HOMODERIVATIONS AND COMMUTATIVITY OF *-PRIME RINGS

Ahmad Al-Kenani, Asmaa Melaibari and Najat Muthana
Department of Mathematics
King Abdulaziz University, Jeddah, Saudi Arabia
analkenani@kau.edu.sa,melaibari@gmail.com
nmuthana@kau.edu.sa

Abstract

In this paper, we prove the commutativity of $*$-prime rings admitting homoderivations which commute with $*$ and satisfy certain conditions on *-ideals.

1 Introduction

Throughout this paper R represents a ring with center $Z(R)$. For any $x, y \in R$, the commutator $x y-y x$ will be denoted by $[x, y]$, while the the anticommutator $x y+y x$ will be denoted by $x \circ y$. An additive mapping $*: R \rightarrow R$ is called an involution on R if $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring R equipped with an involution $*$ is called a ring with an involution $*$ or a *-ring. The set of symmetric and skew elements of R will be denoted by $S_{*}(R)=\left\{x \in R \mid x^{*}= \pm x\right\}$ (see [3]). An ideal I of R is a $*$-ideal if $I^{*}=I$. A ring R with an involution $*$ is $*$-prime if $x R y=0=x R y^{*}$ implies that $x=0$ or $y=0$ (or equivalently $x R y=0=x^{*} R y$ implies that $x=0$ or $y=0$). Clearly, every prime ring having an involution $*$ is $*$-prime but the converse is not true in general. However, if R is a $*$-prime ring such that $x \in R$ and $x R x=0$, then $x R x R x^{*}=0$. By $*$-primeness of R, it follows that $x=0$ or $x R x^{*}=0$. If $x R x^{*}=0$, then $x R x=0=x R x^{*}$. Since R is $*$-prime, we have $x=0$. Hence, every $*$-prime ring is a semiprime ring.

An additive mapping $h: R \rightarrow R$ is called a homoderivation on R if $h(x y)=$ $h(x) h(y)+h(x) y+x h(y)$ for all $x, y \in R$. An example of such mapping is to let $h(x)=f(x)-x$ for all $x \in R$ where f is an endomorphism on R.

Key words: *-Prime rings, *-Ideals, Homoderivations, Zero-power valued mappings, Commutativity results.
(2010) Mathematics Subject Classification: 16W25, 16W10, 16U80.

For $S \subseteq R$, a mapping $f: R \rightarrow R$ is said to be centralizing on S if $[x, f(x)] \in Z(R)$ for all $x \in S$; and f is called zero-power valued on S if $f(S) \subseteq S$ and if for each $x \in S$, there exists a positive integer $n(x)>1$ such that $f^{n(x)}(x)=0$.

Ashraf and Siddeeque [1] and Oukhtite and Salhi [4] proved the commutativity of $*$-prime rings under suitable differential conditions. In this paper, we prove commutativity theorems analogous to some of the results presented in $[1,4]$ using the concept of homoderivations. In particular, under some restrictions, we prove the commutativity of $*$-prime rings satisfying any of the following conditions on $*$-ideals:
i $[h(x), x] \in Z(R)$,
ii $[a h(x), x]=0$ where $0 \neq a \in S_{*}(R)$,
iii $h([x, y])=0$,
iv $h(x \circ y)=0$,
$\mathrm{v} h([x, y])=[x, y]$, or
vi $h(x \circ y)=x \circ y$.

2 Preliminary Results

We start with the following lemma which is essential for proving our results.
Lemma 2.1 ([4], Lemma 1). Let R be $a *$-prime ring and let I be a nonzero *-ideal of R. If $x, y \in R$ are such that $x I y=0=x I y^{*}$, then $x=0$ or $y=0$ (or equivalently $x I y=0=x^{*} I y$, then $x=0$ or $y=0$).

Now we prove the following lemmas which will frequently be used in developing the proofs of our main results.

