of Pathan [13] for Bernoulli polynomials. Further by taking m=1 in Theorem
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4.1, we immediately deduce the following result.

Corollary 4.1 For all integers a > 0, b > 0 and n ≥ 0, the following identity
holds true:

n∑
k=0

HE
(α)
n−k(bx, b

2y)HE
(α)
k

akbn−k

(n− k)!k!
=

n∑
k=0

HE
(α)
n−k(ax, a

2y)HE
(α)
k

bkan−k

(n − k)!k!
(4.3)

Remark 2. By setting b = 1 in Theorem (4.1), we immediately get the
following corollary.

Corollary 4.2 For all integers a > 0, n ≥ 0 and m ≥ 1, the following identity
holds true:

n∑
k=0

HE
[α,m−1]
n−k (x, y)HE

[α,m−1]
k

ak

(n− k)!k!
=

n∑
k=0

HE
[α,m−1]
n−k (ax, a2y)HE

[α,m−1]
k

an−k

(n − k)!k!

(4.4)

Theorem 4.2 For each pair of integers a and b and all integers and n ≥ 1,
the following identity holds true:

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

(−1)i(−1)jHE
(α)
n−k

(
bx+

b

a
i+ j, b2z

)
Eαk (ay)

(a)n−k

(n − k)!
bk

k!

=
n∑
k=0

(
n
k

) b−1∑
i=0

a−1∑
j=0

(−1)i(−1)jHE
(α)
n−k

(
ax+

a

b
i+ j, a2z

)
Eαk (ay)

(b)n−k

(n− k)!
ak

k!

(4.5)

Proof. Let

g(t) =
(2a)α(2b)α(eabt + 1)2eab(x+y)t+a

2b2zt2

(eabt + 1)α+1(ebt + 1)α+1

g(t) =
(

2a
eat + 1

)α
eabxt+a

2b2zt2
(
eabt + 1
ebt + 1

)(
bt

ebt + 1

)α
eabyt

(
eabt + 1
eat + 1

)

=
(

2a
eat + 1

)α
eabxt+a

2b2zt2
a−1∑
i=0

ebti
(

bt

ebt + 1

)α
eabyt

b−1∑
j=0

eatj (4.6)

=
(

2a
eat + 1

)α
eabxt+a

2b2zt2
a−1∑
i=0

ebti
(

bt

ebt + 1

)α
eabyt

b−1∑
j=0

eatj
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=
(

2a
eat + 1

)α
ea

2b2zt2
a−1∑
i=0

b−1∑
j=0

e(bx+
b
a i+j)at

∞∑
k=0

Eαk (ay)
(bt)k

k!

=
∞∑
n=0

a−1∑
i=0

b−1∑
j=0

HE
(α)
n

(
bx+

b

a
i + j, b2z

)
(at)n

n!

∞∑
k=0

Eαk (ay)
(bt)k

(k)!

=
∞∑
n=0

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

(−1)i(−1)jHE(α)
n

(
bx+

b

a
i+ j, b2z

)
(at)n−k

(n − k)!
(bt)k

k!

(4.7)
On the other hand

g(t) =
∞∑

n=0

n∑
k=0

(
n
k

) b−1∑
i=0

a−1∑
j=0

(−1)i(−1)j
HE

(α)
n−k

(
ax +

a

b
i + j, a2z

)
Eα

k (ay)
(bt)n−k

(n − k)!

(at)k

k!

(4.8)

By comparing the coefficients of t on the right hand sides of the last two equa-
tions,we arrive at the desired result.

Theorem 4.3 For each pair of integers a and b and all integers and n ≥ 0,
the following identity holds true:

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

(−1)i(−1)j(a)n−k(b)k
HB

(α)
n−k

(
bx +

b

a
i + j, b2z

)
Bα

k (ay +
a

b
j)

=

n∑
k=0

(
n
k

) b−1∑
i=0

a−1∑
j=0

(−1)i(−1)j(b)n−k(a)k
HE

(α)
n−k

(
ax +

a

b
i + j, a2z

)
Eα

k (by +
b

a
j) (4.9)

Proof. The proof is analogous to Theorem (4.2) but we need to write equation
(4.6) in the form

g(t) =
∞∑

n=0

a−1∑
i=0

b−1∑
j=0

(−1)i(−1)j
HE

(α)
n

(
bx +

b

a
i + j, b2z

)
(at)n

n!

∞∑
k=0

Eα
k (ay +

a

b
j)

(bt)k

k!

(4.10)

On the other hand equation (4.6) can be shown equal to

g(t) =

∞∑
n=0

b−1∑
i=0

a−1∑
j=0

(−1)i(−1)j
HE

(α)
n

(
ax +

a

b
i + j, a2z

) (bt)n

n!

