East-West J. of Mathematics: Vol. 17, No 2 (2015) pp. 185-193

ON AN ALTERNATIVE FUNCTIONAL
EQUATION RELATED TO THE JENSEN’S
FUNCTIONAL EQUATION

C. Srisawat!, N. Kitisin* and P. Nakmahachalasint*

Dept. of Mathematics and Computer Science,
Faculty of Science, Chulalongkorn University,
t Bangkok 1055(, Thailand
C’h.sm’sawat@gmuil.com ;" Nataphan.k@chula.ac.th
Paisan.n@chula.ac.th

Abstract

Given an integer A # 1, we study the alternative Jensen’s functional
equation

flay™) —2f(@)+ flay) =0 or flzy™ ') —2f(z) + Af(zy) =0,

where f is a mapping from a group (G, ) to a uniquely divisible abelian
group (H,+). We prove that for A # —3, the above functional equation
is equivalent to the classical Jensen’s functional equation. Furthermore,
if G is a 2-divisible group, then we can strengthen the results by the
showing that the equivalence is valid for all integers A\ # 1.

1 Introduction

The alternative functional equations related to the (classical) Cauchy equation
problem

fl@+y) = f(x)+ fy) (1.1)

have been widely studied. For example, in 1974, Kannappan and Kuczma [3]
investigated the alternative Cauchy functional equation of the form

(f(@+y) —af(x) = 0f(y) (f(z+y) — f(@) - f(y) =0, (1.2)
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where f is a function form an abelian group to a commutative integral domain
with identity and of characteristic zero. Afterwards, Ger[2] extended the result
in [3] to the more general alternative functional equation of the form

(f(@ +y) —af(x) = bf(y) (f(z +y) —cf(z) —df(y)) = 0.

In 1978, Kuczma [4] established the equivalence of (1.2) and the classical
Cauchy functional equation (1.1) in the case when a =b = —1 and the do-
main is a semigroup. Later on, Forti[1] established the general solution of the
alternative Cauchy functional equation of the form

(cf(z+y) —af(z) =bf(y) —d) (f(z +y) — f(z) = f(y)) = 0.

Inspired by the work on the alternative Cauchy functional equation,
Nakmahachalasint[5] has proved the analogous results on the alternative
Jensen’s functional equation of the form

fla) £2f(xy) + fzy?) = 0

on a semigroup. His work represents a significant extension of the work of NG
[6] and Parnami and Vasudeva [7] on the classical Jensen’s functional equation

fla) = 2f(xy) + f(zy?) = 0

on a group.
In this paper, given an integer A # 1, we investigate the alternative Jensen’s
functional equation of the form

flay™) = 2f(x) + flzy) =0 or flay™") = 2f(z) + Mf(xy) =0, (AJ)

where f is a mapping from a group (G, -) to a uniquely divisible abelian group
(H,+). Note that when A = 1, (AJ) is just the classical Jensen’s functional
equation. We will prove that for X\ # —3, (AJ) is equivalent to the classical
Jensen’s functional equation in the sense that

Flay™) = 2f(x) + flzy) =0, ()

for all z,y € G. Furthermore, if the domain G is a 2-divisible group, then we
will show that (AJ) is equivalent to the classical Jensen’s functional equation
(J) for all X #£ 1.

2 Auxiliary Lemmas

Let (G, -) be a group and (H,+) be a uniquely divisible abelian group. Given
an integer A and a function f : G — H. For every pair of z,y € G, we define

M (2) = flay™") = 2f(x) + Mf(xy).
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Furthermore, for A # 1, we let P fé)‘) (z) be the statement
PN () = (Fy(l)(x) =0 or FM(z)= o).
Denote the set of all solutions of (AJ) by
Ay ={f G — H|PfM () forall z,y € G}.

Finally, the set of solution of the Jensen’s functional equation will be denoted
by
Janm) =1{f:G—H| Fy(l)(x) =0 forallz,y € G}.

It should be note that J my € Agg) o
The following Lemma will be crucial and we make use of it extensively in
the proofs. The reader should keep in mind of this fact.

