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Abstract
In this paper, we consider the weak quasi-equilibrium problems and
show some sufficient conditions on the existence of their solutions and
the upper semicontinuity of solution mappings.

1 Introduction

In recent years, there are many authors studying the generalized
quasi - equilibrium problem. They often care about the existence of solutions
and the stability of the solution mapping of problems. Namely, in [3], [9], [12]
considered the existence of solutions of version of generalized quasi-equilibrium
problems. In [2], [11], [13], [15] have obtained the lower and upper semicon-
tinuity of the solution mappings in the some versions of parametric Ky Fan
inequality.

Throughout this paper, unless otherwise specify, X,Y, T, Z are supposed
to be locally convex Hausdorff topological vector spaces. Assume that D C
X, K C Z are nonempty subsets. Given multivalued mappings A : D x K —
2P B:DxK -2 F:TxDxKxK —-2YandC:TxDxK —2" isa
cone multivalued mapping with convex nonempty cone values. For any ¢t € T,
we are interested in the following problems:

(Py) Find (g,z) € D x K such that

T € A(y,);y € B(y,7);
F(t,5,%,2) € intC(t, 5, %), for all z € A(g,T).

Key words: Quasi-equilibrium problems, upper and lower C- continuous multivalued map-
pings, upper semicontinuity.
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(P2) Find (g,z) € D x K such that

T € A(y,7);y € B(y,);
F(t,y,z,2) NintC(t,y,x) = 0, for all z € A(y,T).

(P3) Find (7,z) € D x K such that

T € Ay, 2);y € B(y,z);
3z € A(y, z) such that F(t,7,T,2) € intC(¢, §, T).

(P4) Find (7,%) € D x K such that

T € A(y,);y € B(y,7);
3z € A(y, x) such that F(t,¥,,z) NintC (¢, 7, ) = 0.

The aim of this paper is considering the existence of solution and the upper
semicontinuity of solution mappings of problems (P;),i = 1,2, 3, 4.

2 Preliminaries

Let us recall that the domain and the graph of a multivalued mapping G :
D — 2Y are defined by

domG = {z € D| G(z) # 0},
Gr(G) ={(z,y) e Dx Y|y € G(x)},

respectively. The mapping G is said to be closed (resp. open) if the graph
Gr(G) is a closed (resp. open) subset in the product space X x Y and it is
said to be a compact mapping if the closure cI/G(D) of its range G(D) is a
compact set in Y. Tt is said to be upper (lower) semicontinuous (briefly, usc
(respectively, Isc)) at T € D if for each open set V containing G(Z) (respectively,
G(z) NV # D), there exists an open set U of z that G(xz) C V (respectively,
G(z)NV # ) for each x € U and G is said to be usc (Isc) on D if it is usc
(respectively, 1sc) at every point « € D. We say that the mapping G has open
lower sections if the set G (y) = {z € D | y € G(z)} is open.
The definition following is extracted in [13].

Definition 2.1. Let G : D — 2 be multivalued mapping and C : D — 2V
be a cone multivalued mapping. G is called C- lower semicontinuous (shortly,
C-lsc) at T € D if there exists a compact set W (z) C C(Z) such that, for
any open set A with G(zZ) NN # (), we can find a neighborhood U(Z) of
such that G(z) N (N — W(z)) # 0, for all z € U(Z). This set W(Z) is called
the set associated to the C- lower semicontinuous of G at z. G is called C-
upper semicontinuous (shortly, C-usc) at T € D if there exists a compact set
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W(z) C C(z) such that, for any open set N' with G(Z) C N, we can find a
neighborhood U(Z) of T such that G(z) N (W(z) + N) # 0, for all x € U(x).
This set W(Z) is called the set associated to the C- upper semicontinuous of
G at .

Definition 2.2. a. Let FF : D x K x K — 2Y be multivalued mapping,
C : D x K — 2Y be cone multivalued mapping. We say that F is called
diagonally upper (lower) C-quasiconvex-like in the third variable if for any

n n
finite set {z1,...,z,} C D,z € co{x1,...,zn}, = ) oz, a; >0, aj =1,
j=1 j=1

there is an index j € {1, ...,n} it holds
F(yaxaxj) g F(y,x,x)+0(y,x)

(respectively, F(y,z,2) C F(y,z,z;) — C(y, x)).

b. Let G : D — 2Y be multivalued mapping. We say that G is upper
(lower) C-quasiconvex-like on D if for any z1,22 € D, t € [0, 1], either

G(z1) CGtr1 + (1 —t)ze) + C
or, G(z2) CG(tx1+ (1 —t)zs) +C

(respectively, either G(txy + (1 —t)z2) C G(x1) — C
or, G(tx;+ (1—1t)z2) CG(z2) —C

holds.
In the proof of the main results in Section 3, we need the following theorems.

