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Abstract

In semigroup theory, it is of interest to consider various types of
semigroup elements, including regular, quasi-regular, completely quasi-
regular, and semisimple elements. It is known that in general, regular
implies completely quasi-regular which in turn implies semisimple. In
this paper, we consider a particular semigroup, consisting of a type of
mappings called generalized hypersubstitutions. The main result of this
paper is that for this particular semigroup, any semisimple element is
also regular, making these conditions equivalent.

1 Introduction

The concept of a regular element was first introduced by John von Neumann
in 1936 under the name of “regular rings”, during his study of von Neumann
algebras. It is an important role in many branch of mathematics, especially in
semigroup theory. A semigroup element a is semisimple if it can be factored
into a product a = xayaz for some elements x, y and z in the semigroup. The
purpose of this paper is to characterize semisimple elements of a particular
semigroup which is called the monoid of all generalized hypersubstitutions of
type τ = (2). The concept of generalized hypersubstitutions was introduced
by S. Leeratanavalee and K. Denecke [1]. It is the convenient method to de-
scribe the considered tree transformations. In this particular semigroup, each
of mappings can be coded by a term, to which is associated a length. The semi-
group operation is composition of mappings, and for the most part the term
from a composition of mappings is longer than the terms in the composition.
Using this basic length observation, W. Puninagool and S. Leeratanavalee de-

Key words: regular, semisimple, generalized hypersubstitution.
(2010) Mathematics Subject Classification: 08A02, 08A55.

166



W. Wongpinit and S. Leeratanavalee 167

termined the set of all regular elements and the set of all idempotent elements
of the monoid of all generalized hypersubstitutions of type τ = (2) (see [2]).

We recall first the definition of a regular element and the briefly concept
of a generalized hypersubstitution. Let S be a semigroup. An element a ∈ S
is said to be regular if there exists b ∈ S such that a = aba and S is called a
regular semigroup if every element of S is regular.

Let τ = (ni)i∈I be a type indexed by a set I, fi be an operation symbol
of arity ni for ni ∈ N. Let Xn := {x1, x2, . . . , xn} be an n-element alphabet
and X := {x1, x2, . . .} be a countably infinite set of variables. An n-ary term
of type τ , for simply an n-ary term, is defined inductively as follows:

(i) The variables x1, x2, . . . , xn are n-ary terms.

(ii) If t1, t2, . . . , tni are n-ary terms then fi(t1, t2, . . . , tni) is an n-ary term.

Let Wτ (Xn) be the smallest set which contains x1, x2, . . . , xn and is

closed under finite application of (ii). Let Wτ (X) :=
∞⋃

n=1

Wτ (Xn) and called

the set of all terms of type τ .
A mapping σ from the set of ni-ary operation symbols to the set Wτ (X)

which does not necessarily preserve the arity, is called a generalized hypersubsti-
tution of type τ . We denote the set of all generalized hypersubstitutions of type
τ by HypG(τ ). To define a binary operation on HypG(τ ), we define at first the
concept of a generalized superposition of terms Sm : Wτ (X)m+1 −→ Wτ (X)
by the following steps:

(i) If t = xj, 1 ≤ j ≤ m, then Sm(xj, t1, . . . , tm) := tj.

(ii) If t = xj, m < j ∈ N, then Sm(xj, t1, . . . , tm) := xj .

(iii) If t = fi(s1 , . . . , sni), then Sm(t, t1, . . . , tm) := fi(Sm(s1, t1, . . . , tm), . . . ,
Sm(sni , t1, . . . , tm)).

Any generalized hypersubstitution σ induces a mapping σ̂ : Wτ (X) −→
Wτ (X) which is defined in the following inductive way :

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(ti, . . . , tni)] := Sni (σ(fi), σ̂[t1], . . . , σ̂[tni]), for any ni-ary operation
symbol fi supposed that σ̂[tj], 1 ≤ j ≤ nj are already defined.

We define a binary operation ◦G on HypG(τ ) by σ1 ◦G σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ ).
Then we have the following proposition.

