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Abstract

The aim of this work is to study some properties of the Lie derivative
of the linear connection ∇, the conjugate derivative d∇ with the linear
connection and using them for searching the curvature, the torsion of a
space R

n along the linear flat connection ∇.

1 Introduction

The concept of Lie derivative appeared in the early 30s and was related to the
works of Slebodzinski, Dantzig, Schouten and Van Campen ([8]). The problem
consisted of generalization of the operations which has an invariant sense only
when it is applied to a scalar field, to the case of tensor field and the connection
object. The Lie differentiation theory plays an important role in studying
automorphisms of differential geometric structures. In a more developed form,
this theory is presented by K. Yano ([20]).

In some recent decades, the Lie derivative of forms and its application was
investigated by many authors (see [7], [6], [5], [17],[18], [19],[20] and the ref-
erences given therein). In 2010, Sultanov used the Lie derivative of the linear
connection to study the curvature tensor and the sorsion tensor on linear alge-
bras (see [19], pp. 362-412). In 2012, basing on the Lie derivative of real-valued
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forms on the Riemannian n−dimensional manifold, N. H. Quang, K. P. Chi and
B. C. Van constructed the Lie derivative of the currents on Riemann manifolds
and given some applications on Lie groups (see [12]). The primary goal of our
work is the extension of the operations of Lie derivative to objects defined on
the vector-valued differential forms of a manifold. The main goal of the present
work is to investigate some properties on the Lie derivative and the conjugate
derivative d∇ on R

n. For an application, we give some results for searching the
curvature, the torsion of a space R

n along the linear flat connection ∇.

2 Notation and Preliminaries

We denote the vector space of all smooth vector fields on R
n by B(Rn)

and F(Rn) is the vector space of smooth functions on R
n. Let ∇ be a linear

connection on R
n and D be an usual directional derivative that give rise to a

linear connection on R
n. More precisely, if X = Xi∂i and Y = Y j∂j , then we

define
∇Xi∂i

(
Y j∂j

)
= Xi∂i

(
Y j

)
∂j

The torsion tensor R of R
n is defied by

T (X, Y ) = ∇XY −∇YX − [X, Y ] , ∀X, Y ∈ B(Rn).

If T = 0, then the linear connection � of R
n is said to be flat. Then D is the

linear flat connection on R
n.

The curvature tensor R of R
n is defied by

R(X, Y, Z) = �X �Y Z −�Y �X Z −�[X,Y ]Z,

for any X, Y, Z ∈ B(Rn).
In particular, if ∇ = D, then we obtain T = 0 and R = 0. A vector field X

is called parallel if ∇YX = 0, ∀Y ∈ B(Rn).
Now, let F by any normed vector space and F has finite dimension m. A

smooth differential k−form on R
n with values in F , for short, k−form on R

n,
is any smooth function, ω : R

n → ∧k(Rn, F ). The vector space of all k−forms
on R

n is denoted Ωk(Rn, F ). The vector space, Ω∗(Rn, F ) =
⊕
k≥0

Ωk(Rn, F ), is

the set of differential forms on R
n with values in F (see [3], pp. 307).

Observe that Ω0(Rn, F ) = C∞ (Rn, F ) , the vector space of smooth func-
tions on R

n with values in F and Ω1(Rn, F ) = C∞ (Rn, Hom (Rn, F )) , the set
of smooth functions from R

n to the set of linear maps from R
n to F . Also,

Ωk(Rn, F ) = (0) for k > n. Pick any basis, (f1, ..., fm) , of F . Then, as every
differential k−form, ω ∈ Ωk(Rn, F ), can be written uniquely as (see [3], pp.
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311)

ω =
m∑

i=1

ωi.fi, (2.1)

where ω1, ..., ωm are smooth real-valued differential forms in Ωk(Rn,R) and we
view fi as the constant map with value fi from R

n to F. Then, as

dωp (Xp) =
m∑

i=1

(ω′
i)p (Xp) .fi, (2.2)

for all Xp ∈ TpR
n, we see that (see [3], pp. 311)

dω =
m∑

i=1

dωi.fi. (2.3)

Actually, because dω is defined independently of bases, the fi do not need to
be linearly independent; any choices of vectors and forms such that

