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Abstract
In this paper, we consider the weak quasi-equilibrium problems and

show some sufficient conditions on the existence of their solutions and
the upper semicontinuity of solution mappings.

1 Introduction

In recent years, there are many authors studying the generalized
quasi - equilibrium problem. They often care about the existence of solutions
and the stability of the solution mapping of problems. Namely, in [3], [9], [12]
considered the existence of solutions of version of generalized quasi-equilibrium
problems. In [2], [11], [13], [15] have obtained the lower and upper semicon-
tinuity of the solution mappings in the some versions of parametric Ky Fan
inequality.

Throughout this paper, unless otherwise specify, X, Y, T, Z are supposed
to be locally convex Hausdorff topological vector spaces. Assume that D ⊂
X,K ⊂ Z are nonempty subsets. Given multivalued mappings A : D ×K →
2D, B : D×K → 2K , F : T ×D×K ×K → 2Y and C : T ×D×K → 2Y is a
cone multivalued mapping with convex nonempty cone values. For any t ∈ T,
we are interested in the following problems:

(P1) Find (ȳ, x̄) ∈ D ×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄), for all z ∈ A(ȳ, x̄).

Key words: Quasi-equilibrium problems, upper and lower C- continuous multivalued map-
pings, upper semicontinuity.
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(P2) Find (ȳ, x̄) ∈ D ×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅, for all z ∈ A(ȳ, x̄).

(P3) Find (ȳ, x̄) ∈ D ×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
∃z ∈ A(ȳ, x̄) such that F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄).

(P4) Find (ȳ, x̄) ∈ D ×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
∃z ∈ A(ȳ, x̄) such that F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅.

The aim of this paper is considering the existence of solution and the upper
semicontinuity of solution mappings of problems (Pi), i = 1, 2, 3, 4.

2 Preliminaries

Let us recall that the domain and the graph of a multivalued mapping G :
D −→ 2Y are defined by

domG = {x ∈ D| G(x) �= ∅} ,
Gr(G) = {(x, y) ∈ D × Y | y ∈ G(x)} ,

respectively. The mapping G is said to be closed (resp. open) if the graph
Gr(G) is a closed (resp. open) subset in the product space X × Y and it is
said to be a compact mapping if the closure clG(D) of its range G(D) is a
compact set in Y . It is said to be upper (lower) semicontinuous (briefly, usc
(respectively, lsc)) at x̄ ∈ D if for each open set V containingG(x̄) (respectively,
G(x̄) ∩ V �= ∅), there exists an open set U of x̄ that G(x) ⊆ V (respectively,
G(x) ∩ V �= ∅) for each x ∈ U and G is said to be usc (lsc) on D if it is usc
(respectively, lsc) at every point x ∈ D. We say that the mapping G has open
lower sections if the set G−1(y) = {x ∈ D | y ∈ G(x)} is open.

The definition following is extracted in [13].

Definition 2.1. Let G : D −→ 2Y be multivalued mapping and C : D −→ 2Y

be a cone multivalued mapping. G is called C- lower semicontinuous (shortly,
C-lsc) at x̄ ∈ D if there exists a compact set W (x̄) ⊂ C(x̄) such that, for
any open set N with G(x̄) ∩ N �= ∅, we can find a neighborhood U(x̄) of x̄
such that G(x) ∩ (N −W (x̄)) �= ∅, for all x ∈ U(x̄). This set W (x̄) is called
the set associated to the C- lower semicontinuous of G at x̄. G is called C-
upper semicontinuous (shortly, C-usc) at x̄ ∈ D if there exists a compact set
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W (x̄) ⊂ C(x̄) such that, for any open set N with G(x̄) ⊂ N , we can find a
neighborhood U(x̄) of x̄ such that G(x) ∩ (W (x̄) + N ) �= ∅, for all x ∈ U(x̄).
This set W (x̄) is called the set associated to the C- upper semicontinuous of
G at x̄.

Definition 2.2. a. Let F : D × K × K → 2Y be multivalued mapping,
C : D × K → 2Y be cone multivalued mapping. We say that F is called
diagonally upper (lower) C-quasiconvex-like in the third variable if for any

finite set {x1, ..., xn} ⊆ D, x ∈ co{x1, ..., xn}, x =
n∑

j=1

αjxj, αj ≥ 0,
n∑

j=1

αj = 1,

there is an index j ∈ {1, ..., n} it holds

F (y, x, xj) ⊆ F (y, x, x) +C(y, x)

(respectively, F (y, x, x) ⊆ F (y, x, xj) − C(y, x)).

b. Let G : D → 2Y be multivalued mapping. We say that G is upper
(lower) C-quasiconvex-like on D if for any x1, x2 ∈ D, t ∈ [0, 1], either

G(x1) ⊆ G(tx1 + (1 − t)x2) + C
or, G(x2) ⊆ G(tx1 + (1 − t)x2) +C

(respectively, either G(tx1 + (1 − t)x2) ⊆ G(x1) −C
or, G(tx1 + (1 − t)x2) ⊆ G(x2) −C

holds.