Theorem 1.1. ([1]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for arbitrary
generalized hypersubstitutions σ, σ1, σ2 we have



168 Semisimple Elements in HypG(2)

(i) Sn(σ[t], σ[t1], . . . , σ[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Let σid be the hypersubstitution which maps each ni-ary operation
symbol fi to the term fi(x1, . . . , xni). Then HypG(τ ) = (HypG(τ ), ◦G, σid) is
a monoid where σid is the identity element.

2 Semisimple Elements

In this section, we characterize semisimple elements of HypG(2). Firstly,
we recall some definitions which will be used throughout this paper.

Definition 2.1. Let S be a semigroup. An element a of a semigroup S is
called

(i) left quasi-regular if there exist x, y ∈ S such that xaya = a;

(ii) right quasi-regular if there exist x, y ∈ S such that axay = a;

(iii) completely quasi-regular if a is both left and right quasi-regular;

(iv) semisimple if there exist x, y, z ∈ S such that xayaz = a.

Remark 2.2. In general, for any semigroup S and a ∈ S, we have the following
relationship: a is regular ⇒ a is completely quasi-regular ⇒ a is left quasi-
regular or right quasi-regular ⇒ a is semisimple.

Next, we fix a type τ = (2) with the binary operation f and for t ∈
W(2)(X) we denote by σt means the generalized hypersubstitution of type (2)
which maps f to the term t. For σt ∈ HypG(2), we denote

R1 := {σt | t = f(x2, t
′) where t′ ∈ W(2)(X) such that x1 /∈ var(t′)},

R2 := {σt | t = f(t′, x1) where t′ ∈ W(2)(X) such that x2 /∈ var(t′)},
R3 := {σt | t = f(x1, t

′) where t′ ∈ W(2)(X) such that x2 /∈ var(t′)},
R4 := {σt | t = f(t′, x2) where t′ ∈ W(2)(X) such that x1 /∈ var(t′)},
R5 := {σt | t ∈ {x1, x2, f(x1, x2), f(x2, x1)}} and
R6 := {σt | var(t) ∩ {x1, x2} = ∅}.
In 2011, W. Puninagool and S. Leeratanavalee showed that

6⋃

i=1

Ri is the

set of all regular elements in HypG(2) and (
6⋃

i=3

Ri)\ {σf(x2,x1)} = E(HypG(2))

where E(HypG(2)) is the set of all idempotent elements in HypG(2).
In 2010, W. Puninagool and S. Leeratanavalee [3] generalized the con-

cept of complexity of terms, compositions and hypersubstitutions to complexity
of terms, superpositions and generalized hypersubstitutions and proved the fol-
lowing lemma.
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Lemma 2.3. Let s, t1, . . . , tm ∈ Wτ(X). Then
op(Sm(s, t1, . . . , tm)) =

∑m
j=1 vbj(s) · op(tj) + op(s),

where op(t) is the total number of all operation symbols occurring in the term
t, and vbi(t) is the xi-variable count of the term t.

For any t ∈ W(2)(X) and x ∈ X, we define semigroup words Lp(t), Rp(t)
over the alphabet {f} inductively as follows:

(i) If t = f(x, t2), t2 ∈ W(2)(X), then Lp(t) = f .

(ii) If t = f(t1 , x), t1 ∈ W(2)(X), then Rp(t) = f .

(iii) If t = f(t1 , t2), t1 /∈ X, then Lp(t) = f(Lp(t1)).

(iv) If t = f(t1 , t2), t2 /∈ X, then Rp(t) = f(Rp(t2)).

We denote the f−count of Lp(t) and Rp(t) by length(Lp(t)) and length(Rp(t)),
respectively .