ω =
p∑

i=1

ωi.fi, (2.4)

will do.
Let G,H be normal vector space. Given a bilinear map, φ : F ×G→ H, a

simple calculation shows that for all ω ∈ Ωk(Rn, F ) and for all η ∈ Ωk(Rn, G),
we have (see [3], pp. 311)

ω∧φη =
m∑

i=1

m′∑
j=1

ωi ∧ ηj.φ (fi, gj) , (2.5)

with ω =
m∑

i=1
ωi.fi and η =

m′∑
j=1

ωj.fj , where (f1, ..., fm) is a basis of F and

(g1, ..., gm′) is a basis of G.
If F,G,H are finite dimensions and φ : F ×G→ H is a bilinear map, then

for all ω ∈ Ωk(Rn, F ) and for all η ∈ Ωl(Rn, G), we have (see [3], pp. 312)

d (ω∧φη) = dω∧φη + (−1)kω∧φdη. (2.6)

Similar to Equation (2.3), we have the inner product of the smooth vector-
valued differential forms

X�ω =
m∑

i=1

(X�ωi) .fi, (2.7)
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where ω =
m∑

i=1
ωi.fi, and X�ω1, ..., X�ωm are the inner products of the smooth

real-valued differential forms in Ωk(Rn,R) and X�ω is given by:

(X�ω)(X1 , ..., Xk−1) = ω(X,X1, ..., Xk−1), (2.8)

for all X1, X2, ..., Xk−1 ∈ B(Rn).
If F,G,H are finite dimensions and φ : F × G → H is a bilinear map,

then for all ω ∈ Ωk(Rn, F ) and all ψ ∈ Ωl(Rn, G), we easily get the following
properties of the inner product of a smooth vector-valued differential form

X�(ω∧φψ) = (X�ω)∧φψ + (−1)kω∧φ (X�ψ) . (2.9)

We have known that the Cartans formula (see [6], pp.35) for the Lie deriva-
tive of real-valued differential forms on manifold states LXω = d(X�ω) +
X�(dω), ∀ω ∈ Ωk(Rn), that is, LX = doX� + X�od. The following Formula
(2.10) gives the Cartans formula for the Lie derivative of vector-valued differ-

ential forms on R
n. For all ω ∈ Ωk(Rn, F ), ω =

m∑
i=1

ωi.fi, and X ∈ B(Rn), we

have

d (X�ω) +X�dω =
m∑

i=1

d (X�ωi).fi +
m∑

i=1

(X�dωi).fi

=
m∑

i=1

[d (X�ωi) + (X�dωi)] .fi

=
m∑

i=1

(LXωi) .fi

= LXω

(2.10)

For all ω ∈ Ωk(Rn, F ), and X ∈ B(Rn), we have the formula for the Lie
derivative of the vector-valued differential k−forms ω on R

n

(LXω)(X1, ..., Xk) = LX(ω(X1, ..., Xk)) −
k∑

i=1

ω(X1, ..., LXXi, ..., Xk), (2.11)

that is the analogous result in ([19], pp. 378).

3 The Lie derivative and the conjugate deriva-

tive on R
n

In this section, we consider in case of the normed vector space F = B(Rn).
Then a smooth diffferential k-form ω on R

n with values in B(Rn) is k-form
linear, antisymmetric

ω : B(Rn) × B(Rn) × · · · × B(Rn) → B(Rn).
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The main goal of the present work is to investigate some properties on the Lie
derivative and the conjugate derivative d∇ on R

n.

Definition 3.1. Given X ∈ B(Rn) and � is a linear connection on R
n. The

map
LX� : B(Rn) × B(Rn) → B(Rn)

satisfying the condition

(LX�)(Y, Z) = LX(�YZ) −�LXY Z −�Y (LXZ), (3.1)

for all Y, Z ∈ B(Rn) is called the Lie derivative of the linear connection �
along a vector field X.