In the proof of the main results in Section 3, we need the following theorems.

Theorem 2.3. ([7]) Let X, Y be Hausdorff topological spaces, F : X → 2Y be
a multivalued map.

(i) If F is an usc with closed values, then F is closed.
(ii) If Y is a compact space and F is closed, then F is usc.

Theorem 2.4. ([10]). Let X be a locally convex Hausdorff topological vector
space, D be a nonempty convex compact subset of X and F : D → 2D be a usc
multivalued mapping with nonempty convex closed values. Then there exists
x̄ ∈ D such that x̄ ∈ F (x̄).

Next, we recall that a multivalued mappingH : D → 2X is said to be KKM
(see, for example, in [6]), if for any finite set {t1, ..., tn} ⊂ D, it implies that
co{t1, ..., tn} ⊆ ⋃n

j=1H(tj).

Theorem 2.5. ([4]) Let D be a nonempty convex subset of a Hausdorff topolog-
ical vector space X and let f : D → 2X be KKM-map. For each x ∈ D, if f(x)
is closed and for at least one x′ ∈ D, f(x′) is compact, then

⋂
x∈D f(x) �= ∅.
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Lemma 2.6. ([7]) Let E1, E2 and Z be real Hausdorff topological vector spaces,
X and Y be nonempty subsets of E1 and E2, respectively. If F : X×Y → 2Z is
a closed multivalued mapping and S : X → 2Y is an usc multivalued mapping
with compact values, then T : X → 2Z defined by T (x) = ∪y∈S(x)F (x, y) =
F (x, S(x)) is a closed multivalued mapping.

Proposition 2.7. ([14]) Let x0 ∈ X and let F : X → 2Y and F (x0) be compact
set. Then, F is C-lsc (resp. C-usc) at x0 if only if there exists a compact set
S(x0) ⊂ C(x0) such that for any neighborhood V of the origin in Y , there exists
a neighborhood U(x0) of x0 such that

F (x0) ⊂ F (x) + V + S(x0), ∀x ∈ U(x0)

(resp.F (x) ⊂ F (x0) + V + S(x0), ∀x ∈ U(x0)).

3 The upper semicontinuous of solution map-

pings

Let D,K be convex compact sets. Given multivalued mappings A,B, F and C
with nonempty values as in Introduction. Denote

H = {(y, x) ∈ D ×K : x ∈ A(y, x), y ∈ B(y, x)} .

We defined the multivalued mappings Si : T → 2D×K , i = 1, 2, 3, 4 by

S1(t) = {(y, x) ∈ H | F (t, y, x, z) �⊆ intC(t, y, x), for all z ∈ A(y, x)} .

S2(t) = {(y, x) ∈ H | F (t, y, x, z)∩ intC(t, y, x) = ∅, for all z ∈ A(y, x)} .
S3(t) = {(y, x) ∈ H | ∃z ∈ A(y, x), F (t, y, x, z) �⊆ intC(t, y, x)} .

S4(t) = {(y, x) ∈ H | ∃z ∈ A(y, x), F (t, y, x, z)∩ intC(t, y, x) = ∅} .
We will establish the sufficient conditions for the upper semicontinuity of (Si), i =
1, 2, 3, 4. In the Theorems following, we assume that the sets Si(t), i = 1, 2, 3, 4
are nonempty for all t ∈ T, intC(t, y, x) �= ∅ for all y ∈ D, x ∈ K, t ∈ T.

Theorem 3.1. Let A be continuous multivalued mapping with convex closed
values, B be upper semicontinuous with convex closed values. For each t0 ∈ T,
assume the following conditions hold:

(i) intC is open on {t0} ×D ×K;
(ii) F is a closed map on {t0} ×D ×K ×K.
Then S1 is usc at t0.

Proof. Since D×K is a compact set, to proof the upper semicontinuity of S1

we will show that S1 is closed.
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Assume that xβ → x0, yβ → y0, tβ → t0, (yβ , xβ) ∈ S1(tβ). Then (yβ , xβ) ∈
H and F (tβ, yβ, xβ, z) �⊆ intC(tβ , yβ, xβ), for all z ∈ A(yβ , xβ).

For the upper semicontinuity of A,B with nonempty closed values in com-
pact set imply the closed property of A and B. This means y0 ∈ B(y0 , x0), x0 ∈
A(y0, x0) and so (y0, x0) ∈ H.

