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Abstract

A ternary ring R is right strongly prime if every nonzero ideal of R
contains a finite subset G such that the right annihilator of G with respect
to a finite subset of R is zero. Examples are ternary integral domain and
simple ternary rings with a unital element ‘e’ or an identity element.
All the strongly prime ternary rings are prime. In this paper we study
right strongly prime ternary rings and obtain some characterizations of
it. Lastly we characterize strongly prime radical of a ternary ring.

1 Introduction

A ring R is prime if for given r, t ∈ R\{0}, there exists s ∈ R such that rst �= 0.
If for each nonzero element r of R, we can restrict the choice of ‘s’ to a finite
set(independent of t but depending on r), then we have a ring that is stronger
than prime. Considering these Handelman and Lawrence[6] introduced the
following notion. Given a nonzero element r of R, a right insulator for r, is
defined to be a finite subset F of R, such that ann({rs : s ∈ F }) = {0}. Now R
is called right strongly prime if each nonzero element of R has a right insulator,
i.e for each for each r ∈ R\{0} there is a finite subset F of R such that xFy =
{0} implies that y = 0. Although prime is a symmetric notion, Handelman and
Lawrence[6] showed that strongly prime is not. Although primitive group rings
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were the original motivation for introducing strongly prime rings, it became
apparent that strongly prime rings are interesting by themselves. In 2007, T.K.
Dutta and M.L.Das[4] introduced and studied (right)strongly prime semiring.

In the year 1971, W.G.Lister[7] introduced the notion of ternary ring. In
this paper we introduce the notion of right strongly prime ternary ring. We
obtain some elementary properties of right strongly prime ternary rings. We
also obtain some characterizations of right strongly prime ternary rings. Lastly
we introduce the notion of super sp-system in a ternary ring and characterize
strongly prime radical by the above notion.

Some earlier work on ternary rings of the authors may be found in [9], [10],
[11].

2 Preliminaries

Definition 2.1. [10] A nonempty set R together with a binary operation,
called addition and a ternary multiplication denoted by juxtaposition, is called
a ternary ring if R is an additive commutative group satisfying the following
properties:
(i) (abc)de = a(bcd)e = ab(cde),
(ii) (a+b)cd = acd + bcd,
(iii) a(b+c)d = abd + acd,
(iv) ab(c+d) = abc + abd for all a, b, c, d, e ∈ R.

Definition 2.2. Let R be a ternary ring. The additive identity ‘0’ of R satisfies
the property 0xy = x0y = xy0 = 0 for all x, y ∈ R.This element ‘0’ is called
the zero element or simply the zero of the ternary ring R.

Definition 2.3. A ternary ring R admits an identity provided that there exist

elements {(ei, fi) ∈ R × R(i = 1, 2, ...., n)} such that
n∑

i=1

eifix =
n∑

i=1

eixfi =

n∑
i=1

xeifi = x for all x ∈ R. In this case the ternary ring R is said to be a

ternary ring with identity {(ei, fi) : i ∈ 1, 2, ...., n}. In particular, if there exists
an element e ∈ R such that eex = exe = xee = x for all x ∈ R then e is called
a unital element of the ternary ring R.

It is obvious that xye = (exe)ye = ex(eye) = exy and xye = x(eye)e =
xe(yee) = xey for all x, y ∈ R. Hence the following result follows.

Proposition 2.4. If e is a unital element of a ternary ring R, then exy =
xey = xye, for all x, y ∈ R.

Definition 2.5. An additive subgroup T of a ternary ring R is called a ternary
subring of R if t1t2t3 ∈ T for all t1, t2, t3 ∈ T .
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Definition 2.6. A ternary ring R is called commutative if x1x2x3 = xσ(1)xσ(2)xσ(3),
where σ is a permutation of {1, 2, 3} for all x1, x2, x3 ∈ R.

We now define left(right, lateral) ideal of a ternary ring.

Definition 2.7. An additive subgroup I of a ternary ring R is called a left(right,
lateral) ideal of R if r1r2i (respectively ir1r2, r1ir2) ∈ I for all r1, r2 ∈ R and
i ∈ I. If I is a left, a right and a lateral ideal of R then I is called an ideal of
R. If I is a left and right ideal of R then I is called a two sided ideal of R.