Remark 3.2. For all X1, X2 ∈ B(Rn), we have

LX1+X2� = LX1 � +LX2� (3.2)

Proof. For all X1, X2 ∈ B(Rn), we have

(LX1+X2�)(Y, Z) = LX1+X2 (�Y Z) −�LX1+X2 YZ −�Y (LX1+X2Z)

= [X1 +X2,�YZ] −�[X1+X2,Y ]Z −�Y ([X1 +X2, Z])
= [X1,�YZ] + [X2,�YZ] −�[X1,Y ]Z −�[X2,Y ]Z−

−�Y ([X1, Z]) −�Y ([X2, Z])

=
(
[X1,�YZ] −�[X1,Y ]Z −�Y ([X1, Z])

)
+

+
(
[X2,�Y Z] −�[X2,Y ]Z −�Y ([X2, Z])

)
= (LX1�)(Y, Z) + (LX2�)(Y, Z)
= (LX1 � +LX2�) (Y, Z).

Proposition 3.3. Suppose that ∇ be a linear flat connection on R
n. Then the

map LX� : B(Rn) × B(Rn) → B(Rn) is a bilinear.

Proof. For all Y1, Y2, Z ∈ B(Rn), we have

(LX�)(Y1 + Y2, Z) = LX(�Y1+Y2Z) −�LXY1+Y2Z −�Y1+Y2 (LXZ)
= [X,�Y1+Y2Z] −�[X,Y1+Y2]Z −�Y1+Y2([X,Z])
= [X,�Y1Z] + [X,�Y2Z] −�[X,Y1]Z −�[X,Y2]Z

−�Y1([X,Z]) −�Y2([X,Z])
= (LX�)(Y1, Z) + (LX�)(Y2, Z).
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For all Y, Z ∈ B(Rn), ϕ ∈ F(Rn,B(Rn), we have

(LX�)(ϕY, Z) = LX(�ϕY Z) −�LXϕY Z −�ϕY (LXZ)
= [X,�ϕYZ] −�[X,ϕY ]Z −�ϕY ([X,Z])
= [X,ϕ.�Y Z] −�X[ϕ].Y +ϕ[X,Y ]Z − ϕ.�Y ([X,Z])
= X[ϕ].�Y Z + ϕ. [X,�YZ] −X[ϕ].�Y Z−

− ϕ.�[X,Y ] Z − ϕ.�Y ([X,Z])

= ϕ.
(
[X,�Y Z] −�[X,Y ]Z −�Y ([X,Z])

)
= ϕ.(LX�)(Y, Z).

For all Y, Z1, Z2 ∈ B(Rn), we have

(LX�)(Y, Z1 + Z2) = LX(�Y (Z1 + Z2)) −�LXY (Z1 + Z2) −�Y (LX (Z1 + Z2))
= [X,�Y (Z1 + Z2)] −�[X,Y ] (Z1 + Z2) −�Y ([X,Z1 + Z2])
= [X,�Y Z1] + [X,�Y Z2]−�[X,Y ]Z1 −�[X,Y ]Z2

−�Y ([X,Z1]) −�Y ([X,Z2])
= (LX�)(Y, Z1) + (LX�)(Y, Z2).

For all Y, Z ∈ B(Rn), ϕ ∈ F(Rn,B(Rn), we have

(LX�)(Y, ϕ.Z) = LX(�Y (ϕ.Z)) −�LX Y (ϕ.Z) −�Y (LX (ϕ.Z))

= [X,�Y (ϕ.Z)] −�[X,Y ] (ϕ.Z) −�Y ([X,ϕ.Z])

= [X,Y [ϕ].Z + ϕ �Y Z] − [X,Y ][ϕ].Z − ϕ. �[X,Y ] Z−
−�Y (X [ϕ].Z + ϕ. [X,Z])

= [X,Y [ϕ].Z] + X [ϕ]. �Y Z + ϕ. [X,�Y Z] − [X,Y ][ϕ].Z−
− ϕ. �[X,Y ] Z −�Y (X [ϕ].Z) − Y [ϕ]. [X,Z] − ϕ. �Y [X, Z]

= ϕ.(LX�)(Y, Z) + [X, Y [ϕ].Z] + X [ϕ]. �Y Z − [X, Y ][ϕ].Z−
− �Y (X [ϕ].Z)− Y [ϕ]. [X,Z]

= ϕ.(LX�)(Y, Z) + X [Y [ϕ]].Z + Y [ϕ]. [X,Z] + X [ϕ].�Y Z−
− [X,Y ][ϕ].Z − Y [X [ϕ]].Z − X [ϕ].�Y Z − Y [ϕ]. [X,Z]

= ϕ.(LX�)(Y, Z).

