HOMODERIVATIONS AND COMMUTATIVITY OF *-PRIME RINGS

Ahmad Al-Kenani, Asmaa Melaibari and Najat Muthana

Department of Mathematics King Abdulaziz University, Jeddah, Saudi Arabia analkenani@kau.edu.sa, melaibari@gmail.com nmuthana@kau.edu.sa

Abstract

In this paper, we prove the commutativity of *-prime rings admitting homoderivations which commute with * and satisfy certain conditions on *-ideals.

1 Introduction

Throughout this paper R represents a ring with center Z(R). For any $x, y \in R$, the commutator xy - yx will be denoted by [x, y], while the the anticommutator xy + yx will be denoted by $x \circ y$. An additive mapping $*: R \to R$ is called an involution on R if $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all $x, y \in R$. A ring R equipped with an involution * is called a ring with an involution * or a *-ring. The set of symmetric and skew elements of R will be denoted by $S_*(R) = \{x \in R | x^* = \pm x\}$ (see [3]). An ideal I of R is a *-ideal if $I^* = I$. A ring R with an involution * is *-prime if $xRy = 0 = xRy^*$ implies that x = 0 or y = 0 (or equivalently $xRy = 0 = x^*Ry$ implies that x = 0 or y = 0). Clearly, every prime ring having an involution * is *-prime but the converse is not true in general. However, if R is a *-prime ring such that $x \in R$ and xRx = 0, then $xRxRx^* = 0$. By *-primeness of R, it follows that x = 0 or $xRx^* = 0$. If $xRx^* = 0$, then $xRx = 0 = xRx^*$. Since R is *-prime, we have x = 0. Hence, every *-prime ring is a semiprime ring.

An additive mapping $h: R \to R$ is called a homoderivation on R if h(xy) = h(x)h(y) + h(x)y + xh(y) for all $x, y \in R$. An example of such mapping is to let h(x) = f(x) - x for all $x \in R$ where f is an endomorphism on R.

Key words: *-Prime rings, *-Ideals, Homoderivations, Zero-power valued mappings, Commutativity results.

⁽²⁰¹⁰⁾ Mathematics Subject Classification: 16W25, 16W10, 16U80.

For $S \subseteq R$, a mapping $f : R \to R$ is said to be centralizing on S if $[x, f(x)] \in Z(R)$ for all $x \in S$; and f is called zero-power valued on S if $f(S) \subseteq S$ and if for each $x \in S$, there exists a positive integer n(x) > 1 such that $f^{n(x)}(x) = 0$.

Ashraf and Siddeeque [1] and Oukhtite and Salhi [4] proved the commutativity of *-prime rings under suitable differential conditions. In this paper, we prove commutativity theorems analogous to some of the results presented in [1, 4] using the concept of homoderivations. In particular, under some restrictions, we prove the commutativity of *-prime rings satisfying any of the following conditions on *-ideals:

- $i [h(x), x] \in Z(R),$
- ii [ah(x), x] = 0 where $0 \neq a \in S_*(R)$,
- iii h([x, y]) = 0,
- iv $h(x \circ y) = 0$,
- v h([x,y]) = [x,y], or
- vi $h(x \circ y) = x \circ y$.

2 Preliminary Results

We start with the following lemma which is essential for proving our results.

Lemma 2.1 ([4], Lemma 1). Let R be a *-prime ring and let I be a nonzero *-ideal of R. If $x, y \in R$ are such that $xIy = 0 = xIy^*$, then x = 0 or y = 0 (or equivalently $xIy = 0 = x^*Iy$, then x = 0 or y = 0).

Now we prove the following lemmas which will frequently be used in developing the proofs of our main results.

Lemma 2.2. Let R be a *-prime ring, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with *. If [x, R]Ih(x) = 0 for all $x \in I$, then R is commutative.

Proof. By hypothesis, we have

$$[x, R]Ih(x) = 0 \qquad \text{for all} \quad x \in I. \tag{1}$$

For any $x \in I$, we have $t = x - x^* \in I$. It follows by (1) that [t, r]Ih(t) = 0 for

all $r \in R$. Since $t^* = (x - x^*)^* = x^* - x = -t$, we find that

$$([t,r])^*Ih(t) = (tr - rt)^*Ih(t) = (r^*t^* - t^*r^*)Ih(t) = (-r^*t + tr^*)Ih(t) = ([t,r^*])Ih(t) = 0.$$

Thus, $[t, r]Ih(t) = 0 = ([t, r])^*Ih(t)$ for all $r \in R$. According to Lemma 2.1, we have

$$[t, r] = 0$$
 or $h(t) = 0.$ (2)

Therefore, for each $x \in I$, we have either

$$[x, r] = [x^*, r]$$
 or $h(x) = h(x^*)$. (3)

Suppose that $h(x) = h(x^*)$. Since h commutes with *, $h(x) = (h(x))^*$. Therefore, $0 = [x, r]Ih(x) = [x, r]I(h(x))^*$ for all $r \in R$. Thus, h(x) = 0 or [x, r] = 0, by Lemma 2.1.