Definition 2.8. A ternary ring R is called a simple ternary ring if R3 �= (0)
and if it contains no nonzero proper ideal i.e (0) and R are the only ideals of
R.

Definition 2.9. A ternary ring R is said to be zero divisor free(ZDF) if for
a, b, c ∈ R, abc = 0 implies a = 0 or b = 0 or c = 0.

Definition 2.10. A commutative ternary ring with identity is called a ternary
integral domain if it is zero divisor free(ZDF).

Definition 2.11. An element ‘r’ of a ternary ring R is said to be invertible
in R if there exists an element r′ in R(called inverse of r) such that rr′x =
r′rx = xrr′ = xr′r = x for all x ∈ R and the element ‘r’ is also called a unit
in R.

Definition 2.12. A non-trivial ternary ring R with identity is said to be a
division ternary ring if for every element a(�= 0) ∈ R there exists an element
b ∈ R such that abx = xab = xba = bax = x for all x ∈ R.

In the following proposition, we describe the principal left(right, lateral)
ideal of a ternary ring.

Proposition 2.13. Let R be a ternary ring and r ∈ R. Then the principal
(i) left ideal generated by ‘r’ is given by < r >l= RRr + nr.
(ii) right ideal generated by ‘r’ is given by < r >r= rRR + nr.
(iii) two-sided ideal generated by ‘r’ is given by < r >t= RRr + rRR +

RRrRR + nr.
(iv) lateral ideal generated by ‘r’ is given by < r >m= RrR+RRrRR+nr.
(v) ideal generated by ‘r’ is given by < r >= RRr+rRR+RrR+RRrRR+

nr, where n ∈ Z(set of all integers).
If R contains identity or a unital element then < r >= RRrRR.

Proposition 2.14. Let R be a non-trivial division ternary ring. Then R does
not contain any left, right and lateral ideals.

Proposition 2.15. A division ternary ring does not contain any divisors of
zero.
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Definition 2.16. A proper ideal P of a ternary ring R is called a prime ideal
of R if for any three ideals A, B, C of R, ABC ⊆ P implies A ⊆ P or B ⊆ P
or C ⊆ P .

Definition 2.17. A ternary ring R is called a prime ternary ring if the zero
ideal (0) is a prime ideal of R.

Throughout the paper by R∗ we mean R∗ = R\(0).

3 Right strongly prime ternary rings

Definition 3.1. Let R be a ternary ring and r ∈ R∗. The right insulator for
‘r’ is a finite subset F of R such that annihilator of r with respect to F i.e
ann(r, F ) = {0} or equivalently for each r ∈ R∗ there exists a finite subset F
of R(called right insulator) such that rF t = {0} ⇒ t = 0, for all t ∈ R.

In the year 1964, N. Nobusawa[8] introduced the notion of Γ−ring. Later
W.E. Barnes[1] weakened the defining condition for Nobusawa’s Γ-ring. The
notion of Barnes Γ-ring reduces to the notion of ternary ring introduced by
W.G. Lister[7] whenever Γ = R. In the year 1988 G.L.Booth[2] introduced the
notion of right strongly prime Γ-ring as follows-

Definition 3.2. A Γ− ring M is called right strongly prime if for every x �=
0 ∈ M , there exist finite subsets F of M and φ and Λ of Γ such that xφFΛy = 0
implies that y = 0 for all y ∈ M .

We shall show that our definition of right strongly prime ternary ring and
the notion of right strongly prime Γ-ring introduced by G.L Booth[2] whenever
Γ = R are equivalent.

Proposition 3.3. A ternary ring R is right strongly prime if and only if for
every x ∈ R∗, there exist finite subsets F1, F2, F3 of R such that xF1F2F3y =
{0} implies y = 0 for all y ∈ R.