Theorem 2.3. ([7]) Let X,Y be Hausdorff topological spaces, F': X — 2¥ be
a multivalued map.

(i) If F is an usc with closed values, then F is closed.

(i) If Y is a compact space and F is closed, then F is usc.

Theorem 2.4. ([10]). Let X be a locally conver Hausdorff topological vector
space, D be a nonempty convex compact subset of X and F : D — 2P be a usc
multivalued mapping with nonempty convex closed values. Then there ezists
Z € D such that © € F(z).

Next, we recall that a multivalued mapping H : D — 2% is said to be KKM
(see, for example, in [6]), if for any finite set {t1,...,t,} C D, it implies that
co{ty, ..., tn} C U?:1 H(t;).

Theorem 2.5. ([4]) Let D be a nonempty convex subset of a Hausdorff topolog-
ical vector space X and let f : D — 2% be KKM-map. For each x € D, if f(x)
is closed and for at least one ' € D, f(x') is compact, then (,cp f(x) # 0.
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Lemma 2.6. ([7]) Let E1, E5 and Z be real Hausdorff topological vector spaces,
X andY be nonempty subsets of By and Es, respectively. If F: X xY — 27 is
a closed multivalued mapping and S : X — 2Y is an usc multivalued mapping
with compact values, then T : X — 27 defined by T(z) = Uyes(a)F(z,y) =
F(x,S(x)) is a closed multivalued mapping.

Proposition 2.7. ([14]) Let zo € X and let F : X — 2Y and F(z¢) be compact
set. Then, F is C-lsc (resp. C-usc) at xo if only if there exists a compact set
S(xz0) C C(xp) such that for any neighborhood V' of the origin in'Y, there exists
a neighborhood U (xzq) of x¢ such that

F(zo) C F(z)+V + S(x0),Vz € U(zo)

(resp.F(z) C F(xo) + V + S(xg), Vo € U(xg)).

3 The upper semicontinuous of solution map-
pings

Let D, K be convex compact sets. Given multivalued mappings A, B, F' and C'
with nonempty values as in Introduction. Denote

H={(y,x) e DxK:x€A(y,z),y € By, z)}.
We defined the multivalued mappings S; : T — 2P*K j =1,2,3,4 by
S(t) = () € H | F(t,y,,2) € ntCl(t,, ), for all 2 € Aly, )}

So(t) ={(y,z) € H| F(t,y,z,2z) NintC(t,y,x) =0, for all z € A(y, )} .
S3(t) ={(y,z) € H |3z € A(y,x), F(t,y,x,2) £ intC(t,y,z)}.
Sy(t) ={(y,z) € H| 3z € Ay, x), F(t,y,x,2) NintC (¢, y,z) = 0} .

We will establish the sufficient conditions for the upper semicontinuity of (S;),i =
1,2,3,4. In the Theorems following, we assume that the sets S;(t),7 = 1,2,3,4
are nonempty for all ¢t € T, intC(¢,y,z) #@ forally € D,z € K,t € T.

Theorem 3.1. Let A be continuous multivalued mapping with convex closed
values, B be upper semicontinuous with convex closed values. For each ty € T,
assume the following conditions hold:

(i) intC' is open on {to} x D x K;

(ii) F is a closed map on {to} x D x K x K.

Then Sy is usc at tg.

Proof. Since D x K is a compact set, to proof the upper semicontinuity of S1
we will show that S is closed.
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Assume that 3 — %0, Y3 — Yo,t3 — to, (Ys, xg) € Si(tg). Then (yz,z3) €
H and F(ts,ys, x8, 2) € intC(tg, yg, ), for all z € A(ys, ).

For the upper semicontinuity of A, B with nonempty closed values in com-
pact set imply the closed property of A and B. This means yo € B(yo, Zo), Zo €
A(yo, x0) and so (yo, zo) € H.

