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Abstract

In this paper we explore multiplicative integrability of these epony-
mous integrals: Riemann, Lebesgue, Denjoy, Perron, and Kurzweil. For
an integrable function f, in each of these senses, we investigate and com-
pare the conditions on a function g that makes the product fg integrable.
We conclude that all existing integrals do not preclude a more powerful
integral yet to be developed.

1 List of Symbols

ACG∗ generalized absolutely continuous in the restricted sense

D+F (x) upper right derivate of F at x

DF (x) upper derivate of F at x

(D)
∫ b

a

f Denjoy integral of f

(K)
∫ b

a

f Kurzweil integral of f

(L)
∫ b

a

f Lebesgue integral of f
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(P )
∫ b

a

f Perron integral of f

ω(F, [c, d]) the oscillation of F on [c, d]
V (F, A) weak variation of F on A

2 Introduction

The most familiar integral in integration theory is unquestionably the one cre-
ated by Riemann as it is widely taught in undergraduate level courses. How-
ever, it is also widely known that Riemann integral has some defects, the class
of Riemann integrable functions is rather small, hence many mathematicians
have been trying to introduce other integrals as improving replacements. So
we heard of Lebesgue, Denjoy, Perron, and Kurzweil. This paper is to give
an exposition of exemplary algebraic property for those integrals to show their
advantages and disadvantages: the multiplicative integrability of the integrals
developed after Riemann’s.

3 Preliminaries

First we recall some definitions of integrable functions of the aforementioned
integrals and also related theorems. Let us agree to skip the familiar Riemann
and Lebesgue integrals and begin with some notions from [4]:

Definition 1. Let ω(F, [c, d]) = sup{|F (y)−F (x) : c ≤ x < y ≤ d} denote the
oscillation of the function F on the interval [c, d].

Definition 2. Let F : [a, b] → R and let A ⊆ [a, b].

(a) The weak variation of F on A of F on A is defined by

V (F, A) = sup{
n∑

i=1

|F (di) − F (ci)|};

where the supremum is taken over all finite collections {[ci, di] : 1 ≤ i ≤
n} of non-overlapping intervals that have endpoints in A.

(b) The function F is absolutely continuous on A (F is AC on A) if for each
ε > 0 there exists δ > 0 such that

∑n
i=1 |F (di) − F (ci)| < ε whenever

{[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping intervals that
have endpoints in A and satisfy

∑n
i=1(di − ci) < δ. The function F is

absolutely continuous in the restricted sense on A (F is AC∗ on A) if F
is bounded on an interval that contains A and for each ε > 0 there exists
δ > 0 such that

∑n
i=1 ω(F, [ci, di]) < ε whenever {[ci, di] : 1 ≤ i ≤ n} is
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a finite collection of non-overlapping intervals that have endpoints in A
and satisfy

∑n
i=1(di − ci) < δ.

(c) The function F is generalized absolutely continuous on A (F is ACG on A)
if F |A is continuous on A and A can be written as a countable union of
sets on each of which F is AC. The function F is generalized absolutely
continuous in the restricted sense on A (F is ACG∗ on A) if F |A is con-
tinuous on A and A can be written as a countable union of sets on each
of which F is AC∗.

Proposition 1. A function f : [a, b] → R is Lebesgue integrable on [a, b] if
and only if there exists an AC function F : [a, b] → R such that F ′ = f almost
everywhere on [a, b].

Definition 3. A function f : [a, b] → R is Denjoy integrable on [a, b] if there
exists and ACG∗ function f : [a, b] → R such that F ′ = f almost everywhere
on [a, b]. The function f is Denjoy integrable on a measurable set A ⊆ [a, b] if
fχA is Denjoy integrable on [a, b].