The lower semicontinuity of A and xβ → x0, yβ → y0 follow that for
any z0 ∈ A(y0, x0), there exists zβ ∈ A(yβ , xβ) such that zβ → z0. Thus,
F (tβ, yβ, xβ, zβ) �⊆ intC(tβ, yβ, xβ). So F (tβ, yβ , xβ, zβ)∩(Y \intC(tβ, yβ, xβ)) �=
∅. The openness of intC implies that Y \ intC is a closed map. Since F
and Y \ intC are closed, we have F (t0, y0, x0, z0) ∩ (Y \ intC(t0, y0, x0)) �= ∅.
This reduces F (t0, y0, x0, z0) �⊆ intC(t0, y0, x0) for any z0 ∈ A(y0, x0). Thus,
(y0, x0) ∈ S1(t0). This shows that S1 is closed at t0. The proof is complete.

Theorem 3.2. Let A be continuous multivalued mapping with convex closed
values, B be upper semicontinuous with convex closed values. For each t0 ∈ T,
assume the following conditions hold:

(i) intC is open on {t0} ×D ×K;
(ii) F is (−C)-lsc with compact values on {t0} ×D ×K ×K.
Then S2 is usc at t0.

Proof. Since D×K is a compact set, to proof the upper semicontinuity of S2

we will show that S2 is closed.
Setting

S2(t) = {(y, x) ∈ D ×K | F (t, y, x, z)∩ intC(t, y, x) = ∅, for all z ∈ A(y, x)} .

S′
2(t) = D×K \ S2(t).

Taking arbitrary (y0, x0) ∈ S′
2(t0), there exists z0 ∈ A(y0, x0) such that

F (t0, y0, x0, z0) ∩ intC(t0, y0, x0) �= ∅. Then there exists a point f0 such that
f0 ∈ F (t0, y0, x0, z0), f0 ∈ intC(t0, y0, x0).

Let W0(y0, x0) be the compact set associated to the definition of the (−C)-
lower semicontinuity property of F, by C(t0, y0, x0) is convex cone and
W0(y0 , x0) ⊆ −C(t0, y0, x0), therefore f0 −W0(y0, x0) ⊆ intC(t0, y0, x0). Since
intC is open, there exist a balanced neighborhood V of the origin in Y and
neighborhoods U1(y0) of y0, U1(x0) of x0, U1(t0) of t0 such that

f0 −W0(y0, x0) + V ⊂ intC(t, y, x) for all (t, y, x) ∈ U1(t0) × U1(y0) × U1(x0).
(1)

Since F is (−C)-lsc with compact values, there exist neighborhoods U2(y0) ⊂
U1(y0), U2(x0) ⊂ U1(x0), U(t0) ⊂ U1(t0) and U(z0) such that

F (t0, y0, x0, z0) ⊂ F (t, y, x, z) +W0(y0 , x0) + V (2)

for all (t, y, x, z) ∈ U(t0) × U2(y0) × U2(x0) × U(z0).
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Observe now that U(z0) is open and A(y0 , x0) ∩ U(z0) �= ∅, on the other
hand A is lsc, then there are neighborhoods U(y0) ⊂ U2(y0), U(x0) ⊂ U2(x0)
such that

A(y, x) ∩U(z0) �= ∅ for all (y, x) ∈ U(y0) × U(x0).

Therefore, there exists z such that z ∈ A(y, x) and z ∈ U(z0).
Since (t, y, x, z) ∈ U(t0) × U(y0) × U(x0) × U(z0), and since (1),(2) hold,

there is a point f ∈ F (t, y, x, z) satisfies f0 ∈ f +W0(y0, x0) + V. This implies
f ∈ f0 −W0(y0, x0) + V. So f ∈ intC(t, y, x). This implies that

F (t, y, x, z)∩ intC(t, y, x) �= ∅

for all (t, y, x, z) ∈ U = U(t0)×U(y0)×U(x0)×U(z0). Hence, U ⊂ GrS′
2, and

then S′
2 is open multivalued mapping. This shows that S2 is closed multivalued

mapping.
We see that S2(t) = S2(t)∩H. The upper semicontinuity with closed values

in compact set of A and B imply that H is a closed set. For S2 is closed maps
and H is a closed set, it is easy denotation S2 is a closed map. The proof is
complete.

Similar proof of above Theorems, we will show the upper semicontinuity of
S3, S4 with weaker hypothesis of A.

Theorem 3.3. Let A be usc with convex compact values, B be usc with convex
closed values. For each t0 ∈ T, assume the following conditions hold:

(i) intC is open on {t0} ×D ×K;
(ii) F is a closed map on {t0} ×D ×K ×K.

Then S3 is usc at t0.

Proof. Since D×K is a compact set, to proof the upper semicontinuity of S3

we will show that S3 is closed.
Assume that xβ → x0, yβ → y0, tβ → t0, (yβ , xβ) ∈ S3(tβ). Then (yβ , xβ) ∈

H and there is z ∈ A(yβ , xβ) such that F (tβ, yβ, xβ, z) �⊆ intC(tβ, yβ, xβ). So
F (tβ, yβ, xβ, z) ∩ (Y \ intC(tβ , yβ, xβ)) �= ∅ with z ∈ A(yβ , xβ). Therefore

F (tβ, yβ, xβ, A(yβ , xβ)) ∩ (Y \ intC(tβ, yβ, xβ)) �= ∅. (3)

For A is usc with nonempty compact values and B is usc with closed
values in compact set imply the closed property of A and B. This means
y0 ∈ B(y0 , x0), x0 ∈ A(y0 , x0) and so (y0, x0) ∈ H.