The lower semicontinuity of A and zg — xo,y3 — yo follow that for
any zo € A(yo,xo), there exists zg € A(ys,zg) such that zg — zo. Thus,
F(tg, ys, ws,28) £ intC(tg, yp, x). So F(ts,ys, xp, 23) (Y \intC(ts, ys, z5)) #
(). The openness of intC implies that ¥ \ intC is a closed map. Since F
and Y \ intC are closed, we have F(to, yo,z0,20) N (Y \ intC(to, yo,zo)) # 0.
This reduces F(to,yo, o, 20) € intC(to, yo,zo) for any 2o € A(yo,zo). Thus,
(yo, zo) € S1(to). This shows that S is closed at tg. The proof is complete.

Theorem 3.2. Let A be continuous multivalued mapping with convex closed
values, B be upper semicontinuous with convex closed values. For each ty € T,
assume the following conditions hold:

(i) intC' is open on {to} x D x K;

(ii) F is (—C)-lsc with compact values on {to} x D x K x K.

Then Sy is usc at tg.

Proof. Since D x K is a compact set, to proof the upper semicontinuity of Sy
we will show that Ss is closed.
Setting

Sa(t) ={(y,z) e Dx K | F(t,y,z,2z) NintC(t,y,z) =0, for all z € A(y,z)} .

S's(t) = D x K\ Sy(t).

Taking arbitrary (yo,zo) € S'2(to), there exists zp € A(yo,xo) such that
F(to, Yo, To, 2z0) N intC(tg, Yo, zo) # O. Then there exists a point fy such that
f() S F(t(), Yo, Lo, ZO), f() S intC(t(), Yo, xo).

Let Wo(yo, zo) be the compact set associated to the definition of the (—C')-
lower semicontinuity property of F, by C(to,yo,%o) is convex cone and
Wo(y(), xo) - —C(t(), Yo, xo), therefore f() — Wo(y(), xo) - intC(t(), Yo, xo). Since
intC' is open, there exist a balanced neighborhood V of the origin in Y and
neighborhoods U; (yo) of yo, U1 (xg) of zq, Ui (to) of tg such that

fo— Wo(y(), xo) +V C intC’(t, Y, ZC) for all (t, Y, ZC) e U (t()) x Uy (y()) x Uy (.130)
1

(1)
Since F'is (—C)-1sc with compact values, there exist neighborhoods Uz (yg) C

U (y()), UQ(J?Q) cU; (.230), U(t()) c Uz (t()) and U(Z(]) such that
F(to, yo, zo, 20) C F(t,y, 7, 2) + Wo(yo, xo) +V (2)

for all (¢,y,x,z) € Ulto) x Ua(yo) X Uz(xo) x U(2p).
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Observe now that U(zy) is open and A(yo, o) NU(z0) # 0, on the other
hand A is lsc, then there are neighborhoods U(yo) C Us(yo), U(xo) C Ua(xo)
such that

Ay, ) NU(20) # 0 for all (y,x) € U(yo) x U(zo)-

Therefore, there exists z such that z € A(y,z) and z € U(z).

Since (t,y,x,2) € Ul(tg) x U(yo) X U(xg) x U(zp), and since (1),(2) hold,
there is a point f € F(t,y, x, z) satisfies fo € f + Wo(yo, zo) + V. This implies
f € fo—Wo(yo,zo) + V. So f € intC(¢,y, x). This implies that

F(t,y,,2) NintC(t,y,z) £ 0

for all (t,y,x,2) € U =U(tg) X U(yo) x U(xg) X U(2p). Hence, U C GrS’5, and
then &’s is open multivalued mapping. This shows that Ss is closed multivalued
mapping.

We see that S2(t) = S2(t) N H. The upper semicontinuity with closed values
in compact set of A and B imply that H is a closed set. For S, is closed maps
and H is a closed set, it is easy denotation Sy is a closed map. The proof is
complete.

Similar proof of above Theorems, we will show the upper semicontinuity of
Ss, Sy with weaker hypothesis of A.

Theorem 3.3. Let A be usc with convexr compact values, B be usc with convex
closed values. For each tg € T, assume the following conditions hold:

(i) intC' is open on {to} x D x K

(ii) F is a closed map on {to} x D x K x K.

Then S3 is usc at tg.

Proof. Since D x K is a compact set, to proof the upper semicontinuity of Ss
we will show that S3 is closed.