Lemma 2.2. Let R be $a *$-prime ring, I a nonzero $*$-ideal of R, and h a nonzero homoderivation on R which commutes with *. If $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[x, R] \operatorname{Ih}(x)=0 \quad \text { for all } \quad x \in I \tag{1}
\end{equation*}
$$

For any $x \in I$, we have $t=x-x^{*} \in I$. It follows by (1) that $[t, r] \operatorname{Ih}(t)=0$ for
all $r \in R$. Since $t^{*}=\left(x-x^{*}\right)^{*}=x^{*}-x=-t$, we find that

$$
\begin{aligned}
([t, r])^{*} \operatorname{Ih}(t) & =(t r-r t)^{*} \operatorname{Ih}(t) \\
& =\left(r^{*} t^{*}-t^{*} r^{*}\right) \operatorname{Ih}(t) \\
& =\left(-r^{*} t+t r^{*}\right) \operatorname{Ih}(t) \\
& =\left(\left[t, r^{*}\right]\right) \operatorname{Ih}(t) \\
& =0 .
\end{aligned}
$$

Thus, $[t, r] \operatorname{Ih}(t)=0=([t, r])^{*} I h(t)$ for all $r \in R$. According to Lemma 2.1, we have

$$
\begin{equation*}
[t, r]=0 \quad \text { or } \quad h(t)=0 \tag{2}
\end{equation*}
$$

Therefore, for each $x \in I$, we have either

$$
\begin{equation*}
[x, r]=\left[x^{*}, r\right] \quad \text { or } \quad h(x)=h\left(x^{*}\right) . \tag{3}
\end{equation*}
$$

Suppose that $h(x)=h\left(x^{*}\right)$. Since h commutes with $*, h(x)=(h(x))^{*}$. Therefore, $0=[x, r] \operatorname{Ih}(x)=[x, r] I(h(x))^{*}$ for all $r \in R$. Thus, $h(x)=0$ or $[x, r]=0$, by Lemma 2.1.
Now suppose that $[x, r]=\left[x^{*}, r\right]$. Observe that

$$
\begin{aligned}
([x, r])^{*} \operatorname{Ih}(x) & =(x r-r x)^{*} \operatorname{Ih}(x) \\
& =\left(r^{*} x^{*}-x^{*} r^{*}\right) \operatorname{Ih}(x) \\
& =\left[r^{*}, x^{*}\right] \operatorname{Ih}(x) \\
& =\left[r^{*}, x\right] \operatorname{Ih}(x) \\
& =-\left[x, r^{*}\right] \operatorname{Ih}(x) \\
& =0
\end{aligned}
$$

Therefore, $[x, r] \operatorname{Ih}(x)=0=([x, r])^{*} \operatorname{Ih}(x)$ for all $r \in R$ and so $h(x)=0$ or $[x, r]=0$, by Lemma 2.1.
Hence, both conditions in (3) imply that for each $x \in I$, either

$$
h(x)=0 \quad \text { or } \quad x \in Z(R)
$$

Notice that the sets of $x \in I$ for which these two conditions hold are additive subgroups of I whose union is I; but since a group cannot be the union of two of its proper subgroups, we have either

$$
\begin{equation*}
h(I)=0 \quad \text { or } \quad I \subseteq Z(R) \tag{4}
\end{equation*}
$$

If $h(I)=0$, then $h(x)=0$ for all $x \in I$. Therefore, for all $r \in R, 0=h(x r)=$ $h(x) h(r)+h(x) r+x h(r)=x h(r)$. Hence, $\operatorname{Ih}(r)=0$ for all $r \in R$. This implies that

$$
I R h(r)=0=I^{*} R h(r) \quad \text { for all } r \in R
$$

By $*$-primeness of $R, h=0$ which is a contradiction. From (4), it follows that $I \subseteq Z(R)$. Let $r, s \in R$ and $x \in I$. Then, $r s x=r x s=s r x$ and so $[r, s] x=0$. Thus, $[r, s] I=0$ and

$$
[r, s] R I=0=[r, s] R I^{*} \quad \text { for all } r, s \in R
$$

By $*$-primeness of $R,[r, s]=0$ for all $r, s \in R$. Hence, R is commutative.
Lemma 2.3. Let R be a*-prime ring, I a nonzero $*$-ideal of R, and $h a$ nonzero homoderivation on R which commutes with $*$. If h is zero-power valued on I and $[h(x), x]=0$ for all $x \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[h(x), x]=0 \quad \text { for all } x \in I \tag{5}
\end{equation*}
$$