Proof. Suppose R is a right strongly prime ternary ring. Let x ∈ R∗. Then
there exists a finite subset F of R such that

xFy = {0} ⇒ y = 0 (1)

for all y ∈ R. Let F1 = F , F2 = {x}, F3 = F . Suppose xF1F2F3y = {0}. Then
xFxFy = {0}. By (1) xFy = {0}. This again implies that y = 0 for all y ∈ R.

Conversely suppose that for every r ∈ R∗, there exist finite subsets F1, F2, F3

of R such that xF1F2F3y = {0} ⇒ y = 0 for all y ∈ R. Then F = F1F2F3

is a finite subset of R. Now xFy = {0} implies xF1F2F3y = {0} which again
implies that y = 0 for all y ∈ R. Consequently R is a right strongly prime
ternary ring.
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Corollary 3.4. A ternary ring R is right strongly prime if and only if for every
r ∈ R∗, there exists a finite subset F of R such that rFFFy = {0} ⇒ y = 0
for all y ∈ R.

Proof. The necessity follows by taking F = F1 ∪ F2 ∪ F3 in proposition 3.3.
Converse is obvious.

Example 3.5. Let R = {ri : r ∈ R, i2 = −1}, where R is the set of all real
numbers. Then R is a ternary ring together with usual binary addition and
ternary multiplication. Let ri(�= 0) ∈ R and F = {ri}. Then (ri)Fy = 0
implies that y = 0 for all y ∈ R. Hence R is a right strongly prime ternary
ring.

Theorem 3.6. A right strongly prime ternary ring is prime.

Proof. Suppose that R is a right strongly prime ternary ring. Let A, B, C be
three ideals of R such that ABC = (0). Suppose that A �= (0) and B �= (0).
Since A �= (0), there exists a(�= 0) ∈ A. Since R is a right strongly prime ternary
ring, there exists a finite subset F of R such that aFy = (0) implies that y = 0
...(1) for all y ∈ R. Now aF (BRBRC) = (aFB)(RBR)C ⊆ ABC = (0). This
implies that BRBRC = (0) by (1). Since B �= (0), there exists b(�= 0) ∈ B, and
a finite subset F ′ of R such that bF ′y = (0) ⇒ y = 0 for all y ∈ R....(2). Now
bF ′BRC ⊆ BRBRC = (0). So BRC = (0) by (2). Again bF ′c ⊆ BRC = (0)
for c ∈ C. This implies that c = 0. Since c is an arbitrary element of C, we find
that C = (0). Similarly we can prove than if A �= (0), C �= (0) then B = (0)
and if B �= (0), C �= (0), then A = (0). Thus (0) is a prime ideal of R and
hence R is a prime ternary ring.

Theorem 3.7. Let R be a ternary ring . Then the following are equivalent :
(i) R is right strongly prime;
(ii) If I is a non-zero ideal of R, there exist finite subsets F ′ of I and F of

R such that F ′Fy = {0} implies that y = 0 for all y ∈ R;
(iii) If x ∈ R∗, there exist r ∈ R and finite subsets F ′, F of R such that

xrF ′Fy = {0} implies that y = 0 for all y ∈ R.

Proof. (i) ⇒ (ii) Let I be a nonzero ideal of R. Let x(�= 0) ∈ I. Then by (i)
there exists a finite subset F of R such that xFy = 0 implies that y = 0 for
all y ∈ R. Then F1 = {x} is a finite subset of I and F1Fy = {0} implies that
y = 0 for all y ∈ R.

(ii) ⇒ (iii) Let a(�= 0) ∈ R. Then < a > is a nonzero ideal of R. So by (ii)
there exist finite subsets F1 of < a > and F2 of R such that F1F2y = {0} implies
that y = 0 for all y ∈ R. Suppose that aRR = {0}. Then < a > RR = {0}.
Since F1F2a ⊆< a > RR = {0}, we have F1F2a = {0}. This implies a = 0,
a contradiction. Therefore arx �= 0 for some r, x ∈ R. Then I =< arx > is a
nonzero ideal of R. Again by (ii) there exists a finite subset G′ of I and a finite
subset G of R such that G′Gy = {0} implies that y = 0 for all y ∈ R. Now any
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element of G′ is of the form {narx+
m∑

i=1

arxαiβi+
l∑

j=1

sjs
′
jarx+

k∑
t=1

e(dtarxet)e+

s∑
p=1

cpgparxfpf
′
p, where m, n, l, k, s ∈ Z, αi, βi, si, s

′
j, dt, et, cp, gp, fp, f

′
p ∈ R}.

