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Abstract
In this paper, we prove the commutativity of *-prime rings admitting
homoderivations which commute with % and satisfy certain conditions on
x-ideals.

1 Introduction

Throughout this paper R represents a ring with center Z(R). For any z,y € R,
the commutator zy—yz will be denoted by [z, y], while the the anticommutator
xy + yx will be denoted by x o y. An additive mapping * : R — R is called
an involution on R if (zy)* = y*2* and (z*)* = «x for all x,y € R. A ring
R equipped with an involution * is called a ring with an involution * or a
x-ring. The set of symmetric and skew elements of R will be denoted by
S«(R) = {x € Rlz* = +a} (see [3]). An ideal I of R is a x-ideal if I* = 1. A
ring R with an involution * is *-prime if z Ry = 0 = xRy* implies that x = 0 or
y = 0 (or equivalently xRy = 0 = z* Ry implies that 2 = 0 or y = 0). Clearly,
every prime ring having an involution # is #-prime but the converse is not true
in general. However, if R is a x-prime ring such that © € R and xRx = 0,
then x Rz Rx* = 0. By *-primeness of R, it follows that © =0 or xRz* = 0. If
rRx* =0, then zRz = 0 = x Rx*. Since R is *-prime, we have x = 0. Hence,
every x-prime ring is a semiprime ring.

An additive mapping h : R — R is called a homoderivation on R if h(xy) =
h(z)h(y) + h(x)y + zh(y) for all z,y € R. An example of such mapping is to
let h(z) = f(x) — « for all x € R where f is an endomorphism on R.
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For S C R, a mapping f : R — R is said to be centralizing on S if
[z, f(x)] € Z(R) for all x € S; and f is called zero-power valued on S if
f(S) € S and if for each x € S, there exists a positive integer n(z) > 1 such
that f*(*)(z) = 0.

Ashraf and Siddeeque [1] and Oukhtite and Salhi [4] proved the commu-
tativity of x-prime rings under suitable differential conditions. In this paper,
we prove commutativity theorems analogous to some of the results presented
in [1, 4] using the concept of homoderivations. In particular, under some re-
strictions, we prove the commutativity of *-prime rings satisfying any of the
following conditions on *-ideals:

i [h(z),z] € Z(R),
i [ah(z),2] = 0 where 0 # a € S4(R),
iii h([z,y]) =0,
iv h(zoy) =0,
v ([, y]) = [z, 9], or

vi h(zoy) =z oy.

2 Preliminary Results

We start with the following lemma which is essential for proving our results.
Lemma 2.1 ([4], Lemma 1). Let R be a *-prime ring and let I be a nonzero
x-ideal of R. If x,y € R are such that xly = 0 = xly*, then t =0 ory =0
(or equivalently xIy =0 = x*Iy, then x =0 or y =0).

Now we prove the following lemmas which will frequently be used in devel-
oping the proofs of our main results.

Lemma 2.2. Let R be a *-prime ring, I a nonzero x-ideal of R, and h a

nonzero homoderivation on R which commutes with x. If [z, R]Ih(z) = 0 for
all x € I, then R is commutative.

Proof. By hypothesis, we have
[z, R|Th(z) =0 forall = eI (1)

For any = € I, we have t =z — 2™ € I. It follows by (1) that [¢,r]Th(t) = 0 for
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all » € R. Since t* = (z — 2™)* = 2* — x = —t, we find that

([t, 7)) Ih(t) = (tr — rt)*ITh(t)
t'r

Thus, [t,r]Ih(t) = 0 = ([t,r])*Ih(t) for all » € R. According to Lemma 2.1, we
have
[t,r] =0 or h(t) = 0. (2)

Therefore, for each x € I, we have either
[z,r] = [z",7]  or  h(z)=h(z"). (3)

Suppose that h(z) = h(z*). Since h commutes with *, h(z) = (h ( ))*. There-
fore, 0 = [z, r]Th(x) = [z,r]I(h(x))* for all r € R. Thus h(z) =0 or [z,r] =0,
by Lemma 2.1.