Linearizing (5), we obtain

$$
\begin{equation*}
[h(x), y]+[h(y), x]=0 \quad \text { for all } x, y \in I \tag{6}
\end{equation*}
$$

Replacing y by $y x$, we get $[h(x), y x]+[h(y x), x]=0$. Expanding this and using (5), we get

$$
[h(x), y] x+[h(y), x] h(x)+[h(y), x] x+[y, x] h(x)=0 \quad \text { for all } \quad x, y \in I
$$

Applying (6), we get

$$
[h(y)+y, x] h(x)=0 \quad \text { for all } x, y \in I
$$

Since h is zero-power valued on I, we can replace y by $y-h(y)+h^{2}(y)+\cdots+$ $(-1)^{n(y)-1} h^{n(y)-1}(y)$ to get

$$
[x, y] h(x)=0 \quad \text { for all } x, y \in I
$$

Replacing y by $r y$ for arbitrary $r \in R$, we obtain $0=[x, r y] h(x)=[x, r] y h(x)$ for all $x, y \in I$. Hence, $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$. By Lemma $2.2, R$ is commutative.

Lemma 2.4. Let R be a*-prime ring and let I be a nonzero $*$-ideal of R. If $x \in R$ and x centralizes I, then $x \in Z(R)$.

Proof. Let $x \in R$. Suppose that $[x, u]=0$ for all $u \in I$. Then, for arbitrary $r \in R$, we have $0=[x, r u]=[x, r] u$ for all $u \in I$. That is, $[x, R] I=0$. Thus,

$$
[x, R] R I=0=[x, R] R I^{*}
$$

Since R is $*$-prime, we conclude that $[x, R]=0$ and hence $x \in Z(R)$.

3 The Main Results

The study of centralizing mappings and commutativity of certain rings began in the 1950's. Posner [5] established the commutativity of prime rings admitting nonzero centralizing derivations. El Sofy [2] proved an analogous result concerning homodervations. More recently, Oukhtite and Salhi [4] proved the commutativity of $*$-prime rings applying Posner's conditions on $*$-ideals. Motivated by this work, we explore the commutativity of $*$-prime rings admitting centralizing homoderivations and we prove the following theorem.

Theorem 3.1. Let R be $a *$-prime ring with characteristic different from two, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with $*$. If h is centralizing and zero-power valued on I, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[h(x), x] \in Z(R) \quad \text { for all } x \in I \tag{7}
\end{equation*}
$$

Linearizing (7), we obtain

$$
[h(x), y]+[h(y), x] \in Z(R) \quad \text { for all } x, y \in I
$$

Replacing y by x^{2}, we get $\left[h(x), x^{2}\right]+\left[h\left(x^{2}\right), x\right] \in Z(R)$ which can be extended to
$x[h(x), x]+[h(x), x] x+h(x)[h(x), x]+[h(x), x] h(x)+[h(x), x] x+x[h(x), x] \in Z(R)$
for all $x \in I$. Applying (7) yields

$$
(4 x+2 h(x))[h(x), x] \in Z(R) \quad \text { for all } x \in I
$$

Since char $R \neq 2$,

$$
(2 x+h(x))[h(x), x] \in Z(R) \quad \text { for all } \quad x \in I
$$

Thus, for arbitrary $r \in R$, we have $[(2 x+h(x))[h(x), x], r]=0$. Expanding this and using (7) yields

$$
[2 x+h(x), r][h(x), x]=0 \quad \text { for all } x \in I, r \in R .
$$

In particular, $[2 x+h(x), x][h(x), x]=0$ for all $x \in I$. This can be simplified to

$$
\begin{equation*}
[h(x), x]^{2}=0 \quad \text { for all } x \in I \tag{8}
\end{equation*}
$$

Since every $*$-prime ring is semiprime and since the center of semiprime rings contains no nonzero nilpotent elements, we find that $[h(x), x]=0$ for all $x \in I$ and hence by Lemma $2.3, R$ is commutative.

Also, Oukhtite and Salhi [4] proved that if a $*$-prime ring R with characteristic different from two has a nonzero derivation d which commutes with $*$ and satisfies $[\operatorname{ad}(x), x]=0$ on $*$-ideals, then $a=0$ or R is commutative. Our next result will provide an analogous conclusion using the concept of homoderivations.

