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Abstract

Given an integer λ �= 1, we study the alternative Jensen’s functional
equation

f(xy−1) − 2f(x) + f(xy) = 0 or f(xy−1) − 2f(x) + λf(xy) = 0,

where f is a mapping from a group (G, ·) to a uniquely divisible abelian
group (H,+). We prove that for λ �= −3, the above functional equation
is equivalent to the classical Jensen’s functional equation. Furthermore,
if G is a 2-divisible group, then we can strengthen the results by the
showing that the equivalence is valid for all integers λ �= 1.

1 Introduction

The alternative functional equations related to the (classical) Cauchy equation
problem

f(x + y) = f(x) + f(y) (1.1)

have been widely studied. For example, in 1974, Kannappan and Kuczma [3]
investigated the alternative Cauchy functional equation of the form

(f(x + y) − af(x) − bf(y)) (f(x + y) − f(x) − f(y)) = 0, (1.2)
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where f is a function form an abelian group to a commutative integral domain
with identity and of characteristic zero. Afterwards, Ger[2] extended the result
in [3] to the more general alternative functional equation of the form

(f(x + y) − af(x) − bf(y)) (f(x + y) − cf(x) − df(y)) = 0.

In 1978, Kuczma [4] established the equivalence of (1.2) and the classical
Cauchy functional equation (1.1) in the case when a = b = −1 and the do-
main is a semigroup. Later on, Forti[1] established the general solution of the
alternative Cauchy functional equation of the form

(cf(x + y) − af(x) − bf(y) − d) (f(x + y) − f(x) − f(y)) = 0.

Inspired by the work on the alternative Cauchy functional equation,
Nakmahachalasint[5] has proved the analogous results on the alternative
Jensen’s functional equation of the form

f(x) ± 2f(xy) + f(xy2) = 0

on a semigroup. His work represents a significant extension of the work of NG
[6] and Parnami and Vasudeva [7] on the classical Jensen’s functional equation

f(x) − 2f(xy) + f(xy2) = 0

on a group.
In this paper, given an integer λ �= 1, we investigate the alternative Jensen’s

functional equation of the form

f(xy−1) − 2f(x) + f(xy) = 0 or f(xy−1) − 2f(x) + λf(xy) = 0, (AJ)

where f is a mapping from a group (G, ·) to a uniquely divisible abelian group
(H, +). Note that when λ = 1, (AJ) is just the classical Jensen’s functional
equation. We will prove that for λ �= −3, (AJ) is equivalent to the classical
Jensen’s functional equation in the sense that

f(xy−1) − 2f(x) + f(xy) = 0, (J)

for all x, y ∈ G. Furthermore, if the domain G is a 2-divisible group, then we
will show that (AJ) is equivalent to the classical Jensen’s functional equation
(J) for all λ �= 1.

2 Auxiliary Lemmas

Let (G, ·) be a group and (H, +) be a uniquely divisible abelian group. Given
an integer λ and a function f : G → H . For every pair of x, y ∈ G, we define

F (λ)
y (x) := f(xy−1) − 2f(x) + λf(xy).
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Furthermore, for λ �= 1, we let Pf
(λ)
y (x) be the statement

Pf(λ)
y (x) :=

(
F (1)

y (x) = 0 or F (λ)
y (x) = 0

)
.

Denote the set of all solutions of (AJ) by

A(λ)
(G,H) := {f : G → H | Pf(λ)

y (x) for all x, y ∈ G}.

Finally, the set of solution of the Jensen’s functional equation will be denoted
by

J(G,H) := {f : G → H | F (1)
y (x) = 0 for all x, y ∈ G}.

It should be note that J(G,H) ⊆ A(λ)
(G,H)

The following Lemma will be crucial and we make use of it extensively in
the proofs. The reader should keep in mind of this fact.

Lemma 1. Let f ∈ A(λ)
(G,H) and let x, y ∈ G.

F
(1)
y (x) = 0 and F

(λ)
y (x) = 0 if and only if f(xy) = 0.

Proof. Assume that F
(1)
y (x) = 0 and F

(λ)
y (x) = 0. Therefore, F

(λ)
y (x) −

F
(1)
y (x) = 0, i.e., (λ− 1)f(xy) = 0. Since λ �= 1, we get f(xy) = 0. Conversely,

assume that f(xy) = 0. Since f ∈ A(λ)
(G,H), we have F

(1)
y (x) = 0 or F

(λ)
y (x) = 0.