Lemma 1. Let f € Agg)H) and let x,y € G.
Fy(l)(x) =0 and Fy()‘)(x) =0 if and only if f(xy) =0.

Proof. Assume that Fy(l)(x) = 0 and Fy()‘)(x) = 0. Therefore, Fy()‘)(x) -
Fy(l)(x) =0,ie, (A—=1)f(xy) =0. Since X # 1, we get f(zy) = 0. Conversely,
assume that f(zy) = 0. Since f € Agg{H), we have Fy(l)(x) =0or Fy()‘)(x) =0.
As f(xy) = 0, therefore Fy(l)(x) =0 and Fy()‘)(x) =0. O

We will prove some fundamental lemmas concerning the property of P f@S)‘) (z).

Lemma 2. Let f € Agg)H) and let x,y € G.
If FP(@) # 0, then f(ay™") = f(ay).
Proof. Assume that Fy(l)(x) # 0. The alternatives in Pfé)‘)(x) give Fy(’\)(x) =0.
Similarly, from F\", (z) = F{V () # 0 and P £ (2), we get F*)(z) = 0. Ob-
serve that Fy()‘)(x) - Fy(i)l (z) = 0, which simplifies to

(1 =N (flzy™) = f(zy)) = 0.
Since A # 1, we must have f(zy~!) = f(zy) as desired. O
Lemma 3. Let f € Agg)H) and let x,y € G.
If Fy(l)(x) #0 and Fy(l)(xy) #£0, then A = —3.

Proof. Assume that Fy(l)(x) # 0 and Fy(l)(xy) # 0. Hence f(xy?)#0 by
Lemma 1. By Lemma 2, we get

flay™) = fzy) and f(z) = f(zy?). (2.1)
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From Fy(l)(x) = 0 and Fy(l)(xy) = 0, the alternatives in Pfé)‘)(x) and Pfé)‘) (xy)
give Fy()‘)(x) =0 and Fy()‘)(xy) = 0, respectively. Substituting f(z) from (2.1)
into Fy()‘)(xy) =0, we have

A+ D) f(zy?) — 2f(xy) =0. (2.2)
Substituting f(zy~!) and f(z) from (2.1) into F\™(z) = 0, we obtain that
A+ 1) f(ay) - 2f(zy®) = 0. (2.3)
By (2.2) and (2.3), we get
(N2 42X\ = 3) f(zy?) = 0.
Since A # 1 and f(xy?) # 0, we must have A = —3. m

Lemma 4. Let f € Agg)H) and let x,y € G.
If Fy(l)(x) £ 0, then Fy(l)(xy) #0.

Proof. Suppose Fy(l)(x) = 0 but Fy(l)(xy) = 0. Since H is a uniquely divisible
abelian group, we let f(zy) = 2a. Assume that Fy(l)(x) # 0. By Lemma 2, we
get

flay™) = 2a. (2.4)

From Fy(l)(x) # 0, the alternatives in Pfé)‘) (x) gives Fy()‘)(x) = 0. We also
have 2a # 0 by Lemma 1, that is, a # 0. Substituting (2.4) into F\(z) = 0,
we obtain that

f(z) = (A +1)a. (2.5)

Substituting (2.5) into Fy(l)(xy) =0, we have
flay®) = (3 = Na. (2.6)
Consider the following two possible cases in P fé)‘) (xy~1).

1. Assume that Fy(l)(xy_l) # 0. By Lemma 2, we get f(xy~2) = f(x). By
(2.5), we have
flzy™2) = (A + 1. (2.7)

Substituting (2.5), (2.6) and (2.7) into P£3’ (x), we obtain that
(2-2Na=0 or (=1+2\—\?)a=0.

Since A # 1, we get a = 0, a contradiction.
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2. Assume that F\"(zy~!) = 0. Substituting (2.4) and (2.5) into

F{V(zy~1) = 0, we have
Fay) = (3 - Na.
Substituting (2.5), (2.6) and (2.8), in P£3 (), we get
(4—4Na=0 or (1-X)a=0.
Since A # 1 and a # 0, A = —1. Thus (2.6) simplifies to
f(xy?) = 4a.
Substituting (2.9) into P£5 " (zy?), we obtain that

f(zy?) = £6a.