Assume that 3 — xo,y3 — ¥o,t3 — to, (Ys, xg) € S3(tg). Then (yz,z3) €
H and there is z € A(yg, xg) such that F(tg,yg, g, 2) € intC(tz,ys, ). So
F(tg,ys, x3,2) N (Y \ intC(tg, ys, v3)) # 0 with z € A(yg, xg). Therefore

F(ts,yp zp, Alys, v5)) N (Y \ intC(ts, ys, v5)) # 0. (3)

For A is usc with nonempty compact values and B is usc with closed
values in compact set imply the closed property of A and B. This means
Yo € B(yo,0), z0 € A(yo, o) and so (yo, zo) € H.

Since A is usc with compact values and F' is closed, the multivalued map-
ping G defined by G(t,y,r) = Uscay,)F(t,y, x,2) = F(t,y,x, A(y, z)), for all
(t,y,2) € T x D x K is closed.



TrUONG THI THUY DUONG 157

The openness of intC' implies that Y\ intC is a closed map. Combination
(3) with the closedness of G and Y\ intC, we have F'(to, yo, Zo, A(yo, o)) N (Y'\
intC'(to, Yo, To)) # 0. This reduces

F(th Yo, Lo, A(y(]a x())) g intc(t(]a Yo, xO)'

Thus, there is z € A(yo, o) such that F(to, yo, zo,2) € intC(to, yo, xo). This
implies (yo, o) € Ss3(to). This shows that S5 is closed at to. The proof is
complete.

Theorem 3.4. Let A be usc with convexr compact values, B be usc with conver
closed values. For each tg € T, assume the following conditions hold:

(i) intC' is open on {to} x D x K;

(ii) F is (—C)-lsc with compact values on {to} x D x K x K.

Then Sy is usc at tg.

Proof. Since D x K is a compact set, to proof the upper semicontinuity of Sy
we will show that Sy is closed.
Setting

Si(t) ={(y,z) € Dx K |3z € Ay, x), F(t,y,x, 2) NintC (¢, y, z) = 0} .
S'4(t) = D x K\ S4(t).
Taking arbitrary (yo, zo) € S’4(to), then
F(to,yo, o, 20) NintC (Lo, Yo, o) # O for all 2o € A(yo, z0o)-

This shows that there exists a point f such that fo € F(to, yo, Zo, A(Yo, Z0)), fo €
intC(t(), Yo, xo).

Let Wo(yo, zo) be the compact set associated to the definition of the (—C')-
lower semicontinuity property of F, by C(to,yo, o) is convex cone and
Wo(y(), xo) - —C(t(), Yo, xo), therefore f() — Wo(y(), xo) C intC(t(), Yo, xo). Since
intC' is open, there exist a balanced neighborhood V of the origin in Y and
neighborhoods Uj (yo) of yo, U1 (xg) of zq, Ui (to) of tg such that

f() — Wo(y(), xo) +V C intC’(t, Y, ZC), V(f, Y, 33) S Ul(t()) X Ul(y()) X Ul(xo). (4)

Since F' is (—C)-Isc with compact values, there exist neighborhoods Us(yg) C
Uy (y()), UQ(J?Q) clU; (.230), U(t()) c Uz (t()) and UA(y(), xo) such that

F(to, yo, 0, A(yo, w0)) C F(t,y,x,2z) + Wo(yo, x0) +V (5)

for all (t,y,x,2) € U(to) X Ua(yo) X Ua(zo) X Ua(yo,zo). For A(yo,xo) is a
compact set, we can cover it by a finite number n of neighborhood U(z;), z; €
A(yo, o). Therefore,

U= (U_1U(2:)) NUa(yo, xo) is a neighborhood of A(yo, o).
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On the other hand, A is usc, then there are neighborhoods U(yy) C Us(yo),
U(JZ()) C UQ(J?Q) such that

A(y,x) C U for all (y,x) € U(yo) x U(zo)-
Therefore, for all z € A(y,z) and z € U, and (5) becomes
F(to, yo, xo, A(yo, z0)) C F(t,y,z, Ay, z)) + Wo(yo, z0) +V (6)

for all (t,y,z, Ay, x)) € U(to) x U(yo) x U(xg) x U.