As f(xy) = 0, therefore F
(1)
y (x) = 0 and F

(λ)
y (x) = 0.

We will prove some fundamental lemmas concerning the property of Pf
(λ)
y (x).

Lemma 2. Let f ∈ A(λ)
(G,H) and let x, y ∈ G.

If F
(1)
y (x) �= 0, then f(xy−1) = f(xy).

Proof. Assume that F
(1)
y (x) �= 0. The alternatives in Pf

(λ)
y (x) give F

(λ)
y (x) = 0.

Similarly, from F
(1)
y−1(x) = F

(1)
y (x) �= 0 and Pf

(λ)
y−1 (x), we get F

(λ)
y−1(x) = 0. Ob-

serve that F
(λ)
y (x) − F

(λ)
y−1(x) = 0, which simplifies to

(1 − λ)
(
f(xy−1) − f(xy)

)
= 0.

Since λ �= 1, we must have f(xy−1) = f(xy) as desired.

Lemma 3. Let f ∈ A(λ)
(G,H) and let x, y ∈ G.

If F
(1)
y (x) �= 0 and F

(1)
y (xy) �= 0, then λ = −3.

Proof. Assume that F
(1)
y (x) �= 0 and F

(1)
y (xy) �= 0. Hence f(xy2) �= 0 by

Lemma 1. By Lemma 2, we get

f(xy−1) = f(xy) and f(x) = f(xy2). (2.1)
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From F
(1)
y (x) �= 0 and F

(1)
y (xy) �= 0, the alternatives in Pf

(λ)
y (x) and Pf

(λ)
y (xy)

give F
(λ)
y (x) = 0 and F

(λ)
y (xy) = 0, respectively. Substituting f(x) from (2.1)

into F
(λ)
y (xy) = 0, we have

(λ + 1)f(xy2) − 2f(xy) = 0. (2.2)

Substituting f(xy−1) and f(x) from (2.1) into F
(λ)
y (x) = 0, we obtain that

(λ + 1)f(xy) − 2f(xy2) = 0. (2.3)

By (2.2) and (2.3), we get

(λ2 + 2λ − 3)f(xy2) = 0.

Since λ �= 1 and f(xy2) �= 0, we must have λ = −3.

Lemma 4. Let f ∈ A(λ)
(G,H) and let x, y ∈ G.

If F
(1)
y (x) �= 0, then F

(1)
y (xy) �= 0.

Proof. Suppose F
(1)
y (x) �= 0 but F

(1)
y (xy) = 0. Since H is a uniquely divisible

abelian group, we let f(xy) = 2a. Assume that F
(1)
y (x) �= 0. By Lemma 2, we

get
f(xy−1) = 2a. (2.4)

From F
(1)
y (x) �= 0, the alternatives in Pf

(λ)
y (x) gives F

(λ)
y (x) = 0. We also

have 2a �= 0 by Lemma 1, that is, a �= 0. Substituting (2.4) into F
(λ)
y (x) = 0,

we obtain that
f(x) = (λ + 1)a. (2.5)

Substituting (2.5) into F
(1)
y (xy) = 0, we have

f(xy2) = (3 − λ)a. (2.6)

Consider the following two possible cases in Pf
(λ)
y (xy−1).

1. Assume that F
(1)
y (xy−1) �= 0. By Lemma 2, we get f(xy−2) = f(x). By

(2.5), we have
f(xy−2) = (λ + 1)a. (2.7)

Substituting (2.5), (2.6) and (2.7) into Pf
(λ)
y2 (x), we obtain that

(2 − 2λ)a = 0 or (−1 + 2λ − λ2)a = 0.

Since λ �= 1, we get a = 0, a contradiction.
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2. Assume that F
(1)
y (xy−1) = 0. Substituting (2.4) and (2.5) into

F
(1)
y (xy−1) = 0, we have

f(xy−2) = (3 − λ)a. (2.8)

Substituting (2.5), (2.6) and (2.8), in Pf
(λ)
y2 (x), we get

(4 − 4λ)a = 0 or (1 − λ2)a = 0.

Since λ �= 1 and a �= 0, λ = −1. Thus (2.6) simplifies to

f(xy2) = 4a. (2.9)

Substituting (2.9) into Pf
(−1)
y (xy2), we obtain that

f(xy3) = ±6a. (2.10)

Substituting (2.4), (2.10) into Pf
(−1)
y2 (xy) and simplifying, we get a = 0,

a contradiction.