Since A is usc with compact values and F is closed, the multivalued map-
ping G defined by G(t, y, x) = ∪z∈A(y,x)F (t, y, x, z) = F (t, y, x, A(y, x)), for all
(t, y, x) ∈ T ×D ×K is closed.
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The openness of intC implies that Y \ intC is a closed map. Combination
(3) with the closedness of G and Y \ intC, we have F (t0, y0, x0, A(y0, x0))∩ (Y \
intC(t0, y0, x0)) �= ∅. This reduces

F (t0, y0, x0, A(y0, x0)) �⊆ intC(t0, y0, x0).

Thus, there is z ∈ A(y0, x0) such that F (t0, y0, x0, z) �⊆ intC(t0, y0, x0). This
implies (y0, x0) ∈ S3(t0). This shows that S3 is closed at t0. The proof is
complete.

Theorem 3.4. Let A be usc with convex compact values, B be usc with convex
closed values. For each t0 ∈ T, assume the following conditions hold:

(i) intC is open on {t0} ×D ×K;
(ii) F is (−C)-lsc with compact values on {t0} ×D ×K ×K.
Then S4 is usc at t0.

Proof. Since D×K is a compact set, to proof the upper semicontinuity of S4

we will show that S4 is closed.
Setting

S4(t) = {(y, x) ∈ D ×K | ∃z ∈ A(y, x), F (t, y, x, z)∩ intC(t, y, x) = ∅} .
S′

4(t) = D×K \ S4(t).

Taking arbitrary (y0, x0) ∈ S′
4(t0), then

F (t0, y0, x0, z0) ∩ intC(t0, y0, x0) �= ∅ for all z0 ∈ A(y0 , x0).

This shows that there exists a point f0 such that f0 ∈ F (t0, y0, x0, A(y0, x0)), f0 ∈
intC(t0, y0, x0).

Let W0(y0, x0) be the compact set associated to the definition of the (−C)-
lower semicontinuity property of F, by C(t0, y0, x0) is convex cone and
W0(y0 , x0) ⊆ −C(t0, y0, x0), therefore f0 −W0(y0, x0) ⊂ intC(t0, y0, x0). Since
intC is open, there exist a balanced neighborhood V of the origin in Y and
neighborhoods U1(y0) of y0, U1(x0) of x0, U1(t0) of t0 such that

f0 −W0(y0, x0) + V ⊂ intC(t, y, x), ∀(t, y, x) ∈ U1(t0)× U1(y0)× U1(x0). (4)

Since F is (−C)-lsc with compact values, there exist neighborhoods U2(y0) ⊂
U1(y0), U2(x0) ⊂ U1(x0), U(t0) ⊂ U1(t0) and UA(y0, x0) such that

F (t0, y0, x0, A(y0, x0)) ⊂ F (t, y, x, z) +W0(y0, x0) + V (5)

for all (t, y, x, z) ∈ U(t0) × U2(y0) × U2(x0) × UA(y0, x0). For A(y0, x0) is a
compact set, we can cover it by a finite number n of neighborhood U(zi), zi ∈
A(y0, x0). Therefore,

U = (∪n
i=1U(zi)) ∩ UA(y0, x0) is a neighborhood of A(y0, x0).



158 Upper semicontinuity for solution mappings of...

On the other hand, A is usc, then there are neighborhoods U(y0) ⊂ U2(y0),
U(x0) ⊂ U2(x0) such that

A(y, x) ⊂ U for all (y, x) ∈ U(y0) × U(x0).

Therefore, for all z ∈ A(y, x) and z ∈ U, and (5) becomes

F (t0, y0, x0, A(y0, x0)) ⊂ F (t, y, x, A(y, x)) +W0(y0, x0) + V (6)

for all (t, y, x, A(y, x)) ∈ U(t0) × U(y0) × U(x0) × U.
Since (t, y, x, A(y, x)) ∈ U(t0) × U(y0) × U(x0) × U, and since (4),(6) hold,

there is a point f ∈ F (t, y, x, A(y, x)) and f0 ∈ f +W0(y0, x0)+V, this implies
f ∈ f0 −W0(y0, x0) + V. So f ∈ intC(t, y, x). This implies that
F (t, y, x, A(y, x)) ∩ intC(t, y, x) �= ∅ for all (t, y, x, A(y, x)) ∈ U = U(t0) ×
U(y0) × U(x0) × U. This means F (t, y, x, z) ∩ intC(t, y, x) �= ∅ for all z ∈
A(y, x), (t, y, x) ∈ U(t0)×U(y0)×U(x0). Hence, U(t0)×U(y0)×U(x0) ⊂ GrS′

4,
and then S′

4 is open multivalued mapping. This shows that S4 is a closed mul-
tivalued mapping.