Since (t,y, z, A(y,x)) € U(to) x U(yo) x U(xo) x U, and since (4),(6) hold,
there is a point f € F(t,y,x, A(y,x)) and fo € f+ Wo(yo, zo) + V, this implies
f € fo—Wo(yo,zo) + V. So f € intC(¢,y, x). This implies that
F(t,y,z, A(y,z)) N intC(¢t,y,z) # O for all (t,y,z, A(y,z)) € U = Ulty) x
U(yo) x U(xg) x U. This means F(t,y,z,z) NintC(t,y,z) # 0 forall 2 €
Ay, ), (t,y,x) € U(to) xU(yo) xU(xo). Hence, U(to) xU(yo) xU(xg) C GrS'y,
and then &', is open multivalued mapping. This shows that Sy is a closed mul-
tivalued mapping.

We see that Sy(t) = S4(t)N H. The upper semicontinuity with closed values
in compact set of A and B imply that H is a closed set. For Sy is closed maps
and H is a closed set, it is easy denotation Sy is a closed map. The proof is
complete.

4 Existence of solutions

In this section, we prove the existence solution of (P;),i = 1,2,3,4. Let the
sets D, K be convex compact, the multivalued mappings A, B, F, C be defined
as the same as in Section 3.

Theorem 4.1. Let A be a multivalued mapping with convex closed values, B
be upper semicontinuous with convex closed values. For eacht € T, assume the
following conditions hold:

(i) A has open lower sections, H is a closed set;

(i) intC is a open map;

(#ii) F is a closed map, F is a diagonally lower (—C)-quasiconvez-like in
the fourth variable and F(t,y,xz,x) € intC(t,y, ).

Then for each t € T, there exists (§,%) € D x K such that

T € A(y,7);y € B(y,);
F(t,5,%,2) € mtC(t,y,x), for all z € Ay, T).
Proof. We define the multivalued mapping M : D x K — 2% by

M(y,z) ={z€ K | F(t,y,x,2) CintC(t,y,z)}



TrUONG THI THUY DUONG 159

Assume on the contrary that for all (y,x) € H such that F(t,y,z,z) C
intC'(t, y, x), for some z € A(y, x). This means for all (y, x) € H then M (y, z)N
A(y, z) # . Hence, the multivalued mapping Q : D x K — 2% by

co(M(y,x)) N A(y, ), if (y,x) € H;
Q(y’x):{ yA(y,x), ! if(y,x)g(DxK)\H

has nonempty values.

Setting F = {(y,z) € D x K | F(t,y,z,z) € intC(t,y,x)}. We will show
that £ is a closed set. Indeed, assume xg — x,y3 — ¥, (yg,23) € E. This
means F'(t,yg, g, 2) € intC(¢,yg, x3). Then

F(t,ys, z,z) N (Y \ intC(t,yg, z3)) # 0. (7)

The openness of intC implies that Y \ intC is a closed map. Since (7) and
F,Y \ intC are closed, we have

F(t,y,z,2)N (Y \ —intC(t,y,x)) # 0.

Thus, (y,z) € E so E is a closed set. This follows that M ~1(z) is a open set.

Q7 '(2) = (coM) M (2) N AT () U (A (2) N (D x K\ H)).

We reduce that () has nonempty convex values and open lower sections, D x K
is a compact in Hausdorff topological space, we claim from Theorem 8.1.3 of
[5] that there exists a continous single-valued map ¢ : D x K — K such that
o(y, ) € Q(y, ).

We see that, the set-valued map 1 : D x K — 2P*K defined by

w(ya 33) = B(ya 33) X {qb(y, Ji)}

is compact usc with nonempty convex closed in D x K, then it has fixed point.
This means, there exists (§,Z) € D x K such that Z € ¢(y,Z),y € B(¥, T).
Obviously, (7,z) € H and T € Q(¥, Z). By the definition of Q, T € coM (3, Z)
and T € A(Z, 7).
Since T € coM (i, Z), there exists a finite subset {1, ..., x,} of M (g, Z) and

«; = 1. Thus
=1

T=>Y ax;,a; >0,
=1 1

F(t,y,%,2;) CintC(t,5,z) foralli =1,2,...,n.

For F is diagonally lower (—C)-quasiconvex-like in the fourth variable, we
conclude that there is an index j € {1,...,n} such that

F(t,y,2,z) C F(t,y,7,25) + C(t,9,7) CintC(t,y, ).
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This contrary to (iii). Then for each ¢t € T, there exists (7,Z) € D x K such
that

T € A(y,7);y € B(y,7);
F(t,5,%,2) € intC(t, 5, %), for all z € A(g,T).

The proof is complete.