Definition 4. Let F : [a, b] → R. Define the upper right and lower right
derivates of F at x ∈ [a, b) by

D+F (x) = lim sup
δ→0+

{
F (y) − F (x)

y − x
: x < y < x + δ

}

D+F (x) = lim inf
δ→0+

{
F (y) − F (x)

y − x
: x < y < x + δ

}

and define the upper left and lower left derivates of F at x ∈ (a, b] by

D−F (x) = lim sup
δ→0+

{
F (y) − F (x)

y − x
: x − δ < y < x

}

D−F (x) = lim inf
δ→0+

{
F (y) − F (x)

y − x
: x − δ < y < x

}

Definition 5. Define the upper and lower derivates of F at x ∈ [a, b] by

DF (x) = lim sup
δ→0+

{
F (y) − F (x)

y − x
: 0 < |y − x| < δ

}
= max{D+F (x), D−F (x)};

DF (x) = lim inf
δ→0+

{
F (y) − F (x)

y − x
: 0 < |y − x| < δ

}
= min{D+F (x), D−F (x)};

Definition 6. Let f : [a, b] → R ∪ {±∞}.
(a) A function M : [a, b] → R is a major function of f on [a, b] if DM(x) >

−∞ and DM(x) ≥ f(x) for all x ∈ [a, b].
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(b) A function m : [a, b] → R is a minor function of f on [a, b] if Dm(x) < +∞
and Dm(x) ≤ f(x) for all x ∈ [a, b].

Definition 7. A function f : [a, b] → R ∪ {±∞}. is Perron integrable on [a, b]
if f has at least one major and one minor function on [a, b] and the numbers

inf{M b
a : M is a major function of f on [a, b]}

sup{mb
a : m is a minor function of f on [a, b]}

are equal. This common value is the Perron integral of f on [a, b] and will be
denoted by (P )

∫ b

a
f. The function f is Perron integrable on a measurable set

A ⊆ [a, b] if fχA is Perron integrable on [a, b].

Definition 8. Let δ(·) be a positive function defined on the interval [a, b].
A tagged interval (x, [c, d]) consists of an interval [c, d] ⊆ [a, b] and a point
x ∈ [c, d]. The tagged interval (x, [c, d]) is subordinate to δ if

[c, d] ⊆ (x − δ(x), x + δ(x)).

The letter P will be used to denote finite collections of non-overlapping tagged
intervals. Let P = {(xi, [ci, di]) : 1 ≤ i ≤ n} be such a collection in [a, b]. We
adopt the following terminology:

(a) The points {xi} are the tags of P and the intervals {[ci, di]} are the
intervals of P.

(b) If (xi, [ci, di]) is subordinate to δ for each i, then P is subordinate to δ.

(c) Let A ⊆ [a, b]. If P is subordinate to δ and each xi ∈ A, then P is
A−subordinate to δ.

(d) If P is subordinate to δ and [a, b] = ∪n
i=1[ci, di], then P is a tagged

partition of [a, b] that is subordinate ot δ.

Definition 9. A function f : [a, b] → R is Kurzweil integrable on [a, b] if there
exists a real number L with the following property: for each ε > 0, there exists
a positive function δ on [a, b] such that |f(P) − L| < ε whenever P is a tagged
partition of [a, b] that is subordinate to δ. The number L will be denoted by
(K)

∫ b

a f. The function f is Kurzweil integrable on a measurable set A ⊆ [a, b]
if fχA is Kurzweil integrable on [a, b].

We will end this section with a very useful lemma for Kurzweil integral
theory:

Lemma 1. (Saks-Henstock Lemma). Let f : [a, b] → R be Kurzweil integrable
on [a, b] and F (x) =

∫ x

a f for each x ∈ [a, b]. For ε > 0, assume that δ : [a, b] →
R is a positive function such that |f(P)−F (P)| < ε for a tagged partition P of
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[a, b] that is subordinate to δ. Then for a tagged partition P0 = {(xi, [ci, di]) :
i = 1, 2, ..., n} subordinate to δ, we have

|f(P0) − F (P0)| ≤ ε and
n∑

i=1

|f(xi)(di − ci) − (F (di) − F (ci))| ≤ 2ε.

Interested reader can look up for the proof in [4] or [1].

4 Multiplicative Integrability of Integrals

In this section we will explore the multiplicative integrability over an interval
of integrable functions in the sense of Riemann, Lebesgue, Denjoy, Perron, and
Kurzweil.