We see that S4(t) = S4(t)∩H. The upper semicontinuity with closed values
in compact set of A and B imply that H is a closed set. For S4 is closed maps
and H is a closed set, it is easy denotation S4 is a closed map. The proof is
complete.

4 Existence of solutions

In this section, we prove the existence solution of (Pi), i = 1, 2, 3, 4. Let the
sets D,K be convex compact, the multivalued mappings A,B, F, C be defined
as the same as in Section 3.

Theorem 4.1. Let A be a multivalued mapping with convex closed values, B
be upper semicontinuous with convex closed values. For each t ∈ T, assume the
following conditions hold:

(i) A has open lower sections, H is a closed set;
(ii) intC is a open map;
(iii) F is a closed map, F is a diagonally lower (−C)-quasiconvex-like in

the fourth variable and F (t, y, x, x) �⊆ intC(t, y, x).
Then for each t ∈ T, there exists (ȳ, x̄) ∈ D×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄), for all z ∈ A(ȳ, x̄).

Proof. We define the multivalued mapping M : D ×K → 2K by

M(y, x) = {z ∈ K | F (t, y, x, z) ⊆ intC(t, y, x)}
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Assume on the contrary that for all (y, x) ∈ H such that F (t, y, x, z) ⊆
intC(t, y, x), for some z ∈ A(y, x). This means for all (y, x) ∈ H then M(y, x)∩
A(y, x) �= ∅. Hence, the multivalued mapping Q : D ×K → 2K by

Q(y, x) =
{
co(M(y, x)) ∩A(y, x), if (y, x) ∈ H ;

A(y, x), if (y, x) ∈ (D ×K) \H

has nonempty values.
Setting E = {(y, x) ∈ D ×K | F (t, y, x, z) �⊆ intC(t, y, x)}. We will show

that E is a closed set. Indeed, assume xβ → x, yβ → y, (yβ , xβ) ∈ E. This
means F (t, yβ, xβ, z) �⊆ intC(t, yβ, xβ). Then

F (t, yβ, xβ, z) ∩ (Y \ intC(t, yβ, xβ)) �= ∅. (7)

The openness of intC implies that Y \ intC is a closed map. Since (7) and
F, Y \ intC are closed, we have

F (t, y, x, z)∩ (Y \ −intC(t, y, x)) �= ∅.

Thus, (y, x) ∈ E so E is a closed set. This follows that M−1(z) is a open set.

Q−1(z) = (coM)−1(z) ∩A−1(z) ∪ (A−1(z) ∩ (D ×K \H)).

We reduce that Q has nonempty convex values and open lower sections, D×K
is a compact in Hausdorff topological space, we claim from Theorem 8.1.3 of
[5] that there exists a continous single-valued map φ : D ×K → K such that
φ(y, x) ∈ Q(y, x).

We see that, the set-valued map ψ : D ×K → 2D×K defined by

ψ(y, x) = B(y, x) × {φ(y, x)}

is compact usc with nonempty convex closed in D×K, then it has fixed point.
This means, there exists (ȳ, x̄) ∈ D ×K such that x̄ ∈ φ(ȳ, x̄), ȳ ∈ B(ȳ, x̄).

Obviously, (ȳ, x̄) ∈ H and x̄ ∈ Q(ȳ, x̄). By the definition ofQ, x̄ ∈ coM(ȳ, x̄)
and x̄ ∈ A(x̄, ȳ).

Since x̄ ∈ coM(ȳ, x̄), there exists a finite subset {x1, ..., xn} of M(ȳ, x̄) and

x̄ =
n∑

i=1

αixi, αi ≥ 0,
n∑

i=1

αi = 1. Thus

F (t, ȳ, x̄, xi) ⊆ intC(t, ȳ, x̄) for all i = 1, 2, ..., n.

For F is diagonally lower (−C)-quasiconvex-like in the fourth variable, we
conclude that there is an index j ∈ {1, ..., n} such that

F (t, ȳ, x̄, x̄) ⊂ F (t, ȳ, x̄, xj) + C(t, ȳ, x̄) ⊆ intC(t, ȳ, x̄).
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This contrary to (iii). Then for each t ∈ T, there exists (ȳ, x̄) ∈ D × K such
that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄), for all z ∈ A(ȳ, x̄).

The proof is complete.