For t ∈ W(2)(X), we introduce the following notations:
leftmost(t) := the first variable (from the left) occurring in t,
rightmost(t) := the last variable occurring in t,
var(t) := the set of all variables occurring in t,
WG

(2)({x1}) := {s ∈ W(2)(X) | x1 ∈ var(s), x2 /∈ var(s)},
WG

(2)({x2}) := {s ∈ W(2)(X) | x2 ∈ var(s), x1 /∈ var(s)},
W ({x1}) := WG

(2)({x1})\{x1},
W ({x2}) := WG

(2)({x2})\{x2},
WG := {t ∈ W(2)(X) | t /∈ X, x1, x2 /∈ var(t)},
WG

(2)({x1, x2}) := {t ∈ W(2)(X) | x1, x2 ∈ var(t)},
EG({x1, x2}) := {σt ∈ HypG(2) | t ∈ WG

(2)({x1, x2})}.

Then we have the following lemmas which are useful for characterize
semisimple elements of the monoid HypG(2).

Lemma 2.4. Let u ∈ W(2)(X), σt ∈ HypG(2) and x ∈ {x1, x2}. If x /∈ var(u),
then x /∈ var(σ̂t[u]) (x is not a variable occurring in the term (σt ◦G σu)(f)).

Lemma 2.5. Let σf(c,d) ∈ HypG(2)\{σid, σf(x2,x1)} and u ∈ W(2)(X)\X. If
σf(c,d) ∈ EG({x1, x2}), then the term w corresponding to the term σf(c,d) ◦G

σu(f) is longer than u.

Lemma 2.6. If f(c, d) ∈ W ({x1}) ∪ W ({x2}) ∪ WG(x1 /∈ var(f(c, d)) or
x2 /∈ var(f(c, d))), then for any u, v ∈ W(2)(X) the term w corresponding to
σf(c,d) ◦G σf(u,v)(f) is in W ({x1}) ∪ W ({x2}) ∪ WG.

Lemma 2.7. Let s, u, v /∈ X and σs◦Gσu = σv. Then the following statements
hold.
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(i) If leftmost(s) = x1, then length(Lp(v)) = length(Lp(s))length(Lp(u)).
If leftmost(s) = x2, then length(Lp(v)) = length(Lp(s))length(Rp(u)).

(ii) If rightmost(s) = x1, then length(Rp(v)) = length(Rp(s))length(Lp(u)).
If rightmost(s) = x2, then length(Rp(v)) = length(Rp(s))length(Rp(u)).

Lemma 2.8. Let s ∈ W(2)(X) \ X, x1, x2 ∈ var(s), t ∈ W(2)(X) and xi ∈ X
where i ∈ N. If xi ∈ var(t), then xi ∈ var(σ̂s[t]).

For more detail see [4].

Theorem 2.9. Let s ∈ W(2)(X)\X, x1, x2 ∈ var(s). If σs is semisimple, then
σs is regular.

Proof. Let σs be semisimple and s = f(s1 , s2) for some s1, s2 ∈ W(2)(X) and
x1, x2 ∈ var(s). There exist t1, t2, t3 ∈ W(2)(X) \ X such that σt1 ◦G σs ◦G

σt2 ◦G σs ◦G σt3 = σf(s1,s2). Suppose that σs is not regular, we have op(s) > 1.
Since x1, x2 ∈ var(s) and σt1 ◦G σs ◦G σt2 ◦G σs ◦G σt3 = σf(s1,s2), thus by
Lemma 2.6, we get x1, x2 ∈ var(t1). We set σs ◦G σt2 ◦G σs ◦G σt3 = σf(t′1,t′2)
and then x1, x2 ∈ var(f(t′1 , t′2)). Thus x1, x2 ∈ var(t2). By Lemma 2.8, we
get op(f(t′1 , t

′
2)) > op(s). We claim that op(σ̂t1 [f(t′1, t

′
2)]) > op(s). Then by

Lemma 2.3, we have

op(σ̂t1 [f(t′1, t
′
2)]) = op(S2(t1, σ̂t1[t

′
1], σ̂t1[t

′
2]))

= vb1(t1) · op(σ̂t1 [t
′
1]) + vb2(t1) · op(σ̂t1 [t

′
2]) + op(t1)

≥ op(σ̂t1 [t
′
1]) + op(σ̂t1 [t

′
2]) + 1

≥ op(t′1) + op(t′2) + 1
= op(f(t′1 , t

′
2)

> op(s)

which is a contradiction. Therefore σs is regular. �

Theorem 2.10. Let s ∈ W(2)(X) \ X such that x1 ∈ var(s) and σf(xm,s) is
semisimple, where m ∈ N with m > 2 . Then σf(xm,s) is regular.