Now, we note the linear flat connection � and X is a parallel vector field on
R

n. Following theorem gives an application of the Lie derivative to determine
the curvature of R

n.

Theorem 3.4. Suppose that ∇ be a linear flat connection and X be a parallel
vector field on R

n. Then we have

(LX�)(Y, Z) = R(X, Y, Z), ∀Y, Z ∈ B(Rn). (3.3)
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Proof. For any Y, Z ∈ B(Rn), we have

(LX�)(Y, Z) = LX(�Y Z) −�LXY Z −�Y (LXZ)
= [X,�Y Z] −�LXYZ −�Y ([X,Z])
= �X �Y Z −∇∇Y ZX −�[X,Y ]Z −�Y �X Z + �Y �Z X

= �X �Y Z −�Y �X Z −�[X,Y ]Z

= R(X, Y, Z).

This proves the theorem.

Corollary 3.5. Suppose that X be a parallel vector field on R
n and ∇ = D.

Then we have LXD = 0.

Proof. By using Equation (3.3), we have

(LXD)(Y, Z) = R(X, Y, Z) = 0, ∀Y, Z ∈ B(Rn).

Hence, LXD = 0.

Now, let f : R
n → R

n be a diffeomorphism and f∗ be the push-forward of
f . The mapping

f∗� : B(Rn) × B(Rn) → B(Rn)

is defined by the following formula:

(f∗�)(f∗X, f∗Y ) = f∗(�XY ), ∀X, Y ∈ B(Rn). (3.4)

Then f∗� is a linear connection on R
n.

Proposition 3.6. Suppose that ∇ be a linear connection on R
n, X̃ = f∗X, Ỹ =

f∗Y, ∀X, Y ∈ B(Rn). Then we have

Lf∗X (f∗�) (X̃, Ỹ ) = f∗ ((LX�) (X, Y )) (3.5)

Proof. For all Y, Z ∈ B(Rn), we have

Lf∗X (f∗�) (X̃, Ỹ ) = (Lf∗X (f∗�))(f∗Y, f∗Z)
= Lf∗X((f∗�)f∗Y (f∗Z)) − (f∗�)Lf∗Xf∗Y (f∗Z) − (f∗�)f∗Y (Lf∗X (f∗Z))

= [f∗X, f∗ (�Y Z)] − (f∗�)f∗[X,Y ] (f∗Z) − (f∗�)f∗Y (f∗ [X,Z])

= f∗ [X,�YZ] − f∗
(�[X,Y ]Z

) − f∗ (�Y [X,Z])

= f∗
(
[X,�YZ] −�[X,Y ]Z −�Y [X,Z]

)
= f∗ ((LX�)(Y, Z)) .
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Definition 3.7. Given a linear connection ∇ on M. The conjugate derivative
with the connection ∇ on R

n is defined by the following formula:

(d∇ω)(X0, X1, ..., Xk) =
k∑

i=0

(−1)i∇Xi(ω(X0 , X1, ..., X̂i, ..., Xk))+

+
∑

0≤i<j≤k

(−1)i+jω([Xi;Xj], X0, X1, ..., X̂i, ..., X̂j, ..., Xk),
(3.6)

for any X0, X1, ..., Xk ∈ B(Rn) and the covariant derivative ∇X of
ω ∈ Ωk(Rn,B(Rn)) along a vector field X on R

n is defined by the formula:

(∇Xω)(X1, ..., Xk) = ∇X(ω(X1 , ..., Xk)) −
k∑

i=1

ω(X1 , ...,∇XXi, ..., Xk), (3.7)

for any X1, ..., Xk ∈ B(Rn)

From definition 3.7, we have the following Remark.

Remark 3.8. Suppose that ∇ be a linear flat connection, ω be the constant
differential 1−form and X be a vector field on R

n. The identity mapping I :
B(Rn) → B(Rn) is defined by I(X) = X, for all X ∈ B(Rn). The following
identities holds:

i) LXω = 0;
ii) ∇Xω = 0;
iii) d∇ω = 0;
iv) d∇I = 0.

Proof. i) For all X, Y ∈ B(Rn), we have

(LXω) (Y ) = [X, ω(Y )]− ω [X, Y ] = ∇X(ω(Y )) −∇ω(Y )X − ω [X, Y ] .