Theorem 4.2. Let A be a multivalued mapping with convex closed values, B
be upper semicontinuous with convex closed values. For each t ∈ T, assume the
following conditions hold:

(i) A has open lower sections, H is a closed set;
(ii) intC is a open map;
(iii) For any z ∈ K,F (t, ., ., z) is (−C)-lsc, F is a diagonally upper (−C)-

quasiconvex-like in the fourth variable and F (t, y, x, x) ∩ intC(t, y, x) = ∅ for
all (y, x) ∈ D ×K.

Then for each t ∈ T, there exists (ȳ, x̄) ∈ D×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅, for all z ∈ A(ȳ, x̄).

Proof. We define the multivalued mapping N : D ×K → 2K by

N(y, x) = {z ∈ K| F (t, y, x, z)∩ intC(x) �= ∅}

Assume on the contrarily that for all (y, x) ∈ H such that F (t, y, x, z) ∩
intC(t, y, x) �= ∅, for some z ∈ A(y, x). This means for all (y, x) ∈ H then
N(y, x) ∩A(y, x) �= ∅. Hence, the multivalued mapping Q′ : D ×K → 2K by

Q′(y, x) =
{
co(N(y, x)) ∩A(y, x), if (y, x) ∈ H ;

A(y, x), if (y, x) ∈ (D ×K) \H

has nonempty values.

N−1(z) = {(y, x) ∈ D×K| F (t, y, x, z)∩ intC(t, y, x) �= ∅}.

We will show that N−1(z) is open in D ×K.
Taking arbitrary (y0, x0) ∈ N−1(z), we reduce

F (t, y0, x0, z) ∩ intC(t, y0, x0) �= ∅.

Then there exists a point f0 such that f0 ∈ F (t, y0, x0, z), f0 ∈ intC(t, y0, x0).
Let W0(y0, x0) be the compact set associated to the definition of the (−C)-

lower semicontinuity property of F, by C(t, y0, x0) is convex cone and
W0(y0 , x0) ⊆ −C(t, y0, x0), therefore f0 −W0(y0, x0) ⊂ intC(t, y0, x0). Since
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intC is open, for any neighborhood V of the origin in Y, there exist neighbor-
hoods U1(y0), U1(x0) of y0, x0 such that

f0 −W0(y0, x0) + V ⊂ intC(t, y, x) for all (y, x) ∈ U1(y0) × U1(x0).

Since F is (−C)-lsc, there exist neighborhoods U2(y0) ⊂ U1(y0), U2(x0) ⊂
U1(x0) such that

F (t, y, x, z)∩ (f0 −W0(y0, x0) + V ) �= ∅ for all (y, x) ∈ U2(y0) × U2(x0).

Thus, there exists a point f ∈ F (t, y, x, z) and f ∈ f0 −W0(y0, x0) + V. So
f ∈ intC(t, y, x). This implies that F (t, y, x, z)∩ intC(t, y, x) �= ∅ for all (y, x) ∈
U2(y0) × U2(x0). So U2(y0) × U2(x0) ⊂ N−1(z), and then N−1 is a open set.

On the other hand

Q′−1(z) = (coN)−1(z) ∩A−1(z) ∪ (A−1(z) ∩ (D ×K) \H).

Combination the openness of N−1(z), A−1(z) and the closedness of H, we con-
clude the openness of Q′−1(z). Hence, Q′ has nonempty convex values and
open lower sections, D × K is a compact in Hausdorff topological space, we
claim from Theorem 8.1.3 of [5] that there exists a continous single-valued map
φ′ : D×K → K such that φ′(y, x) ∈ Q′(y, x).

We see that, the set-valued map ψ′ : D×K → 2D×K defined by

ψ′(y, x) = B(y, x) × {φ′(y, x)}
is compact usc with nonempty convex closed in D×K, then it has fixed point.
This means, there exists (ȳ, x̄) ∈ D ×K such that x̄ ∈ φ′(ȳ, x̄), ȳ ∈ B(ȳ, x̄).

Obviously, (ȳ, x̄) ∈ H and x̄ ∈ Q′(ȳ, x̄). By the definition of Q′, x̄ ∈
coN(ȳ, x̄) and x̄ ∈ A(x̄, ȳ).

Since x̄ ∈ coN(ȳ, x̄), there exists a finite subset {x1, ..., xn} of M(ȳ, x̄) and

x̄ =
n∑

i=1
αixi, αi ≥ 0,

n∑
i=1

αi = 1. Thus

F (t, ȳ, x̄, xi) ∩ intC(t, ȳ, x̄) �= ∅ for all i = 1, 2, ..., n.

For F is diagonally upper (−C)-quasiconvex-like in the fourth variable, we
conclude that there is an index j ∈ {1, ..., n} such that

F (t, ȳ, x̄, xj) ⊂ F (t, ȳ, x̄, x̄) −C(t, ȳ, x̄)

This reduce
(F (t, ȳ, x̄, x̄) − C(t, ȳ, x̄)) ∩ intC(t, ȳ, x̄) �= ∅.