Now suppose that $[x, r] = [x^*, r]$. Observe that

$$([x,r])^*Ih(x) = (xr - rx)^*Ih(x) = (r^*x^* - x^*r^*)Ih(x) = [r^*, x^*]Ih(x) = [r^*, x]Ih(x) = - [x, r^*]Ih(x) = 0.$$

Therefore, $[x, r]Ih(x) = 0 = ([x, r])^*Ih(x)$ for all $r \in R$ and so h(x) = 0 or [x, r] = 0, by Lemma 2.1.

Hence, both conditions in (3) imply that for each $x \in I$, either

$$h(x) = 0$$
 or $x \in Z(R)$.

Notice that the sets of $x \in I$ for which these two conditions hold are additive subgroups of I whose union is I; but since a group cannot be the union of two of its proper subgroups, we have either

$$h(I) = 0$$
 or $I \subseteq Z(R)$. (4)

If h(I) = 0, then h(x) = 0 for all $x \in I$. Therefore, for all $r \in R$, 0 = h(xr) = h(x)h(r) + h(x)r + xh(r) = xh(r). Hence, Ih(r) = 0 for all $r \in R$. This implies that

$$IRh(r) = 0 = I^*Rh(r)$$
 for all $r \in R$.

By *-primeness of R, h = 0 which is a contradiction. From (4), it follows that $I \subseteq Z(R)$. Let $r, s \in R$ and $x \in I$. Then, rsx = rxs = srx and so [r, s]x = 0. Thus, [r, s]I = 0 and

$$[r, s]RI = 0 = [r, s]RI^*$$
 for all $r, s \in R$.

By *-primeness of R, [r, s] = 0 for all $r, s \in R$. Hence, R is commutative. \Box

Lemma 2.3. Let R be a *-prime ring, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with *. If h is zero-power valued on I and [h(x), x] = 0 for all $x \in I$, then R is commutative.

Proof. By hypothesis, we have

$$[h(x), x] = 0 \qquad \text{for all} \quad x \in I.$$
(5)

Linearizing (5), we obtain

$$[h(x), y] + [h(y), x] = 0 \quad \text{for all } x, y \in I.$$
(6)

Replacing y by yx, we get [h(x), yx] + [h(yx), x] = 0. Expanding this and using (5), we get

$$[h(x), y]x + [h(y), x]h(x) + [h(y), x]x + [y, x]h(x) = 0 \quad \text{for all} \quad x, y \in I.$$

Applying (6), we get

$$[h(y) + y, x]h(x) = 0$$
 for all $x, y \in I$.

Since h is zero-power valued on I, we can replace y by $y - h(y) + h^2(y) + \dots + (-1)^{n(y)-1}h^{n(y)-1}(y)$ to get

$$[x, y]h(x) = 0$$
 for all $x, y \in I$.

Replacing y by ry for arbitrary $r \in R$, we obtain 0 = [x, ry]h(x) = [x, r]yh(x) for all $x, y \in I$. Hence, [x, R]Ih(x) = 0 for all $x \in I$. By Lemma 2.2, R is commutative.

Lemma 2.4. Let R be a *-prime ring and let I be a nonzero *-ideal of R. If $x \in R$ and x centralizes I, then $x \in Z(R)$.

Proof. Let $x \in R$. Suppose that [x, u] = 0 for all $u \in I$. Then, for arbitrary $r \in R$, we have 0 = [x, ru] = [x, r]u for all $u \in I$. That is, [x, R]I = 0. Thus,

$$[x, R]RI = 0 = [x, R]RI^*.$$

Since R is *-prime, we conclude that [x, R] = 0 and hence $x \in Z(R)$.