4.1 Riemann Integral

From elementary theorem in mathematical analysis we know that the product
of two Riemann integrable functions is also Riemann integrable. We will re-visit
this theorem by precisely re-state it here:

Theorem 1. Let f : [a, b] → R and g : [a, b] → R be Riemann integrable
functions over [a, b]. Then the product fg is Riemann integrable over [a, b].

4.2 Lebesgue Integral

The product of two Lebesgue integrable functions may not be Lebesgue inte-
grable, as we can see from a counterexample:

Consider the function f defined by

f(x) =
{ 1√

x
, if 0 < x ≤ 1;

0, if x = 0.

We see that f is Lebesgue integrable on the interval [0, 1] but f2 is not Lebesgue
integrable on [0, 1]. Nonetheless, with the added condition that at least one of
the two Lebesgue integrable functions is bounded, their product will now be
Lebesgue integrable as shown in the following theorem:

Theorem 2. Let f and g be Lebesgue integrable functions. If g is bounded
then the product fg is Lebesgue integrable.

The proof is an easy consequence from Theorems in Chapter 5 of [3].
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4.3 Denjoy Integral

Now for Denjoy integral, the boundedness condition of one of the two Denjoy
integrable functions is far from sufficient. We can see from the following ex-
ample that the product of a Denjoy integrable function and a bounded Denjoy
integrable function may not be Denjoy integrable:

Consider the function f, g : [0, 1] → R defined by, for each n ∈ N,

f(x) =

{
2n (−1)n

√
n

, if x ∈ (2−n, 2−n+1);
0, otherwise,

and

g(x) := sgn(f(x)) =

⎧⎨
⎩

1, if f(x) > 0;
0, if f(x) = 0;
−1, if f(x) < 0.

The reader can easily prove that f is a Denjoy integrable function (though
not Lebesgue integrable!) and g is a bounded integrable function; but fg = |f |
is not Denjoy integrable.

Neither adding continuity condition will help achieve our purpose in this
case. For example, let the function f be as above and g : [0, 1] → R defined by,
for each n ∈ N,

g(x) =

⎧⎪⎨
⎪⎩

2sgn[ (−1)n√
n

]√
n

if x = 2−n−1 + 2−n;
0, if x = 0, 2−n, 2−n+1;
x, otherwise,

Now g is continuous on [0, 1] but the product fg is still not Denjoy integrable
on [0, 1], since

∫ 1

0

fg =
∞∑

n=1

∫
(2−n,2−n+1)

fg

=
∞∑

n=1

2n (−1)n

√
n

∫
(2−n,2−n+1)

g

=
∞∑

n=1

2n (−1)n

√
n

·
2sgn[ (−1)n

√
n

]

2n
√

n

=
∞∑

n=1

| (−1)n

√
n

|
√

n
= +∞,
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Multiplicative integrability for Denjoy can be carried out by Denjoy in-
tegration by parts by adding absolute continuity condition for one function.
The following theorem prove the integrability and provide us the formula for
integration simultaneously:

Theorem 3. Let f : [a, b] → R be Denjoy integrable on [a, b]. For each x ∈
[a, b], let F (x) =

∫ x

a f. If G : [a, b] → R is absolutely continuous on [a, b], then
fG is Denjoy integrable on [a, b] and

(D)
∫ b

a

fG = F (b)G(b) − (L)
∫ b

a

FG′.

Proof. Since F is ACG∗ on [a, b], it follows that FG is ACG∗ on [a, b]. Then
(FG)′ is Denjoy integrable on [a, b] by definition of the integral. Now FG′

is the product of a Lebesgue integrable function and a bounded measurable
function, so it is Lebesgue integrable on [a, b]. Since fG = (FG)′−FG′ a.e. on
[a, b], fG is Denjoy integrable on [a, b], and we have that

(D)
∫ b

a

fG = (D)
∫ b

a

(FG)′ − (D)
∫ b

a

FG′ = F (b)G(b) − (L)
∫ b

a

FG′.