Theorem 4.2. Let A be a multivalued mapping with convex closed values, B
be upper semicontinuous with convex closed values. For eacht € T, assume the
following conditions hold:

(i) A has open lower sections, H is a closed set;

(i) intC is a open map;

(#ii) For any z € K, F(t,.,.,2) is (—C)-lsc, F is a diagonally upper (—C)-
quasiconvez-like in the fourth variable and F(t,y,z,z) N mtC(t,y,z) = O for
all (y,x) € D x K.

Then for each t € T, there exists (§,%) € D x K such that

T € A(y,7);y € B(y,7);

F(t,g,z,z) NintC(t,y,z) =0, for all z € A(y,T).
Proof. We define the multivalued mapping N : D x K — 2K by

N(y,z) = {z € K| F(t,y,a,2) N intC(x) # 0}

Assume on the contrarily that for all (y,z) € H such that F(t,y,z,2) N
intC(t,y,z) # 0, for some z € A(y,x). This means for all (y,z) € H then
N(y,x) N A(y, x) # (). Hence, the multivalued mapping Q" : D x K — 2K by

, co(N(y,x)) N Ay, x), if (y,x) € H;
Q(y’x):{ yA(y,x), ! if(y,x)g(DxK)\H

has nonempty values.
N=Y(z) = {(y.2) € D x K| F(t,y,,2) NintC(t, y, z) # 0},

We will show that N~1(2) is open in D x K.
Taking arbitrary (yo, o) € N~1(2), we reduce

F(ta Yo, To, Z) N th(t, Yo, 330) 7& (Z)

Then there exists a point fy such that fo € F(t,yo, xo, 2), fo € intC(¢, yo, o).

Let Wo(yo, zo) be the compact set associated to the definition of the (—C)-
lower semicontinuity property of F, by C(t,yo,2z0) is convex cone and
Wo(yo,x0) € —C(t,yo,x0), therefore fo — Wy(yo, o) C intC(¢, yo, zo). Since
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intC' is open, for any neighborhood V' of the origin in Y, there exist neighbor-
hoods Ui (yo), U1 (o) of yo, zo such that

Jo —Wo(yo, o) +V CintC(t,y, x) for all (y,x) € Ui(yo) x Ur (o).

Since F is (—C)-lsc, there exist neighborhoods Us(yo) C Ui(yo), Uz(zo) C
Ui(xo) such that

F(t,y,x, Z) n (f() — Wo(y(),x()) + V) #+ 0 for all (y,x) S Ug(y()) X UQ(J?()).

Thus, there exists a point f € F(t,y,z,2) and f € fo — Wo(yo, o) + V. So

f € intC(¢,y, z). This implies that F(¢,y, z, z) NintC(¢, y, x) # (@ for all (y,x) €

Usz(yo) X Ua(xg). So Ua(yo) x Uz(xo) C N71(2), and then N~1! is a open set.
On the other hand

Q7 2) = (coN) )N A ) U (A (2) N (D x K) \ H).

Combination the openness of N=1(z), A71(z) and the closedness of H, we con-
clude the openness of Q'~!(z). Hence, ' has nonempty convex values and
open lower sections, D x K is a compact in Hausdorff topological space, we
claim from Theorem 8.1.3 of [5] that there exists a continous single-valued map
¢’ : D x K — K such that ¢'(y,z) € Q'(y, x).

We see that, the set-valued map 1’ : D x K — 2P*K defined by

w/(ya 33) = B(ya 33) X {¢/(ya Ji)}

is compact usc with nonempty convex closed in D x K, then it has fixed point.
This means, there exists (¢,7) € D x K such that T € ¢'(y, %),y € B(y, ).
Obviously, (7,Z) € H and T € Q'(7,Z). By the definition of @', T €
coN(y,z) and T € A(Z, 7).
Since T € coN (g, &), there exists a finite subset {z1,...,z,} of M(y,Z) and
n

n
T=> ax;,a; >0, a;, =1. Thus
i=1 i=1

F(t,y,z,z;) NintC(t,y,x) #0 foralli =1,2,...,n.

For F is diagonally upper (—C)-quasiconvex-like in the fourth variable, we
conclude that there is an index j € {1, ...,n} such that

F(ta ga j;a xj) C F(ta ga j;a j) - C(ta ga j)
This reduce
(F(ta Y, , j) - C(ta Y, 'i)) N th(t, Y, j) 7é (D
Therefore F(t,7,z,z) NintC (¢, g, T) # 0. This contrary to (iii). Then for each
t € T, there exists (§,Z) € D x K such that
T € A(y,r);y € B(y,2);
F(t,y,z,2) NintC(t,y,x) = 0, for all z € A(y,T).