3 The Main Results

The study of centralizing mappings and commutativity of certain rings began in the 1950's. Posner [5] established the commutativity of prime rings admitting nonzero centralizing derivations. El Sofy [2] proved an analogous result concerning homodervations. More recently, Oukhite and Salhi [4] proved the commutativity of *-prime rings applying Posner's conditions on *-ideals. Motivated by this work, we explore the commutativity of *-prime rings admitting centralizing homoderivations and we prove the following theorem.

Theorem 3.1. Let R be a *-prime ring with characteristic different from two, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with *. If h is centralizing and zero-power valued on I, then R is commutative.

Proof. By hypothesis, we have

$$[h(x), x] \in Z(R) \qquad \text{for all } x \in I. \tag{7}$$

Linearizing (7), we obtain

$$[h(x), y] + [h(y), x] \in Z(R)$$
 for all $x, y \in I$.

Replacing y by $x^2,$ we get $[h(x),x^2]+[h(x^2),x]\in Z(R)$ which can be extended to

 $x[h(x), x] + [h(x), x]x + h(x)[h(x), x] + [h(x), x]h(x) + [h(x), x]x + x[h(x), x] \in Z(R)$

for all $x \in I$. Applying (7) yields

$$(4x+2h(x))[h(x),x] \in Z(R)$$
 for all $x \in I$.

Since char $R \neq 2$,

$$(2x+h(x))[h(x),x] \in Z(R)$$
 for all $x \in I$.

Thus, for arbitrary $r \in R$, we have [(2x+h(x))[h(x), x], r] = 0. Expanding this and using (7) yields

$$[2x + h(x), r][h(x), x] = 0 \quad \text{for all } x \in I, r \in R.$$

In particular, [2x + h(x), x][h(x), x] = 0 for all $x \in I$. This can be simplified to

$$[h(x), x]^2 = 0 \qquad \text{for all} \quad x \in I.$$
(8)

Since every *-prime ring is semiprime and since the center of semiprime rings contains no nonzero nilpotent elements, we find that [h(x), x] = 0 for all $x \in I$ and hence by Lemma 2.3, R is commutative.

Also, Oukhtite and Salhi [4] proved that if a *-prime ring R with characteristic different from two has a nonzero derivation d which commutes with * and satisfies [ad(x), x] = 0 on *-ideals, then a = 0 or R is commutative. Our next result will provide an analogous conclusion using the concept of homoderivations.

Theorem 3.2. Let R be a *-prime ring with characteristic different from two, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with *. If h is zero-power valued on I and $a \in S_*(R)$ such that [ah(x), x] = 0 for all $x \in I$, then a = 0 or R is commutative.

Proof. By hypothesis, we have

$$[ah(x), x] = 0 \qquad \text{for all} \quad x \in I. \tag{9}$$

Linearizing (9), we obtain

$$[ah(x), y] + [ah(y), x] = 0$$
 for all $x, y \in I$. (10)

Replacing y by yx, we get [ah(x), yx] + [ah(y)h(x), x] + [ah(y)x, x] + [ayh(x), x] = 0 which is equivalent to y[ah(x), x] + [ah(x), y]x + ah(y)[h(x), x] + [ah(y), x]h(x) + [ah(y), x]x + ay[h(x), x] + a[y, x]h(x) + [a, x]yh(x) = 0. Applying (9) and (10), yields

$$ah(y)[h(x), x] + [ah(y), x]h(x) + ay[h(x), x] + a[y, x]h(x) + [a, x]yh(x) = 0 \qquad \text{for all } x, y \in I.$$

This can be written as

$$a(h(y)+y)[h(x), x] + [a, x](h(y)+y)h(x) + a[h(y)+y, x]h(x) = 0 \quad \text{for all } x, y \in I.$$

Since h is zero-power valued on I,

$$ay[h(x), x] + [a, x]yh(x) + a[y, x]h(x) = 0$$
 for all $x, y \in I$. (11)

Replacing y by ay, we get

$$a^{2}y[h(x), x] + [a, x]ayh(x) + a^{2}[y, x]h(x) + a[a, x]yh(x) = 0 \quad \text{for all } x, y \in I.$$
(12)

Applying (11) to (12) yields [a, x]ayh(x) = 0 for all $x, y \in I$. That is,

$$[a, x]aIh(x) = 0 \qquad \text{for all} \quad x \in I.$$
(13)