�

4.4 Perron Integral

Intensive studies by H. Hake, P.S. Aleksandrov, H. Looman, R. Henstock, and
Y. Kubota, see [9, 5, 4, 7, 6], have shown that Denjoy, Perron, and Kurzweil
integrals are equivalent. But some concepts in the definitions of each theory
certainly give rise to seemingly different conditions for multiplicative integra-
tion. As for Perron integration by parts we have:

Theorem 4. Let f : [a, b] → R be Perron integrable on [a, b]. For each
x ∈ [a, b], let F (x) =

∫ x

a f. Assume that the upper and lower derivates of
the variation of G are finite nearly everywhere on [a, b]. If G : [a, b] → R is ab-
solutely continuous on [a, b], then the product fG is Perron integrable on [a, b]
and we have

(P )
∫ b

a

fG = F (b)G(b)− (L)
∫ b

a

FG′.

Proof. We can assume, without loss of generality, that G is a non-decreasing
function on [a, b] and G(a) = 0.
Let ε > 0. Since f is Perron integrable on [a, b], there exists a continuous
major function M and a continuous minor function m of f on [a, b] such that
M(a) = 0 = m(a) and M b

a − mb
a < ε. Since G and M are differentiable a.e. on

[a, b],

(GM)′(x) = G(x)M ′(x) + M ′(x)M(x) ≥ f(x)G(x) + F (x)M ′(x)
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a.e. on [a, b]. We have that G is non-decreasing on [a, b] by our assumption and
M − F is also non-decreasing on [a, b] with M(a) − F (a) = 0. Let

A = {x ∈ (a, b) : DG(x) < +∞ and DM(x) > −∞}.
Let r ∈ A. Then there are positive numbers K and δ such that (r− δ, r + δ) ⊆
(a, b). If x ∈ (r − δ, r + δ), then

0 ≤ G(x)− G(r)
x − r

≤ K and
M(x) − M(r)

x− r
≥ −K.

It follows that

G(x)M(x) − G(r)M(r)
x − r

= G(x)
M(x) − M(r)

x − r
+ M(r)

G(x) − G(r)
x − r

≥ −KG(x) − K|M(r)|
for each x ∈ (r − δ, r + δ).

Now D(GM)(r) > −∞ since M and G are bounded on [a, b]. Also, D(GM) >
−∞ nearly everywhere on [a, b] since [a, b]− A is countable. It can be shown
similarly that D(Gm) ≤ fG + FG′ a.e. on [a, b], and that D(Gm) < +∞
nearly everywhere on [a, b]. We now have that

(GM)b
a − (Gm)b

a = G(b)(M(b) − m(b)) < εG(b)

and
(Gm)b

a ≤ F (b)G(b) ≤ (GM)b
a,

therefore, fG + FG′ is Perron integrable on [a, b], and∫ b

a

(fG + FG′) = F (b)G(b).

Next, FG′ is Lebesgue integrable on [a, b], it is also Perron integrable on [a, b].
Hence fG = (fG + FG′) − FG′ is Perron integrable on [a, b] and

(P )
∫ b

a

fG = F (b)G(b)− (L)
∫ b

a

FG′.

�

4.5 Kurzweil Integral

Now, for Kurzweil integration by parts:

Theorem 5. Let f : [a, b] → R be Kurzweil integrable on [a, b]. For each
x ∈ [a, b], let F (x) =

∫ x

a
f. If G : [a, b] → R is absolutely continuous on [a, b],

then fG is Kurzweil integrable on [a, b] and

(K)
∫ b

a

fG = F (b)G(b) − (L)
∫ b

a

FG′.
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Proof. Let ε > 0. Since f is Kurzweil integrable on [a, b], there exists a positive
function δ0 : [a, b] → R such that |f(P) − ∫ b

a
f | < ε if P is a tagged partition

of [a, b] that is subordinate to δ0.
Now F is uniformly continuous on [a, b], so there exists λ > 0 such that for all
x, y ∈ [a, b], if |x− y| < λ then |F (x)− F (y)| < ε. Let δ : [a, b] → R be defined
by

δ(x) =
{

min{δ0(x), λ
2
, b− x, x− a}, if x ∈ (a, b);

min{δ0(x), λ
2 }, if x = a, b,

Let P = {(rk, [xk−1, xk]) : k = {1, 2, ..., n}} be a tagged partition of [a, b] which
is subordinate to δ. Also, we assume that r1 = a and rk = b and that each tag
appears only once.