Therefore, we must have F
(1)
y (xy) �= 0 as desired.

Lemma 5. Let f ∈ A(λ)
(G,H) and let x, y ∈ G.

If F
(1)
y (x) �= 0, then F

(1)
y (xyn) �= 0 for all n ∈ Z.

Proof. By applying Lemma 4 repeatedly, we get

F (1)
y (xyn) �= 0 for all n ≥ 1.

Similarly, by substituting y by y−1 in the previous arguments, we have

F (1)
y (xyn) �= 0 for all n ≤ −1.

Consequently, we conclude that F
(1)
y (xyn) �= 0 for all n ∈ Z.

3 Main Results

In this section, we prove our main results of this paper.

Theorem 6. If A(λ)
(G,H)\J(G,H) �= φ, then λ = −3.

Moreover, if f ∈ A(λ)
(G,H)\J(G,H) and x, y ∈ G, then f(xyn) = (−1)na for all

n ∈ Z and for some a ∈ H.
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Proof. Assume that A(λ)
(G,H)\J(G,H) �= φ. Let f ∈ A(λ)

(G,H)\J(G,H) and x, y ∈ G.

Thus F
(1)
y (x) �= 0. Lemma 5 gives F

(1)
y (xyn) �= 0 for all n ∈ Z. By Lemma 2,

we get
f(xyn+1) = f(xyn−1) for all n ∈ Z. (3.1)

Since F
(1)
y (x) �= 0 and F

(1)
y (xy) �= 0, Lemma 3 gives λ = −3. From F

(1)
y (xyn) �=

0 for all n ∈ Z, the alternatives Pf
(−3)
y (xyn) give F

(−3)
y (xyn) = 0, i.e.,

f(xyn+1) − 2f(xyn) − 3f(xyn−1) = 0. (3.2)

By (3.1) and (3.2), we have

f(xyn) = −f(xyn−1) for all n ∈ Z. (3.3)

Thus f(xy) = −f(x) when n = 1, and f(xy−1) = −f(x) when n = 0. For any
n ≥ 2, by (3.3), we obtain that

f(xyn) = (−1)f(xyn−1) = (−1)2f(xyn−2) = · · · = (−1)nf(x)

and

f(xy−n) = (−1)f(xy−n+1) = (−1)2f(xy−n+2) = · · · = (−1)nf(x).

Therefore, f(xyn) = (−1)nf(x) for all n ∈ Z as desired.

Theorem 3.1 shows that the alternative Jensen’s functional equation (AJ)
is equivalent to the Jensen’s functional equation (J) when λ �= −3. However,
when λ = −3, (AJ) is not necessarily equivalent to (J) as illustrated by the
following example.

Example 7. Given a ∈ H\{0}. Let f : Z → H be a function such that

f(n) = (−1)na for all n ∈ Z.

First, we will show that f ∈ A(−3)
(Z,H). Given n, m ∈ Z. If m is odd, then

we see that n − m and n + m have the same parity whereas n and n + m
have the opposite. Therefore, f(n − m) − 2f(n) − 3f(n + m) = 0. Otherwise,
if m is even, then n − m, n, n + m all have the same parity, i.e., f(n − m) −
2f(n) + f(n + m) = 0. Next, we will prove that f /∈ J(Z,H). Note that
f(0) − 2f(1) + f(2) = 4a. From a �= 0 and H is uniquely divisible, we get
4a �= 0. Thus f ∈ A(−3)

(Z,H)\J(Z,H).
In the case that G is a 2−divisible group, our main result is stronger in sense

that (AJ) is actually equivalent to the classical Jensen’s functional equation (J)
as the following theorem.

Theorem 8. Let (G, ·) be a 2-divisible group. Then A(λ)
(G,H) = J(G,H) for all

λ �= 1.
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Proof. It is only left to prove that A(λ)
(G,H)\J(G,H) = φ. Assume contradictorily

that A(λ)
(G,H)\J(G,H) �= φ. Let f ∈ A(λ)

(G,H)\J(G,H) and x, y ∈ G. Since G is a
2-divisible group, there exists a z ∈ G such that y = z2. By setting y = z in
Theorem 6, we obtain that λ = −3 and f(xzn) = (−1)na for all n ∈ Z and for
some a ∈ H . We can calculate

f(xz−2) − 2f(x) + f(xz2) = (−1)−2a − 2a + (−1)2a = 0.