Let F = {x, xαiβi, xete, xfpf
′
p : i = 1, 2, .., m; t = 1, 2, ...., k; p = 1, 2.........s; m, k, s ∈

Z}, and let arFGy = {0}. Then G′Gy = {0}. By (ii) y = 0.
(iii) ⇒ (i) Let a(�= 0) ∈ R. Then by (iii), there exists r ∈ R and finite subsets
F2, F3 of R such that arF2F3y = {0} implies that y = 0 for all y ∈ R. Let
F = rF2F3, which is a finite subset of R. Then aFy = {0} implies that y = 0
for all y ∈ R. Thus (i) holds.

Definition 3.8. Let A be a non-empty subset of a ternary ring R. The right
annihilator of A with respect to a nonempty subset B of R, denoted by r(A, B),
is defined by r(A, B) = {x ∈ R : ABx = {0}}.
Proposition 3.9. The right annihilator r(A, B) of A with respect to B in a
ternary ring R is a right ideal of R.

Proof. The proof is a routine matter of verification and so we omit it.

Proposition 3.10. The right annihilator of a nonempty subset A with respect
to a right ideal B of a ternary ring R with a unital element ‘e’ is an ideal of
R.

Proof. By the proposition 3.9, r(A, B) is a right ideal of R. Now it remains
to show that r(A, B) is a left and a lateral ideal of R. Let r ∈ r(A, B). Then
ABr = {0}. Now since B is a right ideal of R, we find that AB(xyr) =
A(Bxy)r ⊆ A(BRR)r ⊆ ABr = {0} for all x, y ∈ R i.e xyr ∈ r(A, B)
i.e RRr(A, B) ⊆ r(A, B). This implies that r(A, B) is a left ideal of R.
Again AB(xry) = AB(exe)(ere)y = A(Bex)(eerey) ⊆ A(BRR)(eerey) ⊆
AB(rey) = (ABr)ey = {0}ey = {0} for all x, y ∈ R, i.e xry ∈ r(A, B) i.e
Rr(A, B)R ⊆ r(A, B). Then r(A, B) is a lateral ideal of R. Hence r(A, B) is
an ideal of R.

Definition 3.11. A ternary ring R is said to be a bounded right strongly
prime ternary ring of bound n if each nonzero element of R has an insulator
containing not more than n-elements and at least one element has no insulator
with fewer that n-elements.

Theorem 3.12. A ternary ring R with identity or a unital element is right
strongly prime if and only if every nonzero ideal of R contains a finitely gen-
erated left ideal whose right annihilator with respect to a finite subset F of R
is zero.



Md. Salim and T. K. Dutta 145

Proof. Suppose R is a right strongly prime ternary ring and I is a nonzero
ideal of R. Let r(�= 0) ∈ I. Since R is a right strongly prime ternary ring,
there exists a finite subset F of R such that rFFF t = {0} ⇒ t = 0. Now
rFF ⊆ I and rFF is finite. Let L be the left ideal of R generated by rFF , i.e
L = RRrFF . So L ⊆ I. Let LFt = 0. Then rFFF t ⊆ RRrFFF t = LFt = 0,
since R contains identity or a unital element. Hence t = 0. Thus I contains the
finitely generated left ideal L whose right annihilator with respect to a finite
subset F is zero.