The proof is complete.
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Theorem 4.3. Let A be usc multivalued mapping with convexr compact values,
B be usc multivalued mapping with conver closed values. For each t € T,
assume the following conditions hold:

(i) intC is a open map;

(i) F is a closed map, F is upper C-quasiconvex-like in the third and fourth
variable;

(#ii) For all (t,y,x) € T x D X K,z ¢ coN(t,y,x,z) where N(t,y,x,2) =
(€€ K | Ft,y,€,2) C intC(t,y,2)}.

Then for each t € T, there exists (§,%) € D x K such that

]
T e Ay, x);5 € B(y,%);
3z € A(y,z), F(t,y,z,2) € intC(t, 7, T).

Proof. We define the multivalued mapping M : D x K — 2K W : D x K —
2D><K by

M(y,z) ={€ € Ay, z) | 3z € A(y, x), F(t,y,§, 2) € mtC(t,y,2)}

W(yax) = B(yax) X M(yax)

The first, we will show that M is closed. Assume that x5 — 2,yg — y,§{3 —
&,&s € M(yg, ). Then &3 € A(ys, x3) and there is z € A(ys, x3) such that

F(ta Y3, gﬂa Z) g th(t, Y3, xﬂ)

So F(t,ys,&p, A(ys, xp)) NY \IntC (L, ys, x) # 0.

For the usc with nonempty compact values of A and &g € A(ygs, x3) implies
£€ Ay, x).

Since A is usc with compact values and F' is closed, the multivalued mapping
G defined by G(t,y,§,v) = Usca,o)F'(t,y,&,2) = F(t,y,&, Ay, x)), for all
(t,y,2) € T x D x K is closed.

The openness of intC' implies that Y \ intC' is a closed map. Since the
closedness of G and Y'\intC, we have F(t,y,&, A(y, z))N(Y'\ intC (¢, y, x)) # 0.
This reduces F(t,y,&, A(y,z)) € intC(¢,y,x). Thus, there is z € A(y,x) such
that F(t,y,€,2)) € intC(t,y, ). This implies £ € M (y, z). This shows that M
is closed.

In the next step, we prove M (y, ) is a convex set. Taking arbitrary &, & €
My, x). Then there are z1, 25 € A(y, x) such that

F(ta Y, 51; Zl) g th(t, Y, J?), F(ta Y, 52; ZQ) g th(t, Y, J?) (8)

Since A(y, ) is convex, Az; + (1 — X)z2 € A(y,z) and A& + (1 — N)& € A(y, x)
for all A € [0,1].

For F is upperC-quasiconvex-like in the third and fourth variable implies
that for all A € [0, 1]

F(ta Y, 51; Zl) - F(ta Y, )‘51 + (1 - )‘)62; )\Zl + (1 - )‘)ZQ) + C(ta Y, J?), (9)
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or

F(ta Y, 52; ZQ) - F(ta Y, )‘51 =+ (1 - )‘)62; )\Zl =+ (1 - )‘)ZQ) + C(ta Y, J?) (10)
Combination conclusions (8), (9), (10), we conclude that
F(ta Y, )‘51 =+ (1 - )‘)62; )\Zl =+ (1 - )‘)ZQ) + C(ta Y, J?) g 1ntC(t, Y, J?)

Hence,
F(ta Y, )‘51 =+ (1 - )‘)62; )\Zl =+ (1 - )‘)ZQ) g th(t, Y, J?)

This shows A1 + (1 — V)& € M (y, x). So M(y,x) is a convex set.
Setting L : A(y,z) — A(y, z) defined by

L(z) = {§ € Ay, ) | F(t,y,¢,2) £ ntC(t, y, x)}.

Suppose, there exists a finite subset {z1,...,2,} € A(y,z) such that coz; ¢
n n

UM L(z). So we can find z = > a;z;,; > 0,>. a; = 1 such that z ¢
i=1 i=1

U, L(2;). This means F(t,y, z, z;) C intC(t,y, ) for alli = 1,2, ..., n or equiv-

alent z; € N(¢,y,x, z). Thus, z € coN(t,y, x, z), which contradicts with (iii).