Since y = z2, we conclude that f(xy−1) − 2f(x) + f(xy) = 0 and therefore
f ∈ J(G,H). Hence, it is a contradiction to the fact that f /∈ J(G,H).

4 Concrete Examples

In this section, we give the general solution when the domain is a cyclic group.
The following theorems show how Theorem 6 can be applied to certain cases.

Theorem 9. Let (G, ·) be an infinite cyclic group with G = 〈g〉.

1. If λ �= −3, then A(λ)
(G,H) = J(G,H).

2. If λ = −3, then A(−3)
(G,H)\J(G,H) is non-empty and

A(−3)
(G,H)\J(G,H) = {f : G → H | f(gn) = (−1)na for all n ∈ Z and for

some a ∈ H}.

Proof. If λ �= −3, then Theorem 3.1 gives A(λ)
(G,H)\J(G,H) = φ, i.e., A(λ)

(G,H) =
J(G,H) and therefore (1). Next, we assume that λ = −3. First, we will show
that A(−3)

(G,H)\J(G,H) is non-empty. Let f : G → H be

f(gn) = (−1)na for all n ∈ Z and for some a ∈ H\{0}.

Given n, m ∈ Z. If m is odd, then we see that n−m and n + m have the same
parity whereas n and n + m have the opposite. Therefore,

f(gn−m) − 2f(gn) − 3f(gn+m) = 0.

Otherwise, if m is even, then n − m, n, n + m all have the same parity, i.e.,

f(gn−m) − 2f(gn) + f(gn+m) = 0.

Note that f(e) − 2f(g) + f(g2) = 4a. From a �= 0 and H is uniquely divisible,
we get 4a �= 0. Thus f ∈ A(−3)

(G,H)\J(G,H). Since A(−3)
(G,H)\J(G,H) is non-empty,

the proof is complete by setting x = e and y = g in Theorem 6.

Theorem 10. Let (G, ·) be a cyclic group of finite order m ≥ 2 with G = 〈g〉.
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1. If λ �= −3, then A(λ)
(G,H) = J(G,H).

2. If λ = −3, then

(a) if m is odd, then A(−3)
(G,H) = J(G,H), or

(b) if m is even, then A(−3)
(G,H)\J(G,H) is non-empty and

A(−3)
(G,H)\J(G,H) = {f : G → H | f(gn) = (−1)na for all n ∈ Z and

for some a ∈ H}.

Proof. If λ �= −3, then Theorem 3.1 gives A(λ)
(G,H)\J(G,H) = φ, i.e., A(λ)

(G,H) =
J(G,H) and therefore (1). Next, we assume that λ = −3. We will consider two
possible cases of m as follows.

(a) Assume that m is odd. We will show that A(−3)
(G,H)\J(G,H) = φ. Suppose

A(−3)
(G,H)

\J(G,H) �= φ. Let f ∈ A(−3)
(G,H)

\J(G,H). By setting x = e and y = g

in Theorem 6, we obtain that f(gn) = (−1)na for all n ∈ Z and for some
a ∈ H . Hence f(e) = a. Since e = gm, we get

a = f(e) = f(gm) = (−1)ma = −a.

We conclude that a = 0 and therefore f ∈ J(G,H), a contradiction. Thus
we must have A(−3)

(G,H)\J(G,H) = φ.

(b) Assume that m is even. Let f : G → H be

f(gn) = (−1)na for all n ∈ Z and for some a ∈ H\{0}.

Given n, m ∈ Z. If m is odd, then we see that n−m and n +m have the
same parity whereas n and n + m have the opposite. Therefore,

f(gn−m) − 2f(gn) − 3f(gn+m) = 0.

Otherwise, if m is even, then n − m, n, n + m all have the same parity,
i.e.,

f(gn−m) − 2f(gn) + f(gn+m) = 0.

Note that f(e) − 2f(g) + f(g2) = 4a. From a �= 0 and H is uniquely
divisible, we get 4a �= 0. Thus f ∈ A(−3)

(G,H)\J(G,H), i.e., A(−3)
(G,H)\J(G,H) �=

φ. Hence the proof is then complete by setting x = e and y = g in
Theorem 6.
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