Conversely, suppose the condition holds. Let r ∈ R∗. Now 〈r〉 is a nonzero
ideal of R. By the given condition there exists a finite subset F ′ of 〈r〉 such
that right annihilator of the left ideal L generated by F ′ with respect to a
finite subset F of R is zero, i.e. LFy = {0} ⇒ y = 0 for all y ∈ R. If
possible let rRR = {0}. Then 〈r〉RR = {0}. Since F ′Fr ⊆ 〈r〉 = RRrRR,
(since R contains identity or a unital element)⊆ 〈r〉RR = {0}. Thus we have
F ′Fr = {0} ⇒ LFr = {0} as L = RRF ′; but LFr = {0} ⇒ r = 0, a
contradiction. Thus rRR �= 0. So there exist r1, x ∈ R such that rr1x �= 0.
Let I = 〈rr1x〉, I �= (0). Then by hypothesis there exists a finite subset G′ of
I such that if H = RRG′ then HH ′y = 0 ⇒ y = 0 for all y ∈ R where H ′ is a
finite subset of R. By theorem 3.7, we have R is a right strongly prime ternary
ring.

Theorem 3.13. A ternary ring R is right strongly prime if and only if every
nonzero ideal of R contains a finite subset G such that right annihilator of G
with respect to a finite subset of R is zero.

Proof. Suppose R is a right strongly prime ternary ring and I is a nonzero ideal
of R. Let a(�= 0) ∈ I. Since R is a right strongly prime ternary ring, there
exists a finite subset F of R such that aFFF t = 0 ⇒ t = 0. Let G = aFF ⊆ I.
Then G is a finite subset of I and right annihilator of G with respect to F is
zero i.e r(G, F ) = 0

Conversely, suppose that every nonzero ideal of R contains a finite subset
whose right annihilator with respect to a finite subset F of R is zero. Let
a(�= 0) ∈ R. Then 〈a〉 is a nonzero ideal of R. Then there exist a finite subsets
F ′ of 〈a〉 and a finite subset F of R such that F ′Fy = {0} ⇒ y = 0 for all
y ∈ R. Now by theorem 3.7, we can show that R is a right strongly prime
ternary ring.

Definition 3.14. A ternary ring R is said to satisfy descending chain condi-
tion(DCC) on right ideals of R if for each sequence of right ideals A1, A2, A3...
of R with A1 ⊇ A2 ⊇ A3.... there exists a positive integer n(depending on the
sequence) such that An = An+1 = .........

Proposition 3.15. If R is a prime ternary ring with DCC on right annihilator
ideals of R then R is a right strongly prime ternary ring.
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Proof. Let I be a nonzero ideal of R and M denote the class of all right
annihilators of the form r(F, F ′), where F and F ′ are finite subsets of I and R
respectively. Then M contains a minimal element J = r(F0, F

′
0), say. Suppose

J �= 0. Since R is a prime ternary ring, IRJ �= {0}. Then there exist x ∈ I,
r ∈ R and y ∈ J such that xry �= 0. Let F ′′ = F0 ∪ {x} and F ′′′ = F ′

0 ∪ {r}.
Since F0F

′
0r ⊆ F ′′F ′′′r, r(F ′′, F ′′′) ⊂ J . Again y ∈ J and xry �= 0 implies

that y �∈ r(F ′′, F ′′′) which contradicts the minimality of J . Hence J = {0}.
Therefore by proposition 3.7(ii), R is right strongly prime.

Proposition 3.16. Every simple ternary ring with a unital element e is right
strongly prime.

Proof. Let R be a simple ternary ring with a unital element e. Since R is
simple, R is the only nonzero ideal of R. Now F ′ = {e} is a finite subset of R
and F ′F ′y = {0} i.e eey = 0 implies y = 0 for all y ∈ R. Consequently R is a
right strongly prime ternary ring.

Definition 3.17. [5] A class ρ of ternary rings is called hereditary if I is an
ideal of a ternary ring R and R ∈ ρ then I ∈ ρ.

Proposition 3.18. The class of all right strongly prime ternary rings is hered-
itary.

Proof. Let R be a right strongly prime ternary ring and I be an ideal of R. If
I = (0) then I is trivially right strongly prime ternary ring. So we assume that
I �= (0) and let a be a non-zero element of I. Since R is a right strongly prime
ternary ring, there exists a right insulator F for ‘a’, such that

aFy = 0 ⇒ y = 0 (1)

Obviously F1 = FaF is a finite subset of I. Now suppose that aF1y = 0
where y ∈ I. Then aFaFy = 0. Now by (1) we have aFy = 0, which again
implies that y = 0. So I is a right strongly prime ternary ring. Hence the class
of all right strongly prime ternary rings is hereditary.