Observe that for $x \in I \cap S_*(R)$ we have $x^* = \pm x$. Thus, since h commutes with *, we have $(h(x))^* = h(x^*) = \pm h(x)$. So, by (13), [a, x]aIh(x) = 0 = $[a, x]aI(h(x))^*$ and by Lemma 2.1, it follows that [a, x]a = 0 or h(x) = 0. Now consider $y \in I$. Since $(y + y^*) \in I \cap S_*(R)$, by the above observation we have

$$[a, y + y^*]a = 0$$
 or $h(y + y^*) = 0.$ (14)

Case1:

Let $h(y + y^*) = 0$. Then, $h(y) = -h(y^*) = -(h(y))^*$. Therefore, by (13), we have $0 = [a, y]aIh(y) = [a, y]aI(h(y))^*$ and by Lemma 2.1, it follows that [a, y]a = 0 or h(y) = 0. Case2:

Let $[a, y + y^*]a = 0$. Since $(y - y^*) \in I \cap S_*(R)$, by the above observation we have either $h(y - y^*) = 0$ or $[a, y - y^*]a = 0$. If $h(y - y^*) = 0$, then by a similar approach to Case 1, we get [a, y]a = 0 or h(y) = 0. If $[a, y - y^*]a = 0$, then $[a, y - y^*]a + [a, y + y^*]a = 0$ which can be reduced to 2[a, y]a = 0. Since char $R \neq 2$, [a, y]a = 0.

Thus, both cases in (14) imply that for each $y \in I$,

$$[a, y]a = 0 \qquad \text{or} \qquad h(y) = 0$$

Notice that the sets of $y \in I$ for which these two conditions hold are additive subgroups of I whose union is I; but since a group cannot be the union of two of its proper subgroups, we have either

$$a, I | a = 0$$
 or $h(I) = 0.$ (15)

If h(I) = 0, then h(x) = 0 for all $x \in I$. Then, for arbitrary $r \in R$, 0 = h(rx) = h(r)h(x) + h(r)x + rh(x) = h(r)x. Thus, h(r)I = 0 for all $r \in R$; and $h(r)RI = 0 = h(r)RI^*$ for all $r \in R$. By *-primeness of R, h = 0 which is a contradiction.

Consequently, we must have [a, I]a = 0. Then, [a, x]a = 0 for all $x \in I$. Replacing x by xy yields [a, x]ya = 0 for all $x, y \in I$. Thus,

$$[a, x]Ia = 0$$
 for all $x \in I$.

As $a \in S_*(R)$, then

$$0 = [a, x]Ia = [a, x]Ia^* \quad \text{for all } x \in I.$$

By Lemma 2.1, a centralizes I or a = 0. By Lemma 2.4, $a \in Z(R)$ or a = 0. If $0 \neq a \in Z(R)$, then by (9), 0 = [ah(x), x] = a[h(x), x] + [a, x]h(x) = a[h(x), x]. Since $a \in Z(R)$, aR[h(x), x] = 0. Since $a \in S_*(R)$,

$$0 = aR[h(x), x] = a^*R[h(x), x] \quad \text{for all } x \in I.$$

As $a \neq 0$, then *-primeness of R implies that [h(x), x] = 0 for all $x \in I$. It follows from Lemma 2.3 that R is commutative.

Ashraf and Siddeeque [1] studied the commutativity of *-prime rings admitting nonzero derivations which commute with * and satisfy any one of the following identities on *-ideals:

1.
$$h([x, y]) = 0$$
,

- $2. \ h(x \circ y) = 0,$
- 3. h([x, y]) = [x, y], or
- 4. $h(x \circ y) = x \circ y$.

Investigating these identities on homoderivations, we obtain the following two results.

Theorem 3.3. Let R be a *-prime ring, I a nonzero *-ideal of R, and h a nonzero homoderivation on R which commutes with *. If h satisfies either

- $1. \ h([x,y]) = 0 \quad \text{for all } x,y \in I, \ \text{ or }$
- 2. $h(x \circ y) = 0$ for all $x, y \in I$,

then R is commutative.

Proof. (i) By hypothesis, we have

$$h([x, y]) = 0 \qquad \text{for all} \ x, y \in I. \tag{16}$$

Replacing y by yx yields 0 = h([x, yx]) = h([x, y]x) = h([x, y])h(x) + h([x, y])x + [x, y]h(x) for all $x, y \in I$. Applying (16), we get

$$[x, y]h(x) = 0$$
 for all $x, y \in I$. (17)

Replacing y by ry for arbitrary $r \in R$ gives [x, ry]h(x) = 0 for all $x, y \in I$. Expanding this and using (17), we get

$$[x, r]yh(x) = 0$$
 for all $x, y \in I, r \in R$.