(2.8)

(2.9)

(2.10)

Substituting (2.4), (2.10) into Pfy(gl)(xy) and simplifying, we get a = 0,

a contradiction.

Therefore, we must have Fy(l)(xy) # 0 as desired.

Lemma 5. Let f € Agg)ﬂ) and let x,y € G.
If Fy(l)(x) # 0, then Fy(l)(xy") #0 foralln € Z.

Proof. By applying Lemma 4 repeatedly, we get
1) n
Fy( (xy™) #0 forall n>1.

Similarly, by substituting i by y~!

in the previous arguments, we have
1 n
Fy( Nxy™) #0 forall n<—1.

Consequently, we conclude that Fy(l)(xy”) # 0 for all n € Z.

3 Main Results

In this section, we prove our main results of this paper.

Theorem 6. If Agg)H)\j(G,H) # ¢, then A = —3.

O

Moreover, if f € A%ZH)\j(G,H) and x,y € G, then f(zy™) = (—=1)"a for all

n € Z and for some a € H.
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Proof. Assume that A%{H)\j(G,H) #¢. Let f € A%{H)\j(gﬂ) andz,y € G.

Thus Fy(l)(x) # 0. Lemma 5 gives Fy(l)(xy") # 0 for all n € Z. By Lemma 2,
we get
flzy™™) = f(xy™™') forall n e Z. (3.1)

Since Fy(l)(x) # 0 and Fy(l)(xy) # 0, Lemma 3 gives A = —3. From Fy(l)(xy") #
0 for all n € Z, the alternatives Pfé_g)(xy") give Fy(_g)(xy") =0, ie.,

flay™™) = 2f(zy") = 3f(zy" 1) = 0. (32)
By (3.1) and (3.2), we have
flzy™) = —f(xy™™ ') forall n € Z. (3.3)

Thus f(zy) = —f(z) when n =1, and f(zy~') = —f(z) when n = 0. For any
n > 2, by (3.3), we obtain that

flay™) = (D) f(zy" 1) = (1) flay"?) = - = (=1)" (=)
and
flay™) = (=D f(ey™" ) = (1) flay™" ") = - = (-=1)" f(2).
Therefore, f(zy™) = (=1)"f(z) for all n € Z as desired. O

Theorem 3.1 shows that the alternative Jensen’s functional equation (AJ)
is equivalent to the Jensen’s functional equation (J) when A # —3. However,
when A = =3, (AJ) is not necessarily equivalent to (J) as illustrated by the
following example.

Example 7. Given a € H\{0}. Let f : Z — H be a function such that
f(n)=(=1)"a for alln € Z.

First, we will show that f € Ag;ja)r)- Given n,m € Z. If m is odd, then
we see that n — m and n 4+ m have the same parity whereas n and n + m
have the opposite. Therefore, f(n —m) —2f(n) — 3f(n +m) = 0. Otherwise,
if m is even, then n — m,n,n + m all have the same parity, i.e., f(n —m) —
2f(n) + f(n +m) = 0. Next, we will prove that f ¢ Jz ). Note that
f(0) —2f(1) + f(2) = 4a. From a # 0 and H is uniquely divisible, we get
4a #0. Thus f € Agii})\xﬁZ,H)-

In the case that G is a 2—divisible group, our main result is stronger in sense
that (AJ) is actually equivalent to the classical Jensen’s functional equation (J)
as the following theorem.

Theorem 8. Let (G,-) be a 2-divisible group. Then A%{H) = Ja,m) for all
A#1.
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Proof. It is only left to prove that Agg) H)\j(G, ) = ¢. Assume contradictorily

that A%ZH)\j(G,H) %+ ¢. Let f € A%ZH)\j(G,H) and z,y € G. Since G is a
2-divisible group, there exists a z € G such that y = 22. By setting y = z in
Theorem 6, we obtain that A = —3 and f(xz") = (—1)"a for all n € Z and for
some a € H. We can calculate

flzz™2) = 2f(x) + f(z2*) = (=1)%a — 2a + (—1)%a = 0.