∞∑
k=0

Eα
k (by+

b

a
j)

(at)k

k!
(4.11)

Next making change of index and by equating the coefficients of tn to zero in
(4.10) and (4.11), we get the result

Remark 1. By setting y = 0 in Theorem (4.3), we immediately get the
following corollary.
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Corollary 4.3. For all integers a > 0, b > 0 and n ≥ 0 the following identity
holds true:

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

(−1)i(−1)j(a)n−k(b)kHE
(α)
n−k

(
bx+

b

a
i, b2z

)
Eαk (

a

b
j)

=
n∑
k=0

(
n
k

) b−1∑
i=0

a−1∑
j=0

(−1)i(−1)j(b)n−k(a)kHE
(α)
n−k

(
ax+

a

b
i, a2z

)
Eαk (

b

a
j)

(4.12)
Theorem 4.4 For all integers a > 0, b > 0 and n ≥ 0 the following identity
holds true:

n∑
k=0

(
n
k

)
Eαn−kb

n−kak
a−1∑
i=0

(−1)iHE
(α)
k

(
bx+

b

a
i, b2z

)

=
n∑
k=0

(
n
k

)
Eαn−ka

n−kbk
b−1∑
i=0

(−1)iHE
(α)
k

(
ax+

a

b
i, a2z

)
(4.13)

Proof. We now use

g(t) =
(2a)α(2b)α(1 + (−1)a+1eabt)eab(x+y)t+a

2b2zt2

(eat + 1)α(ebt + 1)α+1

to find that

g(t) =
(

2a
eat + 1

)α
eabxt+a

2b2zt2
(

1 − (−ebt)a
ebt + 1

)(
2b

ebt + 1

)α
eabyt

g(t) =
(

2a
eat + 1

)α
eabxt+a

2b2zt2
a−1∑
i=0

(−ebt)i
∞∑
n=0

Eαn (ay)
(bt)n

n!

g(t) =
(

2a
eat + 1

)α
ea

2b2zt2
a−1∑
i=0

(−1)ie(bx+
b
a i)at

∞∑
n=0

Eαn(ay)
(bt)n

n!

=
∞∑
k=0

a−1∑
i=0

(−1)iHE
(α)
k

(
bx+

b

a
i, b2z

)
(at)k

k!

∞∑
n=0

Eαn (ay)
(bt)n

n!

=
∞∑
k=0

a−1∑
i=0

(−1)iHE
(α)
k

(
bx+

b

a
i, b2z

)
(a)k

k!

∞∑
n=0

Eαn(ay)
(b)n(t)n+k

n!
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Replacing n by n-k in the above equation, we have

=
∞∑
n=0

n∑
k=0

(
n
k

)
Eαn−k(ay)a

kbn−k
a−1∑
i=0

(−1)iHE
(α)
k

(
bx+

b

a
i, b2z

)
(t)n

n!

We may also expand g(t) as

g(t) =
(

2b
ebt + 1

)α
ebaxt+a

2b2zt2
(

1 − (−eat)b
eat + 1

)(
2a

eat + 1

)α
ebayt

g(t) =
(

2b
ebt + 1

)α
ebaxt+a

2b2zt2
b−1∑
i=0

(−ebt)i
∞∑
n=0

Eαn (by)
(at)n

n!

g(t) =
(

2b
ebt + 1

)α
ea

2b2zt2
b−1∑
i=0

(−1)ie(ax+
a
b i)bt

∞∑
n=0

Eαn(by)
(at)n

n!

=
∞∑
k=0

b−1∑
i=0

(−1)iHE
(α)
k

(
ax+

a

b
i, a2z

) (bt)k

k!

∞∑
n=0

Eαn (by)
(at)n

n!

=
∞∑
k=0

b−1∑
i=0

(−1)iHE
(α)
k

(
ax+

a

b
i, a2z

) (b)k

k!

∞∑
n=0

Eαn(by)
(a)n(t)n+k

n!

Replacing n by n-k in the above equation, we have

=
∞∑
n=0

n∑
k=0

(
n
k

)
Eαn−k(by)b

kan−k
b−1∑
i=0

(−1)iHE
(α)
k

(
ax+

a

b
i, a2z

) (t)n

n!

Equating the coefficients of tn in the two expressions for g(t) gives us the de-
sired result.

Theorem 4.5 For all integers a > 0, b > 0, m ≥ 1 and n ≥ 0 the following
identity holds true:

n∑
k=0

(
n
k

)
Eα,mn−k(ay)a

kbn−k
a−1∑
i=0

(−1)iHE
(α,m)
k

(
bx+

b

a
i, b2z

)

=
n∑
k=0

(
n
k

)
Eα,mn−k(ay)b

kan−k
b−1∑
i=0

(−1)iHE
(α,m)
k

(
ax+

a

b
i, a2z

)
(4.14)
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