Argument similar to proof the closed property of M, we can easy show that
L(z) is a closed set in A(y, ) compact. Hence, according the Theorem 2.4, it
follows

Nzeagy,o)L(z) # 0.

This means M has nonempty values.

Combining all these facts proves that M is usc with nonempty closed convex
values. Since B is usc with closed convex values, W is too. Hence, W has a
fixed point. This follows there exists Z € M (g, %),y € B(y,Z). So & € A(y, )
and there is z € A(g, x) such that F(¢,9,%,2) € intC(t, 7y, T).

Theorem 4.4. Let A be usc multivalued mapping with convexr compact values,
B be usc multivalued mapping with conver closed values. For each t € T,
assume the following conditions hold:

(i) intC is a open map;

(iii) For any z € K, F(t,.,.,z) is (—=C)-lsc with compact values and F is
lower C-quasiconvez-like in the third anf fourth variable;

(#ii) For all (t,y,z) € T x D x K,z ¢ coQ(t,y,x,z) where Q(t,y,x,z) =
{Ee K| F(t,y,&z)N ntC(t,y,x) # 0}.

Then for each t € T, there exists (§,%) € D x K such that

T € A(y,2);y € B(y,2);
Jz € Ay, %), F(t, ¥, T, z) NintC(t, ¥y, z) = 0.
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Proof. We define the multivalued mapping N : D x K — 2K W : D x K —
2D><K by

N(y,z) ={¢ € A(y,z) | 3z € Ay, x), F(t,y, &, z) NintC(t,y, z) = 0}

W(yax) = B(yax) X N(yax)

Since intC is open and F is (—C)-lsc with compact values, we can prove
the closedness of N as the same as the closedness of S; in Theorem 3.4.
Let &1,& € N(y, ). Then there are 21, 20 € A(y, x) such that

F(ta Y, 515 Zl) N 1ntC(t, Y, J?) = (Da F(ta Y, 525 ZQ) N 1ntC(t, Y, J?) = (Z)
These facts show that

(F(ta Y, 51; Zl) - C(ta Y, .13)) N th(t, Y, J?)

-,
(F(taya§2532) _C(tayax)) ﬂlntC(t,y,x) = (Z) (11)

Since A(y, ) is convex, Az; + (1 — X)z2 € A(y,z) and A& + (1 — N\)& € A(y, x)
for all A € [0,1].

For F' is C-lower quasiconvex-like in the third and fourth variable implies
that

F(ta Y, )‘61 + (1 - )‘)62; )\Zl + (1 - )‘)ZQ) - F(ta Y, 51; Zl) - C(ta Y, J?), (12)

or

F(ta Y, )‘51 =+ (1 - )‘)62; )\Zl =+ (1 - )‘)ZQ) - F(ta Y, 52; ZQ) - C(ta Y, J?) (13)
Combination conclusions (11), (12), (13), we conclude that
F(t,y, X1+ (1 = N)&, Azg + (1 — Nzo) NintC (¢, y, x) = 0.

This shows Ay + (1 — V)& € N(y, z). So N(y, x) is a convex set.
Setting L' : A(y,z) — A(y, z) defined by

L'(z) ={¢ € A(y,z) | F(t,y,& 2)NintC(t,y, z) = 0}.

We will show that L’ is KKM. Suppose, there exists a finite subset {z1, ..., z,} €
n n

A(y, x) such that coz; ¢ UP_;L'(2;). Sowecanfind z = > ajz;, 0, > 0, > oy =
i=1 i=1
1 such that z ¢ U, L'(z;). This means

F(t,y,2z,2z) NintC(t,y,x) D for allt =1,2,...,n

or equivalent z; € Q(¢,y, x, z). Thus, z € coQ(t,y, x, z), which contradicts with

(iii).
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Argument similar to proof the closed property of N, we can easy show that
L'(z) is a closed set in A(y, z) compact. Hence, according the Theorem 2.4, it
follows

mzeA(y,r)L/(Z) 7& (Z)

This means M has nonempty values.

Combining all these facts proves that N is usc with nonempty, closed convex
values. Since B is usc with closed convex values, W is too. Hence, W has a fixed
point. This follows there exists & € N(3,Z),y € B(§,Z). So T € A(§,%),y €
B(y, %) and there is z € A(j, ) such that F(¢, 3,7, z) NintC(t, ¥, z) = 0.
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