Therefore F (t, ȳ, x̄, x̄) ∩ intC(t, ȳ, x̄) �= ∅. This contrary to (iii). Then for each
t ∈ T, there exists (ȳ, x̄) ∈ D ×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅, for all z ∈ A(ȳ, x̄).

The proof is complete.
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Theorem 4.3. Let A be usc multivalued mapping with convex compact values,
B be usc multivalued mapping with convex closed values. For each t ∈ T,
assume the following conditions hold:

(i) intC is a open map;
(ii) F is a closed map, F is upper C-quasiconvex-like in the third and fourth

variable;
(iii) For all (t, y, x) ∈ T × D × K, z /∈ coN(t, y, x, z) where N(t, y, x, z) =

{ξ ∈ K | F (t, y, ξ, z) ⊆ intC(t, y, x)}.
Then for each t ∈ T, there exists (ȳ, x̄) ∈ D×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
∃z ∈ A(ȳ, x̄), F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄).

Proof. We define the multivalued mapping M : D ×K → 2K ,W : D ×K →
2D×K by

M(y, x) = {ξ ∈ A(y, x) | ∃z ∈ A(y, x), F (t, y, ξ, z) �⊆ intC(t, y, x)}
W (y, x) = B(y, x) ×M(y, x).

The first, we will show that M is closed. Assume that xβ → x, yβ → y, ξβ →
ξ, ξβ ∈M(yβ , xβ). Then ξβ ∈ A(yβ , xβ) and there is z ∈ A(yβ , xβ) such that

F (t, yβ, ξβ, z) �⊆ intC(t, yβ, xβ).

So F (t, yβ, ξβ, A(yβ, xβ)) ∩ Y \ intC(t, yβ, xβ) �= ∅.
For the usc with nonempty compact values of A and ξβ ∈ A(yβ , xβ) implies

ξ ∈ A(y, x).
Since A is usc with compact values and F is closed, the multivalued mapping

G defined by G(t, y, ξ, x) = ∪z∈A(y,x)F (t, y, ξ, z) = F (t, y, ξ, A(y, x)), for all
(t, y, x) ∈ T ×D ×K is closed.

The openness of intC implies that Y \ intC is a closed map. Since the
closedness of G and Y \intC, we have F (t, y, ξ, A(y, x))∩(Y \ intC(t, y, x)) �= ∅.
This reduces F (t, y, ξ, A(y, x)) �⊆ intC(t, y, x). Thus, there is z ∈ A(y, x) such
that F (t, y, ξ, z)) �⊆ intC(t, y, x). This implies ξ ∈M(y, x). This shows that M
is closed.

In the next step, we prove M(y, x) is a convex set. Taking arbitrary ξ1, ξ2 ∈
M(y, x). Then there are z1, z2 ∈ A(y, x) such that

F (t, y, ξ1, z1) �⊆ intC(t, y, x), F (t, y, ξ2, z2) �⊆ intC(t, y, x). (8)

Since A(y, x) is convex, λz1 +(1−λ)z2 ∈ A(y, x) and λξ1 +(1−λ)ξ2 ∈ A(y, x)
for all λ ∈ [0, 1].

For F is upperC-quasiconvex-like in the third and fourth variable implies
that for all λ ∈ [0, 1]

F (t, y, ξ1, z1) ⊂ F (t, y, λξ1 + (1 − λ)ξ2 , λz1 + (1 − λ)z2) + C(t, y, x), (9)
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or

F (t, y, ξ2, z2) ⊂ F (t, y, λξ1 + (1 − λ)ξ2, λz1 + (1 − λ)z2) +C(t, y, x). (10)

Combination conclusions (8), (9), (10), we conclude that

F (t, y, λξ1 + (1 − λ)ξ2, λz1 + (1 − λ)z2) +C(t, y, x) �⊆ intC(t, y, x).

Hence,
F (t, y, λξ1 + (1 − λ)ξ2 , λz1 + (1 − λ)z2) �⊆ intC(t, y, x).

This shows λξ1 + (1 − λ)ξ2 ∈M(y, x). So M(y, x) is a convex set.
Setting L : A(y, x) → A(y, x) defined by

L(z) = {ξ ∈ A(y, x) | F (t, y, ξ, z) �⊆ intC(t, y, x)}.

Suppose, there exists a finite subset {z1, ..., zn} ∈ A(y, x) such that cozi �⊂
∪n

i=1L(zi). So we can find z =
n∑

i=1
αizi, αi ≥ 0,

n∑
i=1

αi = 1 such that z �⊂
∪n

i=1L(zi). This means F (t, y, z, zi) ⊂ intC(t, y, x) for all i = 1, 2, ..., n or equiv-
alent zi ∈ N(t, y, x, z). Thus, z ∈ coN(t, y, x, z), which contradicts with (iii).

Argument similar to proof the closed property of M , we can easy show that
L(z) is a closed set in A(y, x) compact. Hence, according the Theorem 2.4, it
follows

∩z∈A(y,x)L(z) �= ∅.
This means M has nonempty values.