On the other hand, since ω is a constant, we have ω = (λ1ω1, ..., λnωn) ,
with λi ∈ R and ωj =

∑n
i=1 αijdxi, αij ∈ R. Hence,

∇X(ω(Y )) −∇ω(Y )X − ω [X, Y ] = 0.

Consequently LXω = 0.
ii) For all X, Y ∈ B(Rn), we have

(∇Xω) (Y ) = ∇X(ω(Y )) − ω (∇XY ) = 0

iii) For all X, Y ∈ B(Rn), we have

d∇ω(X, Y ) = ∇X(ω(Y )) −∇Y (ω(X)) − ω([X, Y ]) = 0
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iv) For all X, Y ∈ B(Rn), we have

d∇I(X, Y ) = ∇X(I(Y )) −∇Y (I(X)) − I([X, Y ])
= ∇XY −∇YX − [X, Y ]
= T (X, Y ) = 0

Proposition 3.9. Suppose that ∇ be a linear flat connection on R
n and ω ∈

Ω1(Rn,B(Rn)). Then we have

(d∇ω) (X, Y ) = (∇Xω) (Y ) − (∇Y ω) (X), ∀X, Y ∈ B(Rn). (3.8)

Proof. For all X, Y ∈ B(Rn), we have

(∇Xω) (Y ) = ∇X(ω(Y )) − ω (∇XY ) ;
(∇Y ω) (X) = ∇Y (ω(X)) − ω (∇Y X) .

Hence,

(∇Xω) (Y ) − (∇Y ω) (X) = ∇X(ω(Y )) −∇Y (ω(X)) − ω (∇XY −∇Y X)
= ∇X(ω(Y )) −∇Y (ω(X)) − ω [X, Y ]
= (d∇ω) (X, Y ) , ∀X, Y ∈ B(Rn).

The following theorem gives a description the formula between the Lie
derivative and the conjugate derivative d∇ on R

n.

Theorem 3.10. Let θ ∈ Ω1(Rn,B(Rn)) and X ∈ B(Rn). Then we have

(LX (d∇θ)) (Y, Z) = (d∇ (LXθ)) (Y, Z) + (LX∇) (Y, θ (Z))− (LX∇) (Z, θ (Y )) ,
(3.9)

for all Y, Z ∈ B(Rn).

Proof. For any Y, Z ∈ B(Rn) and θ ∈ Ω1(Rn,B(Rn)), we have

(LX (d∇θ)) (Y, Z) = [X, (d∇θ) (Y, Z)] − (d∇θ) ([X, Y ] , Z) − (d∇θ) (Y, [X,Z ])
= [X,∇Y (θ (Z))] − [X,∇Z (θ (Y ))]− [X, θ (Y, Z)]−
− (∇[X,Y ] (θ (Z)) −∇Z (θ ([X, Y ])) − θ ([[X, Y ] , Z])

)−
− (∇Y (θ ([X,Z])) −∇[X,Z] (θ (Y )) − θ ([Y, [X,Z]])

)
= [X,∇Y (θ (Z))] − [X,∇Z (θ (Y ))]− [X, θ (Y, Z)]−
−∇[X,Y ] (θ (Z)) + ∇Z (θ ([X, Y ])) + θ ([[X, Y ] , Z])−
−∇Y (θ ([X,Z])) + ∇[X,Z] (θ (Y )) + θ ([Y, [X,Z]]).

(3.10)



136 Some properties on the Lie derivative of linear connections on R
n

On the other hand, we have

(d∇ (LXθ)) (Y, Z) = ∇Y ((LXθ) (Z)) −∇Z ((LXθ) (Y )) − (LXθ) ([Y, Z ])
= ∇Y ([X, θ (Z)] − θ ([X,Z])) −∇Z ([X, θ (Y )] − θ ([X, Y ]))−
− ([X, θ ([Y, Z])] − θ ([X, ([Y, Z])]))
= ∇Y ([X, θ (Z)]) −∇Y (θ ([X,Z])) −∇Z ([X, θ (Y )])+
+ ∇Z (θ ([X, Y ])) − [X, θ ([Y, Z])] + θ ([X, ([Y, Z])]) .