Proof. Let σf(xm,s) be semisimple, there exist t1, t2, t3 ∈ W(2)(X) \ X such
that σt1 ◦G σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3 = σf(xm,s). Suppose that σf(xm,s)

is not regular, we have op(f(xm, s)) > 1 and length(Rp(f(xm , s))) ≥ 2. We
set σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3 = σf(xm,t′2). Then t1 �= f(x2, x1). Sup-
pose that t1 = f(x1, x2), we have σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3 = σf(xm,s).
If rightmost(s) = xm, then leftmost(t2 ) �= xm. If leftmost(t2) = x1, then
x1, x2 /∈ var(σf(xm ,s)◦Gσt2◦Gσf(xm,s)) which is a contradiction. If leftmost(t2) =
x2, then vb(σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3(f)) > vb(f(xm , s)) which is a con-
tradiction. Since rightmost(s) �= x2 , we get rightmost(s) = x1 and then
leftmost(t2) �= xm. If leftmost(t2) = x1, then x1, x2 /∈ var(σf(xm,s) ◦G σt2 ◦G
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σf(xm,s)) which is a contradiction. This implies leftmost(t2) = x2. So that
length(Rp((σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3)(f)))

= length(Rp((σf(xm,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3)(f)))
= length(Rp(f(xm , s)))length(Lp(σt2 ◦G σf(xm,s) ◦G σt3)(f))
> length(Rp(f(xm , s)))

which is a contradiction. If op(t1) > 1 and x1, x2 ∈ var(t1), then by Lemma
2.3, we have

op(σ̂t1 [f(xm, t′2)]) = op(S2(t1, σ̂t1[xm], σ̂t1[t
′
2]))

= vb1(t1) · op(σ̂t1 [xm]) + vb2(t1) · op(σ̂t1 [t
′
2]) + op(t1)

> op(σ̂t1 [xm]) + op(σ̂t1 [t
′
2]) + 1

≥ op(xm) + op(t′2) + 1
= op(f(xm, t′2))
≥ op(f(xm, s))

which is a contradiction. If x1 ∈ var(t1) and x2 /∈ var(t1), then x1, x2 /∈
var(σt1 ◦G σf(xm,s)(f)) which is a contradiction. If x1 /∈ var(t1) and x2 ∈
var(t1) and rightmost(s) = xm, we get x1, x2 /∈ var(σt1 ◦G σf(xm,s)(f)) which
is a contradiction. Since rightmost(s) �= x2, we get rightmost(s) = x1 and then
rightmost(t1) �= xm. This implies rightmost(t1) = x2. If leftmost(t2) = x1 or
leftmost(t2) = xm, then x1, x2 /∈ var(σf(xm ,s) ◦G σt2 ◦G σf(xm,s)(f)) which is a
contradiction. So leftmost(t2) = x2 and length(Rp((σt1 ◦G σf(xm,s) ◦G σt2 ◦G

σf(xm,s) ◦G σt3)(f)))

= length(Rp(t1))length(Rp((σf(xm ,s) ◦G σt2 ◦G σf(xm,s) ◦G σt3)(f)))
= length(Rp(t1))length(Rp(f(xm , s)))length(Lp(σt2 ◦G σf(xm,s) ◦G σt3)(f))
> length(Rp(f(xm , s)))

which is a contradiction. Therefore σf(xm,s) is regular. �

Theorem 2.11. Let s ∈ W(2)(X) \ X such that x1 ∈ var(s) and σf(s,xm) is
semisimple, where m ∈ N with m > 2. Then σf(s,xm) is regular.