Theorem 3.2. Let R be $a *$-prime ring with characteristic different from two, I a nonzero $*$-ideal of R, and h a nonzero homoderivation on R which commutes with $*$. If h is zero-power valued on I and $a \in S_{*}(R)$ such that $[a h(x), x]=0$ for all $x \in I$, then $a=0$ or R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[a h(x), x]=0 \quad \text { for all } x \in I \tag{9}
\end{equation*}
$$

Linearizing (9), we obtain

$$
\begin{equation*}
[a h(x), y]+[a h(y), x]=0 \quad \text { for all } x, y \in I \tag{10}
\end{equation*}
$$

Replacing y by $y x$, we get $[a h(x), y x]+[a h(y) h(x), x]+[a h(y) x, x]+[a y h(x), x]=$ 0 which is equivalent to $y[a h(x), x]+[a h(x), y] x+a h(y)[h(x), x]+[a h(y), x] h(x)+$ $[a h(y), x] x+a y[h(x), x]+a[y, x] h(x)+[a, x] y h(x)=0$. Applying (9) and (10), yields
$a h(y)[h(x), x]+[a h(y), x] h(x)+a y[h(x), x]+a[y, x] h(x)+[a, x] y h(x)=0 \quad$ for all $x, y \in I$.
This can be written as
$a(h(y)+y)[h(x), x]+[a, x](h(y)+y) h(x)+a[h(y)+y, x] h(x)=0 \quad$ for all $x, y \in I$.
Since h is zero-power valued on I,

$$
\begin{equation*}
a y[h(x), x]+[a, x] y h(x)+a[y, x] h(x)=0 \quad \text { for all } x, y \in I \tag{11}
\end{equation*}
$$

Replacing y by $a y$, we get
$a^{2} y[h(x), x]+[a, x] a y h(x)+a^{2}[y, x] h(x)+a[a, x] y h(x)=0 \quad$ for all $x, y \in I$.
Applying (11) to (12) yields $[a, x] a y h(x)=0$ for all $x, y \in I$. That is,

$$
\begin{equation*}
[a, x] a \operatorname{Ih}(x)=0 \quad \text { for all } x \in I . \tag{13}
\end{equation*}
$$

Observe that for $x \in I \cap S_{*}(R)$ we have $x^{*}= \pm x$. Thus, since h commutes with $*$, we have $(h(x))^{*}=h\left(x^{*}\right)= \pm h(x)$. So, by (13), $[a, x] a \operatorname{Ih}(x)=0=$ $[a, x] a I(h(x))^{*}$ and by Lemma 2.1, it follows that $[a, x] a=0$ or $h(x)=0$.
Now consider $y \in I$. Since $\left(y+y^{*}\right) \in I \cap S_{*}(R)$, by the above observation we have

$$
\begin{equation*}
\left[a, y+y^{*}\right] a=0 \quad \text { or } \quad h\left(y+y^{*}\right)=0 \tag{14}
\end{equation*}
$$

Case1:

Let $h\left(y+y^{*}\right)=0$. Then, $h(y)=-h\left(y^{*}\right)=-(h(y))^{*}$. Therefore, by (13), we have $0=[a, y] a \operatorname{Ih}(y)=[a, y] a I(h(y))^{*}$ and by Lemma 2.1, it follows that $[a, y] a=0$ or $h(y)=0$.
Case2:
Let $\left[a, y+y^{*}\right] a=0$. Since $\left(y-y^{*}\right) \in I \cap S_{*}(R)$, by the above observation we have either $h\left(y-y^{*}\right)=0$ or $\left[a, y-y^{*}\right] a=0$. If $h\left(y-y^{*}\right)=0$, then by a similar approach to Case 1 , we get $[a, y] a=0$ or $h(y)=0$. If $\left[a, y-y^{*}\right] a=0$, then $\left[a, y-y^{*}\right] a+\left[a, y+y^{*}\right] a=0$ which can be reduced to $2[a, y] a=0$. Since char $R \neq 2,[a, y] a=0$.
Thus, both cases in (14) imply that for each $y \in I$,

$$
[a, y] a=0 \quad \text { or } \quad h(y)=0
$$

Notice that the sets of $y \in I$ for which these two conditions hold are additive subgroups of I whose union is I; but since a group cannot be the union of two of its proper subgroups, we have either

$$
\begin{equation*}
[a, I] a=0 \quad \text { or } \quad h(I)=0 . \tag{15}
\end{equation*}
$$