Since F is uniformly continuous and G is absolutely continuous, we have

∣∣∣∣∣
n−1∑
k=1

F (xk)(G(rk+1) − G(rk) − (L)

∫ b

a
FG′

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=1

F (xk)

∫ rk+1

rk

G′ − (L)

∫ b

a
FG′

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=1

∫ rk+1

rk

(F (xk) − F (x))G′(x)dx′
∣∣∣∣∣

≤
n−1∑
k=1

∫ rk+1

rk

|F (xk) − F (x)| ∣∣G′(x)
∣∣ dx

≤
n−1∑
k=1

ε

∫ rk+1

rk

∣∣G′(x)
∣∣ dx

≤ ε

∫ b

a
|G′|.

Then by Saks-Henstock Lemma,

∣∣∣∣∣
n∑

k=1

f(rk)G(rk)(xk − xk−1) −
(

F (b)G(b) − (L)
∫ b

a

FG′
)∣∣∣∣∣

= |
n−1∑
k=1

(
n∑

k=1

f(ri)(xi − xi−1) (G(rk) − G(rk+1))

)

+
n∑

k=1

f(ri)(xi − xi−1)G(rk) −
(

F (b)G(b) − (L)
∫ b

a

FG′
)
|
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≤
n−1∑
k=1

|G(rk) − G(rk+1)|
∣∣∣∣∣

n∑
k=1

(f(ri)(xi − xi−1) − F (xk))

∣∣∣∣∣
+

∣∣∣∣∣
n−1∑
k=1

F (xk) (G(rk+1) − G(rk)) − (L)
∫ b

a

FG′
)
|

+ |G(b)|
∣∣∣∣∣

n∑
k=1

f(ri)(xi − xi−1) − F (b)

∣∣∣∣∣
< εV (G, [a, b])+ ε

∫ b

a

|G′| + ε|G(b)|.

�

5 Conclusion

Integration has evolved for more than 2 millennia by painstaking efforts of nu-
merous mathematicians from the great Archimedes, Newton, Leibniz, Cauchy,
Riemann, to the modern Lebesgue, Denjoy, Perron, and Kurzweil. In this paper
we sample multiplicative integrability problem just to show the still incessant
effort of mathematicians to find the most perfect integral by which we mean
the most powerful (can integrate every function) and the most uncomplicated
(easiest to understand and use). In our opinion, we have not achieved this end.
Some theories are really more powerful than Riemann’s but are also more com-
plicated. It makes us feel like using sledgehammer to crack a nut. Maybe we
are waiting for another Riesz who makes Lebesgue integral easier and retains
its integrability power to come along for later-developed integrals. Or, more
importantly, we are waiting for another Lebesgue to create a new, more per-
fect integral itself. Our belief is that integration theory can still be improved
as Lebesgue himself once said at a conference at la Société Mathématique in
Copenhagen on May 8, 1926 [8], “... Messieurs, je m’arrête et je vous re-
mercie de votre courtoise attention; mais il faut un mot de conclusion. Ce
sera, si vous le voulez bien, qu’une généralisation faite non pour le vain plaisir
de généraliser, mais pous résoudre des problèmes antérieurement posés, est
toujours une généralisation féconde. Les divers emplois qu’ont déjà rec.us les
notions que nous venons d’examiner lo prouveraient surabondamment.” (“...
Gentlemen, I end now and thank you for your courteous attention; but a word
of conclusion is necessary. This is, if you will, that a generalization made not
for the vain pleasure of generalizing, but rather for the solution of problems
previously posed, is always a fruitful generalization. The diverse applications
which have already taken the concepts which we have just examined prove this
superabundantly.”)
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