Now we consider the matrix ternary ring Mn(R), where R is a ternary ring.
Let R be a ternary ring with a unital element e and Mn(R) be the set of all

square matrices of order n(n ∈ N) with entries from R. Suppose A = (aij)n×n,
B = (bij)n×n, C = (cij)n×n ∈ Mn(R).
We define binary addition and ternary multiplication in Mn(R) as follows:

(aij)n×n+(bij)n×n = (aij+bij)n×n and (aij)n×n(bij)n×n(cij)n×n = (dij)n×n,

where dij =
n∑

k,l=1

aikbklclj ; 1 ≤ i, j ≤ n.
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It can be easily verified that together with above defined addition and mul-
tiplication Mn(R) is a ternary ring with unital element. We call Mn(R) the
matrix ternary ring.

Let r ∈ R∗. Then the notation rEij will be used to denote the n×n matrix
in which the (i, j)th entry is r and all other entries are zero. Then we can

write A =
n∑

i,j=1

aijEij and it can be easily verified that (xEpq)(yErs)(zEuv) =

{
(xyz)Epv if q = r and s = u

0 if q �= r or s �= u for all x,y, z ∈ R

Proposition 3.19. If R is an n×n matrix ternary ring over a ternary integral
domain, then R is bounded strongly prime of bound n.

Proof. Let A = (aij)n×n ∈ R∗. Then at least one aij(1 ≤ i, j ≤ n) is nonzero.
Suppose apq �= 0. We now prove that {rEqi} is a right insulator for apq. Let
B = (bij)n×n. Now A(rEqi)B = 0 ⇒ apqrbij = 0 for 1 ≤ j ≤ n ⇒ bij = 0(1 ≤
j ≤ n), since R is a matrix ternary ring over ternary integral domain. This
shows that {rEqi}n

i=1 is an insulator for A. Also the element E11 ∈ R∗ has
an insulator {rE1j}n

j=1 and no insulator of E11 contains less than n elements.
Hence R is a bounded strongly prime ternary ring of bound n.

Proposition 3.20. If R is a right strongly prime ternary ring and ‘i’ is a
nonzero idempotent element in R then iRi is a right strongly prime ternary
subring of R.

Proof. Obviously iRi is a ternary subring of R. Let iri be a non-zero element
of iRi. Then iRi ∈ R . Since R is a right strongly prime ternary ring, corre-
sponding to iRi there exists a right insulator F = {f1, f2, ..., fk}, (say) in R.
Let F1 = {iifsii : fs ∈ F where 1 ≤ s ≤ k}. Now

(iri)F1(iyi) = 0
⇒ (iri)(iifsii)(iyi) = 0, where fs ∈ F

⇒ ir(iii)fs(iii)yi = 0
⇒ (iri)fs(iyi) = 0
⇒ (iri)F (iyi) = 0.

This implies that iyi = 0. Thus iRi is a right strongly prime ternary subring
of R.

Proposition 3.21. Right strongly primeness is morita invariant

Proof. Let R be a right strongly prime ternary ring and ‘i’ be a nonzero idem-
potent element in R. Then by above proposition 3.20, iRi is a right strongly
prime ternary subring of R.
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Now we prove that if R is a right strongly prime ternary ring then Mn(R) is
also a right strongly prime ternary ring. Let B be a nonzero matrix in Mn(R)
and let its (p,q)th component bpq is nonzero. Let {tk} be a right insulator
for bpq in R. Let A be a nonzero matrix with nonzero (i,j)th component aij.
Then bpqtkaij �= 0 for some tk ∈ {tk}. Now (p, j)th component of B(tkEqj)A
is bpqtkaij. So A �= 0 ⇒ B(tkEqj)A �= 0 for some tk ∈ {tk}. Contrapositively,
B(tkEij)A = 0 for all tk ∈ {tk} ⇒ A = 0. Therefore {tkEij}i,j,k is a right
insulator for B. Hence Mn(R) is a right strongly prime ternary ring. Hence
the proposition.