(3.11)
From Equations (3.10, 3.11), we obtain(

LX (d∇θ)−d∇ (LXθ)
)

(Y, Z) = [X,∇Y (θ (Z))]− [X,∇Z (θ (Y ))]

− [X, θ (Y, Z)]−∇[X,Y ] (θ (Z)) + ∇Z (θ ([X, Y ])) + θ ([[X, Y ] , Z])−
−∇Y (θ ([X,Z])) + ∇[X,Z] (θ (Y )) + θ ([Y, [X,Z]])
−∇Y ([X, θ (Z)]) + ∇Y (θ ([X,Z])) + ∇Z ([X, θ (Y )])−
−∇Z (θ ([X, Y ])) + [X, θ ([Y, Z])]− θ ([X, ([Y, Z])])
= [X,∇Y (θ (Z))]− [X,∇Z (θ (Y ))] −∇[X,Y ] (θ (Z))+
+ θ ([[X, Y ] , Z]) + ∇[X,Z ] (θ (Y )) + θ ([Y, [X,Z]])−
−∇Y ([X, θ (Z)]) + ∇Z ([X, θ (Y )]) − θ ([X, ([Y, Z])])
= [X,∇Y (θ (Z))]− [X,∇Z (θ (Y ))] −∇[X,Y ] (θ (Z))+
+ ∇[X,Z] (θ (Y )) −∇Y ([X, θ (Z)]) + ∇Z ([X, θ (Y )])
= (LX∇) (Y, θ (Z)) − (LX∇) (Z, θ (Y )) .

Consequently,

(LX (d∇θ)) (Y, Z) = (d∇ (LXθ)) (Y, Z) + (LX∇) (Y, θ (Z))− (LX∇) (Z, θ (Y )) .

This proves the theorem.

Corollary 3.11. If X is a parallel vector field on R
n and ∇ = D then we have

LX (dDθ) = dD (LXθ) , (3.12)

for all θ ∈ Ω1(Rn,B(Rn)).

Proof. For all θ ∈ Ω1(Rn,B(Rn), Y, Z ∈ B(Rn), applying Theorem 3.10, we
obtain

(LX (dDθ)) (Y, Z) = (dD (LXθ)) (Y, Z) + (LX∇) (Y, θ (Z)) − (LX∇) (Z, θ (Y ))

Since X is parallel vector field on R
n, thus applying Theorem 3.5, we obtain

(LX (d∇θ)) (Y, Z) = (d∇ (LXθ)) (Y, Z) , for any Y, Z ∈ B(Rn).

Hence, LX (d∇θ) = d∇ (LXθ) , for any θ ∈ Ω1(Rn,B(Rn)).
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Proposition 3.12. Suppose that X, Y, Z ∈ B(Rn), ω ∈ Ω1(Rn,B(Rn)). Then
we have

(LX (∇Y ω)) (Z) − (∇Y (LXω)) (Z) = (LX∇Y ) (ω(Z)) − ω [[X, Y ] , Z] . (3.13)

Proof. For all X, Y, Z ∈ B(Rn), ω ∈ Ω1(Rn,B(Rn)), we have

(LX (∇Y ω)) (Z) = [X, (∇Y ω) (Z)] − (∇Y ω) [X,Z]
= [X,∇Y (ω(Z)) − ω [Y, Z]] −∇Y (ω [X,Z]) + ω [Y, [X,Z]]
= [X,∇Y (ω(Z))] − [X, ω [Y, Z]] −∇Y (ω [X,Z]) + ω [Y, [X,Z]]

(3.14)
(∇Y (LXω)) (Z) = ∇Y ((LXω) (Z)) − (LXω) [Y, Z]

= ∇Y ([X, ω(Z)] − ω [X,Z]) − [X, ω [Y, Z]] + ω [X, [Y, Z]]
= ∇Y [X, ω(Z)] −∇Y (ω [X,Z]) − [X, ω [Y, Z]] + ω [X, [Y, Z]]

(3.15)
From Equations (3.14, 3.15), we obtain

(LX (∇Y ω)) (Z) − (∇Y (LXω))(Z) = [X,∇Y (ω(Z))] −∇Y [X,ω(Z)] + [Z, [X, Y ]]

= (LX∇Y ) (ω(Z)) − ω [[X, Y ] , Z] , ∀ω ∈ Ω1(Rn, B(Rn)).
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