Since y = 22, we conclude that f(xy~!) — 2f(x) + f(zy) = 0 and therefore
[ € Ja,m)- Hence, it is a contradiction to the fact that f & J m)- [l

4 Concrete Examples

In this section, we give the general solution when the domain is a cyclic group.
The following theorems show how Theorem 6 can be applied to certain cases.

Theorem 9. Let (G,-) be an infinite cyclic group with G = (g).
1 IfX# =3, then Al 1) = Tie.m)-

2. If \ = -3, then Aga?}l)\ﬂg,H) is non-empty and

Aga?}”\\ﬁc’}[) ={f:G— H| f(g") = (-1)"a for alln € Z and for
some a € H}.

Proof. If A # —3, then Theorem 3.1 gives A%ZH)\j(G,H) = ¢, i.e., Agg{H) =
Ja,m) and therefore (1). Next, we assume that X = —3. First, we will show
that Ag&?}l)\ﬂg,H) is non-empty. Let f: G — H be

f(g")=(=1)"a for all n€Z and for some a € H\{0}.

Given n,m € Z. If m is odd, then we see that n —m and n + m have the same
parity whereas n and n + m have the opposite. Therefore,

g™ ™) =2f(g") = 3f(g"*t™) = 0.

Otherwise, if m is even, then n — m,n,n + m all have the same parity, i.e.,

flg"™ ™) = 2f(g") + f(g""™) =0.

Note that f(e) — 2f(g) + f(g?) = 4a. From a # 0 and H is uniquely divisible,
we get 4a # 0. Thus [ € Aga?}{)\\ﬂc’[—[). Since Ag;?}l)\ﬂg,H) is non-empty,
the proof is complete by setting x = e and y = g in Theorem 6. O

Theorem 10. Let (G,-) be a cyclic group of finite order m > 2 with G = (g).
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If A # =3, then Agg{H) = J@G,m-
If A = =3, then
(a) if m is odd, then AEE;B}I) =JG,m, or

(b) if m is even, then Aga?}n\\ﬁgﬂ) is non-empty and

Ag;?}n\\ﬂgﬂ) ={f:G— H| f(g") =(—1)"a for alln € Z and
for some a € H}.

Proof. If A # —3, then Theorem 3.1 gives A%{H)\j(G,H) = ¢, i.e., A%{H) =
Ja,m) and therefore (1). Next, we assume that A\ = —3. We will consider two
possible cases of m as follows.

(a)

Assume that m is odd. We will show that AEE;BZI)\j(G ) = ¢. Suppose

Aga?}n\\ﬂgﬂ) #¢. Let f € Aga?}”\\ﬁgﬂ). By setting z =eandy =g
in Theorem 6, we obtain that f(¢") = (—1)"a for all n € Z and for some
a € H. Hence f(e) = a. Since e = g™, we get

a=fle)=f(g™)=(-1)"a = —a.
We conclude that a = 0 and therefore f € J(g #), a contradiction. Thus
we must have Aga?}”\\ﬂgﬂ) = ¢.
Assume that m is even. Let f: G — H be

f(g") =(=1)"a for all n€Z and for some a € H\{0}.

Given n,m € Z. If m is odd, then we see that n —m and n +m have the
same parity whereas n and n + m have the opposite. Therefore,

flg"™™) =2f(g") = 3f(g"*t™) = 0.

Otherwise, if m is even, then n — m,n,n + m all have the same parity,
ie.,

flg"™™) = 2f(g") + f(g"*™) = 0.
Note that f(e) — 2f(g9) + f(¢9?) = 4a. From a # 0 and H is uniquely
divisible, we get 4a # 0. Thus f € AL \Tic.m), i, AlG ) \Tie.m) #

¢. Hence the proof is then complete by setting * = e and y = ¢ in
Theorem 6.

O
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