Proposition 3.22. Let R be a ternary ring with a unital element ‘e’. Then R
is a right strongly prime ternary ring if and only if Mn(R) is a right strongly
prime ternary ring.

Proof. Let Mn(R) be a right strongly prime ternary ring and a(�= 0) ∈ R and
b(�= 0) ∈ R. Then aE11 and bE11 are nonzero elements in Mn(R). Since Mn(R)
is right strongly prime, there exists a finite subset A = {(aij)n×n} of Mn(R)
such that (aE11)(aij)n×n(bE11) �= (0)n×n.
Now (aE11)(aij)n×n(bE11) = (dij)n×n.

Where dij =

{
aa11b if i = j = 1
0 elsewhere

Since (dij)n×n �= (0)n×n, we have aa11b �= 0. Now choose A′ = {a1j : 1 ≤
j ≤ n} ⊆ R. Then aαb �= 0 for some α ∈ A′ and hence R is a right strongly
prime ternary ring.

Converse follows from the proposition 3.21.

Definition 3.23. An ideal I of a ternary ring R is called a right strongly prime
ideal if the quotient ternary ring R/I is right strongly prime.

Theorem 3.24. Let Q be an ideal of a ternary ring R. Then Q is a right
strongly prime ideal of R if and only if for every ideal I of R not contained
in Q, there exist finite subsets F ′ and F of I and R respectively such that
F ′Fy ⊆ Q implies that y ∈ Q for all y ∈ R

Proof. Let Q be a right strongly prime ideal of the ternary ring R. Then
the quotient ternary ring R/Q is right strongly prime. Let I be a nonzero
ideal of R not contained in Q. Then (I + Q)/Q is a nonzero ideal of the
right strongly prime quotient ring R/Q. Hence there exists finite subsets F ′ =
{i1/Q, i2/Q, i3/Q......, in/Q} of (I+Q)/Q and F ′′/Q = {r1/Q, r2/Q, ......, rn/Q}
of R/Q such that F ′(F ′′/Q)(y/Q) = 0/Q implies that y/Q = 0/Q for all
y/Q ∈ R/Q. Let F = {i1, i2, i3, ....in}. and F ′′ = {r1, r2, ...., rn}. Then F is
a finite subset of I. Let FF ′′y ⊆ Q. Then (F/Q)(F ′′/Q)(y/Q) = 0/Q implies
that y/Q = 0/Q for all y/Q ∈ R/Q; so y ∈ Q for all y ∈ R. Conversely, let
I/Q be a nonzero ideal of R/Q. Then I is an ideal of R not contained in Q.
Then by hypothesis there exist finite subsets F ′ and F of I and R respectively
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such that F ′Fy ⊆ Q implies that y ∈ Q for all y ∈ R. Since F ′ is a finite
subset of I, F/Q is finite subset of I/Q. Let (F ′/Q)(F/Q)(y/Q) = 0/Q. Then
F ′Fy ⊆ Q and hence y ∈ Q i.e y/Q = 0/Q. Thus by the theorem 3.7 R/Q is
a right strongly prime ternary ring. Hence Q is a right strongly prime ideal of
R.

Corollary 3.25. An ideal I of a ternary ring R is a right strongly prime ideal
if for all a �∈ I, there exist finite subsets F of < a > and F ′ of R such that
FF ′b ⊆ I implies that b ∈ I.

Proof. Since a �∈ I, < a > is not properly contained in I. Then by Theorem
3.24, there exist finite subsets F and F ′ of < a > and R respectively such that
FF ′b ⊆ I implies that b ∈ I.

4 Right strongly prime radical

Definition 4.1. [3] A nonempty subset A of a ternary ring R is called an m-
system if for each a, b, c ∈ A there exist elements x1, x2, x3, x4 of R such that
ax1bx2c ∈ A or ax1x2bx3x4c ∈ A or ax1x2bx3cx4 ∈ A or x1ax2bx3x4c ∈ A.