Therefore, [x, R]Ih(x) = 0 for all $x \in I$. By Lemma 2.2, R is commutative.

(*ii*) By hypothesis, we have

$$h(x \circ y) = 0 \qquad \text{for all} \ x, y \in I. \tag{18}$$

Replacing y by yx yields $0 = h(x \circ yx) = h((x \circ y)x) = h(x \circ y)h(x) + h(x \circ y)x + (x \circ y)h(x)$ for all $x, y \in I$. Applying (18), we get

$$(x \circ y)h(x) = 0$$
 for all $x, y \in I$.

This is equivalent to

$$xyh(x) = -yxh(x)$$
 for all $x, y \in I$. (19)

Replacing y by ry for arbitrary $r \in R$ gives

$$xryh(x) = -ryxh(x)$$
 for all $x, y \in I$. (20)

From (19) and (20), it follows that xryh(x) = rxyh(x) for all $x, y \in I$. Thus, [x, r]yh(x) = 0 for all $x, y \in I$ and $r \in R$. Therefore, [x, R]Ih(x) = 0 for all $x \in I$. By Lemma 2.2, R is commutative.

Theorem 3.4. Let R be a *-prime ring with characteristic different from two, I a nonzero *-ideal of R and let h be a nonzero homoderivation on R which commutes with *. If If h satisfies either

1.
$$h([x,y]) = [x,y]$$
 for all $x, y \in I$, or

2. $h(x \circ y) = x \circ y$ for all $x, y \in I$,

then R is commutative.

Proof. (i) By hypothesis, we have

$$h([x,y]) = [x,y] \quad \text{for all } x, y \in I.$$

$$(21)$$

Replacing y by yx, we get h([x, y]x) = [x, y]x for all $x, y \in I$. Thus,

$$h([x, y])h(x) + h([x, y])x + [x, y]h(x) = [x, y]x$$
 for all $x, y \in I$.

Applying (21), we get

$$2[x, y]h(x) = 0$$
 for all $x, y \in I$.

Since char $R \neq 2$,

$$[x, y]h(x) = 0 \qquad \text{for all} \ x, y \in I.$$
(22)

Replacing y by ry for arbitrary $r \in R$ gives [x, ry]h(x) = 0 for all $x, y \in I$. Expanding this and using (22), we get

$$[x, r]yh(x) = 0$$
 for all $x, y \in I, r \in R$.

Therefore, [x, R]Ih(x) = 0 for all $x \in I$. By Lemma 2.2, R is commutative.

(*ii*) By hypothesis, we have

$$h(x \circ y) = x \circ y \qquad \text{for all} \ x, y \in I.$$
(23)

Replacing y by yx, we get $h((x \circ y)x) = (x \circ y)x$ for all $x, y \in I$. Thus,

$$h(x\circ y)h(x)+h(x\circ y)x+(x\circ y)h(x)=(x\circ y)x \qquad \text{for all } x,y\in I.$$

Applying (23), we get

$$2(x \circ y)h(x) = 0 \quad \text{for all } x, y \in I.$$

Since char $R \neq 2$,

$$(x \circ y)h(x) = 0$$
 for all $x, y \in I$.

This is equivalent to

$$xyh(x) = -yxh(x)$$
 for all $x, y \in I$. (24)

Replacing y by ry for arbitrary $r \in R$ gives

$$xryh(x) = -ryxh(x)$$
 for all $x, y \in I$. (25)

From (24) and (25), it follows that xryh(x) = rxyh(x) for all $x, y \in I$. Thus, [x, r]yh(x) = 0 for all $x, y \in I$ and $r \in R$. Therefore, [x, R]Ih(x) = 0 for all $x \in I$. By Lemma 2.2, R is commutative.

References

- [1] Ashraf M. and Siddeeque M., On certain differential identities in prime rings with involution. Miskolc Mathematical Notes 2015; 16 (1): 33-44.
- [2] El Sofy M., Rings with some kinds of mappings. M.Sc Thesis, Cairo University, Branch of Fayoum, Egypt, 2000.
- [3] Herstein I. N., Rings with Involution. The University of Chicago Press, 1976.
- [4] Oukhtite L. and Salhi S., Derivations and commutativity of σ -prime rings, Int. J. Contemp. Math. Sci. 2006; 1 (9): 439-448.
- [5] Posner E., Derivations in prime rings. Proc. Amer. Math. Soc. 1957; 8: 1093-1100.