If $h(I)=0$, then $h(x)=0$ for all $x \in I$. Then, for arbitrary $r \in R, 0=$ $h(r x)=h(r) h(x)+h(r) x+r h(x)=h(r) x$. Thus, $h(r) I=0$ for all $r \in R$; and $h(r) R I=0=h(r) R I^{*}$ for all $r \in R$. By $*$-primeness of $R, h=0$ which is a contradiction.
Consequently, we must have $[a, I] a=0$. Then, $[a, x] a=0$ for all $x \in I$. Replacing x by $x y$ yields $[a, x] y a=0$ for all $x, y \in I$. Thus,

$$
[a, x] I a=0 \quad \text { for all } x \in I
$$

As $a \in S_{*}(R)$, then

$$
0=[a, x] I a=[a, x] I a^{*} \quad \text { for all } x \in I
$$

By Lemma 2.1, a centralizes I or $a=0$. By Lemma 2.4, $a \in Z(R)$ or $a=0$. If $0 \neq a \in Z(R)$, then by (9), $0=[a h(x), x]=a[h(x), x]+[a, x] h(x)=a[h(x), x]$. Since $a \in Z(R), a R[h(x), x]=0$. Since $a \in S_{*}(R)$,

$$
0=a R[h(x), x]=a^{*} R[h(x), x] \quad \text { for all } x \in I
$$

As $a \neq 0$, then $*$-primeness of R implies that $[h(x), x]=0$ for all $x \in I$. It follows from Lemma 2.3 that R is commutative.

Ashraf and Siddeeque [1] studied the commutativity of $*$-prime rings admitting nonzero derivations which commute with $*$ and satisfy any one of the following identities on $*$-ideals:

1. $h([x, y])=0$,
2. $h(x \circ y)=0$,
3. $h([x, y])=[x, y]$, or
4. $h(x \circ y)=x \circ y$.

Investigating these identities on homoderivations, we obtain the following two results.

Theorem 3.3. Let R be a*-prime ring, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with $*$. If h satisfies either

1. $h([x, y])=0 \quad$ for all $x, y \in I$, or
2. $h(x \circ y)=0 \quad$ for all $x, y \in I$,
then R is commutative.
Proof. (i) By hypothesis, we have

$$
\begin{equation*}
h([x, y])=0 \quad \text { for all } \quad x, y \in I \tag{16}
\end{equation*}
$$

Replacing y by $y x$ yields $0=h([x, y x])=h([x, y] x)=h([x, y]) h(x)+h([x, y]) x+$ $[x, y] h(x)$ for all $x, y \in I$. Applying (16), we get

$$
\begin{equation*}
[x, y] h(x)=0 \quad \text { for all } x, y \in I \tag{17}
\end{equation*}
$$

Replacing y by $r y$ for arbitrary $r \in R$ gives $[x, r y] h(x)=0$ for all $x, y \in I$. Expanding this and using (17), we get

$$
[x, r] y h(x)=0 \quad \text { for all } x, y \in I, r \in R
$$

Therefore, $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$. By Lemma 2.2, R is commutative.
(ii) By hypothesis, we have

$$
\begin{equation*}
h(x \circ y)=0 \quad \text { for all } x, y \in I \tag{18}
\end{equation*}
$$

Replacing y by $y x$ yields $0=h(x \circ y x)=h((x \circ y) x)=h(x \circ y) h(x)+h(x \circ$ $y) x+(x \circ y) h(x)$ for all $x, y \in I$. Applying (18), we get

$$
(x \circ y) h(x)=0 \quad \text { for all } \quad x, y \in I
$$

This is equivalent to

$$
\begin{equation*}
x y h(x)=-y x h(x) \quad \text { for all } x, y \in I . \tag{19}
\end{equation*}
$$

Replacing y by $r y$ for arbitrary $r \in R$ gives

$$
\begin{equation*}
\operatorname{xryh}(x)=-\operatorname{ryxh}(x) \quad \text { for all } x, y \in I \tag{20}
\end{equation*}
$$

From (19) and (20), it follows that $\operatorname{xryh}(x)=\operatorname{rxyh}(x)$ for all $x, y \in I$. Thus, $[x, r] y h(x)=0$ for all $x, y \in I$ and $r \in R$. Therefore, $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$. By Lemma 2.2, R is commutative.