Proof. The proof is similar to the proof of Theorem 2.10. �

Theorem 2.12. Let s ∈ W(2)(X) \ X such that x2 ∈ var(s) and σf(s,xm) is
semisimple, where m ∈ N with m > 2. Then σf(s,xm) is regular.

Proof. The proof is similar to the proof of Theorem 2.10. �

Theorem 2.13. Let s ∈ W(2)(X) \ X such that x2 ∈ var(s) and σf(xm,s) is
semisimple, where m ∈ N with m > 2. Then σf(xm,s) is regular.
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Proof. The proof is similar to the proof of Theorem 2.10. �

Theorem 2.14. Let s1, s2 ∈ W(2)(X) \ X. If x1 ∈ var(s1) ∪ var(s2) or
x2 ∈ var(s1) ∪ var(s2), then σf(s1,s2) is not semisimple.

Proof. Suppose that s = f(s1 , s2) is semisimple. Since s1 /∈ X, we get
length(Lp(s)) ≥ 2. Since s2 /∈ X, we get length(Rp(s)) ≥ 2. Then there exist
t1, t2, t3 ∈ W(2)(X) \ X such that σt1 ◦G σs ◦G σt2 ◦G σs ◦G σt3 = σf(s1,s2).
Case 1: x1, x2 ∈ var(s). The proof is similar to the proof of Theorem 2.10.
Case 2: x1 ∈ var(s), x2 /∈ var(s). We set σs ◦G σt2 ◦G σs ◦G σt3 = σf(s′

1,s′
2)

.
Case 2.1: leftmost(s) = xm where m ∈ N with m > 2. Suppose that

t1 = f(x2, x1), then rightmost(s) = xm. If leftmost(t2) = xm, then x1, x2 /∈
var(σf(s1,s2)◦Gσt2) which is a contradiction. If leftmost(t2) = x1 or leftmost(t2) =
x2, then x1, x2 /∈ var(σf(s1,s2) ◦G σt2 ◦G σf(s1,s2)) which is a contradiction. So
t1 �= f(x2, x1). The remainder of proof is similar to the proof of Theorem 2.10.

Case 2.2: leftmost(s) = x1. Then we get leftmost(t1) = x1 or leftmost(t1) =
x2.
If leftmost(t1) = x1, then leftmost(t2) �= xm where m ∈ N with m > 2. So

length(Lp((σt1 ◦G σf(s1,s2) ◦G σt2 ◦G σf(s1,s2) ◦G σt3)(f)))

= length(Lp(t1))length(Lp((σf(s1,s2) ◦G σt2 ◦G σf(s1,s2) ◦G σt3)(f)))
= length(Lp(t1))length(Lp(f(s1 , s2)))length(Lp(σt2 ◦G σf(s1,s2) ◦G σt3)(f))
> length(Lp(f(s1 , s2)))

which is a contradiction. If leftmost(t1 ) = x2, then rightmost(s) = x1. And
thus leftmost(t2) �= xm. So leftmost(t2) = x1 or leftmost(t2) = x2. Hence
length(Rp((σt1 ◦G σf(s1,s2) ◦G σt2 ◦G σf(s1,s2) ◦G σt3)(f)))

= length(Rp(t1))length(Rp((σf(s1,s2) ◦G σt2 ◦G σf(s1,s2) ◦G σt3)(f)))
= length(Rp(t1))length(Rp(f(s1 , s2)))length(Lp(σt2 ◦G σf(s1,s2) ◦G σt3)(f))
> length(Rp(f(s1 , s2)))

which is a contradiction.
Case 3: x1 /∈ var(t), x2 ∈ var(t). The proof is similar to the proof of Case

2. �

Theorem 2.15. Let σs ∈ HypG(2). Then the following are equivalent:

(a) σs is regular,

(b) σs is completely quasi-regular,

(c) σs is left quasi-regular,

(d) σs is right quasi-regular,
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(e) σs is semisimple.
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