Combining all these facts proves that M is usc with nonempty closed convex
values. Since B is usc with closed convex values, W is too. Hence, W has a
fixed point. This follows there exists x̄ ∈ M(ȳ, x̄), ȳ ∈ B(ȳ, x̄). So x̄ ∈ A(ȳ, x̄)
and there is z ∈ A(ȳ, x̄) such that F (t, ȳ, x̄, z) �⊆ intC(t, ȳ, x̄).

Theorem 4.4. Let A be usc multivalued mapping with convex compact values,
B be usc multivalued mapping with convex closed values. For each t ∈ T,
assume the following conditions hold:

(i) intC is a open map;
(iii) For any z ∈ K,F (t, ., ., z) is (−C)-lsc with compact values and F is

lower C-quasiconvex-like in the third anf fourth variable;
(iii) For all (t, y, x) ∈ T × D × K, z /∈ coQ(t, y, x, z) where Q(t, y, x, z) =

{ξ ∈ K | F (t, y, ξ, z)∩ intC(t, y, x) �= ∅}.
Then for each t ∈ T, there exists (ȳ, x̄) ∈ D×K such that

x̄ ∈ A(ȳ, x̄); ȳ ∈ B(ȳ, x̄);
∃z ∈ A(ȳ, x̄), F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅.
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Proof. We define the multivalued mapping N : D ×K → 2K ,W : D ×K →
2D×K by

N(y, x) = {ξ ∈ A(y, x) | ∃z ∈ A(y, x), F (t, y, ξ, z)∩ intC(t, y, x) = ∅}
W (y, x) = B(y, x) ×N(y, x).

Since intC is open and F is (−C)-lsc with compact values, we can prove
the closedness of N as the same as the closedness of S4 in Theorem 3.4.

Let ξ1, ξ2 ∈ N(y, x). Then there are z1, z2 ∈ A(y, x) such that

F (t, y, ξ1, z1) ∩ intC(t, y, x) = ∅, F (t, y, ξ2, z2) ∩ intC(t, y, x) = ∅.
These facts show that

(F (t, y, ξ1, z1) −C(t, y, x)) ∩ intC(t, y, x) = ∅,
(F (t, y, ξ2, z2) −C(t, y, x)) ∩ intC(t, y, x) = ∅. (11)

Since A(y, x) is convex, λz1 +(1−λ)z2 ∈ A(y, x) and λξ1 +(1−λ)ξ2 ∈ A(y, x)
for all λ ∈ [0, 1].

For F is C-lower quasiconvex-like in the third and fourth variable implies
that

F (t, y, λξ1 + (1 − λ)ξ2, λz1 + (1 − λ)z2) ⊂ F (t, y, ξ1, z1) −C(t, y, x), (12)

or

F (t, y, λξ1 + (1 − λ)ξ2, λz1 + (1 − λ)z2) ⊂ F (t, y, ξ2, z2) −C(t, y, x). (13)

Combination conclusions (11), (12), (13), we conclude that

F (t, y, λξ1 + (1 − λ)ξ2, λz1 + (1 − λ)z2) ∩ intC(t, y, x) = ∅.
This shows λξ1 + (1 − λ)ξ2 ∈ N(y, x). So N(y, x) is a convex set.

Setting L′ : A(y, x) → A(y, x) defined by

L′(z) = {ξ ∈ A(y, x) | F (t, y, ξ, z)∩ intC(t, y, x) = ∅}.
We will show that L′ is KKM. Suppose, there exists a finite subset {z1, ..., zn} ∈
A(y, x) such that cozi �⊂ ∪n

i=1L
′(zi). So we can find z =

n∑
i=1

αizi, αi ≥ 0,
n∑

i=1
αi =

1 such that z �⊂ ∪n
i=1L

′(zi). This means

F (t, y, z, zi) ∩ intC(t, y, x) �= ∅ for all i = 1, 2, ..., n

or equivalent zi ∈ Q(t, y, x, z). Thus, z ∈ coQ(t, y, x, z), which contradicts with
(iii).
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Argument similar to proof the closed property of N , we can easy show that
L′(z) is a closed set in A(y, x) compact. Hence, according the Theorem 2.4, it
follows

∩z∈A(y,x)L
′(z) �= ∅.

This means M has nonempty values.
Combining all these facts proves that N is usc with nonempty, closed convex

values. Since B is usc with closed convex values, W is too. Hence, W has a fixed
point. This follows there exists x̄ ∈ N(ȳ, x̄), ȳ ∈ B(ȳ, x̄). So x̄ ∈ A(ȳ, x̄), y ∈
B(ȳ, x̄) and there is z ∈ A(ȳ, x̄) such that F (t, ȳ, x̄, z) ∩ intC(t, ȳ, x̄) = ∅.
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