Theorem 3.4. Let R be a*-prime ring with characteristic different from two, I a nonzero *-ideal of R and let h be a nonzero homoderivation on R which commutes with *. If If h satisfies either

1. $h([x, y])=[x, y] \quad$ for all $x, y \in I$, or
2. $h(x \circ y)=x \circ y$ for all $x, y \in I$,
then R is commutative.

Proof. (i) By hypothesis, we have

$$
\begin{equation*}
h([x, y])=[x, y] \quad \text { for all } x, y \in I \tag{21}
\end{equation*}
$$

Replacing y by $y x$, we get $h([x, y] x)=[x, y] x$ for all $x, y \in I$. Thus,

$$
h([x, y]) h(x)+h([x, y]) x+[x, y] h(x)=[x, y] x \quad \text { for all } x, y \in I
$$

Applying (21), we get

$$
2[x, y] h(x)=0 \quad \text { for all } x, y \in I
$$

Since char $R \neq 2$,

$$
\begin{equation*}
[x, y] h(x)=0 \quad \text { for all } x, y \in I \tag{22}
\end{equation*}
$$

Replacing y by $r y$ for arbitrary $r \in R$ gives $[x, r y] h(x)=0$ for all $x, y \in I$. Expanding this and using (22), we get

$$
[x, r] y h(x)=0 \quad \text { for all } x, y \in I, r \in R
$$

Therefore, $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$. By Lemma $2.2, R$ is commutative.
(ii) By hypothesis, we have

$$
\begin{equation*}
h(x \circ y)=x \circ y \quad \text { for all } x, y \in I \tag{23}
\end{equation*}
$$

Replacing y by $y x$, we get $h((x \circ y) x)=(x \circ y) x$ for all $x, y \in I$. Thus,

$$
h(x \circ y) h(x)+h(x \circ y) x+(x \circ y) h(x)=(x \circ y) x \quad \text { for all } x, y \in I
$$

Applying (23), we get

$$
2(x \circ y) h(x)=0 \quad \text { for all } x, y \in I
$$

Since char $R \neq 2$,

$$
(x \circ y) h(x)=0 \quad \text { for all } \quad x, y \in I
$$

This is equivalent to

$$
\begin{equation*}
x y h(x)=-y x h(x) \quad \text { for all } x, y \in I \tag{24}
\end{equation*}
$$

Replacing y by $r y$ for arbitrary $r \in R$ gives

$$
\begin{equation*}
\operatorname{xryh}(x)=-\operatorname{ryxh}(x) \quad \text { for all } x, y \in I \tag{25}
\end{equation*}
$$

From (24) and (25), it follows that $\operatorname{xryh}(x)=\operatorname{rxyh}(x)$ for all $x, y \in I$. Thus, $[x, r] y h(x)=0$ for all $x, y \in I$ and $r \in R$. Therefore, $[x, R] \operatorname{Ih}(x)=0$ for all $x \in I$. By Lemma $2.2, R$ is commutative.

References

[1] Ashraf M. and Siddeeque M., On certain differential identities in prime rings with involution. Miskolc Mathematical Notes 2015; 16 (1): 33-44.
[2] El Sofy M., Rings with some kinds of mappings. M.Sc Thesis, Cairo University, Branch of Fayoum, Egypt, 2000.
[3] Herstein I. N., Rings with Involution. The University of Chicago Press, 1976.
[4] Oukhtite L. and Salhi S., Derivations and commutativity of σ-prime rings, Int. J. Contemp. Math. Sci. 2006; 1 (9): 439-448.
[5] Posner E., Derivations in prime rings. Proc. Amer. Math. Soc. 1957; 8: 1093-1100.