Theorem 4.2. A proper ideal P of a ternary ring R is prime if and only its
complement R\I is an m-system.

Proof. The proof is a routine matter of verification and so we omit it.

Now we generalize the above results in case of right strongly prime ternary
rings.

Definition 4.3. A nonempty subset G of a ternary ring R is called an sp-
system if for any g ∈ G there is a finite subset F1 ⊆ 〈g〉 and a finite subset F2

of R such F1F2z ∩ G �= φ for all z ∈ G.

Proposition 4.4. A proper ideal I of a ternary ring R is right strongly prime
if and only if R\I is an sp-system.

Proof. Let I be a right strongly prime ideal of R. Let g ∈ R\I. Then g �∈ I.
So there exist finite subsets F1 of 〈g〉 and F2 of R such that F1F2b ⊆ I implies
b ∈ I, by using corollary 3.25. This implies that F1F2z ∩ (R\I) �= φ for all
z ∈ (R\I). Hence R\I is an sp-system.

Conversely, suppose that (R\I) is an sp-system. Let a �∈ I. Then a ∈ R\I.
So there exist a finite subset F1 of 〈a〉 and F2 of R such that F1F2z∩(R\I) �= φ
for all z ∈ R\I. Let F1F2b ⊆ I. Then F1F2b ∩ (R\I) = φ. If possible, let
b �∈ I. Then b ∈ R\I which implies that F1F2b ∩ (R\I) �= φ, a contradiction.
Consequently, b ∈ I and hence I is a right strongly prime ideal of R.

Definition 4.5. Right strongly prime radical of a ternary ring R is defined by
SP (S) = ∩{I : I is a right strongly prime ideal of S}.
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Definition 4.6. A pair of subsets (G, P ) where P is an ideal of a ternary ring
R and G is a nonempty subset of R is called a super sp-system of R if G ∩ P
contains no nonzero element of R and for any g ∈ G there is a finite subset F1

of 〈g〉 and finite subset F2 of R such that F1F2z ∩G �= φ for all z �∈ P .

Proposition 4.7. An ideal I of a ternary R is a right strongly prime ideal if
and only if (R\I, I) is a super sp-system of R.

Theorem 4.8. For any ternary ring R, SP (S) = {x ∈ R : whenever x ∈ G
and (G, P ) is a super sp-system for some ideal P of R then 0 ∈ G}......(*).
Proof. Let x ∈ SP (S). Let x ∈ G where (G, P ) is a super sp-system. If
possible, let 0 �∈ G. Then G∩P = φ. By Zorn’s lemma choose an ideal Q with
P ⊆ Q and Q is maximal with respect to the property that G ∩ Q = φ. We
now prove that Q is a right strongly prime ideal of R. Let a �∈ Q. Then there
is a g ∈ G such that 〈g〉 ⊆ Q + 〈a〉. Since (G, P ) is a super sp-system, there
exists a finite subset F1 = {g1, g2, ....., gk} ⊆ 〈g〉 and a finite subset F2 of R
such that F1F2z ∩ G �= φ for all z �∈ P . Since F1 ⊆ Q + 〈a〉, each gi is of the
form gi = qi +ai for some qi ∈ Q and ai ∈ 〈a〉. Let F ′

1 = {a1, a2, ...., ak}. Then
F ′

1 ⊆ 〈a〉. Let z ∈ R such that F ′
1F2z ⊆ Q. Then F1F2z ⊆ Q. If z �∈ Q then

F1F2z ∩G �= φ, because P ⊆ Q. But this contradicts G∩Q = φ. Hence z ∈ Q.
So Q is a right strongly prime ideal. But x �∈ Q, since G ∩ Q = φ, and x ∈ G,
a contradiction. Hence 0 ∈ G.

Conversely, suppose x belongs to the R.H.S of (*). If possible, let x �∈
SP (R). Then there exists a right strongly prime ideal I of R such that x �∈ I.
Then (R\I, I) is a super sp-system where x ∈ R\I but 0 �∈ R\I, a contradiction.
Hence the converse follows.
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