Now suppose that [z, 7] = [z*,r]. Observe that

([z,r])"Ih(z) =

Therefore, [z, r]Ih(z) = 0 = ([z,r])*Ih(x) for all r € R and so h(z) = 0 or
[z,r] = 0, by Lemma 2.1.
Hence, both conditions in (3) imply that for each x € I, either

h(z)=0 or xz € Z(R).

Notice that the sets of x € I for which these two conditions hold are additive
subgroups of I whose union is I; but since a group cannot be the union of two
of its proper subgroups, we have either

MI)=0 or ICZ(R). (4)

If h(I) =0, then h(x) =0 for all € I. Therefore, for all » € R, 0 = h(ar) =
h(z)h(r)+h(z)r+xh(r) = zh(r). Hence, Th(r) = 0 for all » € R. This implies
that

IRh(r) =0 =1I"Rh(r) for all r € R.
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By *-primeness of R, h = 0 which is a contradiction. From (4), it follows that
ICZ(R). Let r,s € R and « € I. Then, rsz = ras = srz and so [r, sl = 0.
Thus, [r, s]I =0 and

[r,s]RI =0 = [r, s]RI" for all r,s€ R.
By s-primeness of R, [r,s] =0 for all , s € R. Hence, R is commutative. O

Lemma 2.3. Let R be a *-prime ring, I a nonzero x-ideal of R, and h a
nonzero homoderivation on R which commutes with . If h is zero-power valued
on I and [h(z),z] =0 for all x € I, then R is commutative.

Proof. By hypothesis, we have
[h(z),z] =0 for all z € I. (5)
Linearizing (5), we obtain
[h(z),y] + [h(y),z] =0 for all z,y € I. (6)

Replacing y by yx, we get [h(z), yx] +[h(yx), ] = 0. Expanding this and using
(5), we get

[h(z), Y]z + [h(y), z]h(z) + [R(y), z]z + [y, x]h(z) = 0 for all z,yel.
Applying (6), we get
[h(y) + vy, z]h(xz) =0 for all z,y € 1.

Since h is zero-power valued on I, we can replace y by y — h(y) +h%(y) +-- -+
(1)@= R (y) to get

[z,ylh(xz) =0 for all z,y e I.
Replacing y by ry for arbitrary r € R, we obtain 0 = [z, ry|h(z) = [z, r|yh(z)

for all z,y € I. Hence, [z, R]ITh(x) = 0 for all x € I. By Lemma 2.2, R is
commutative. O

Lemma 2.4. Let R be a x-prime ring and let I be a nonzero x-ideal of R. If
x € R and x centralizes I, then x € Z(R).

Proof. Let © € R. Suppose that [x,u] = 0 for all w € I. Then, for arbitrary
r € R, we have 0 = [z, ru] = [z, r]u for all u € I. That is, [z, R]I = 0. Thus,

[z, RIRI = 0 = [z, R|RI".

Since R is *-prime, we conclude that [z, R] = 0 and hence = € Z(R). O
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3 The Main Results

The study of centralizing mappings and commutativity of certain rings began
in the 1950’s. Posner [5] established the commutativity of prime rings admit-
ting nonzero centralizing derivations. El Sofy [2] proved an analogous result
concerning homodervations. More recently, Oukhtite and Salhi [4] proved the
commutativity of *-prime rings applying Posner’s conditions on *-ideals. Mo-
tivated by this work, we explore the commutativity of *-prime rings admitting
centralizing homoderivations and we prove the following theorem.

Theorem 3.1. Let R be a x-prime ring with characteristic different from two, 1
a nonzero x-ideal of R, and h a nonzero homoderivation on R which commutes
with x. If h is centralizing and zero-power valued on I, then R is commutative.

Proof. By hypothesis, we have
[h(z),z] € Z(R) for all = € I. (7)
Linearizing (7), we obtain
[h(z),y] + [h(y),z] € Z(R) for all z,y € I.

Replacing y by 22, we get [h(z), %] + [h(2?), 2] € Z(R) which can be extended
to

o[h(z), 2]+ [h(@), 2)z+h(z)[h(z), 2]+ [h(@), 2]h(2)+[h(z), 2]z +oh(z), 2] € Z(R)
for all € I. Applying (7) yields

(4z + 2h(2))[h(z), 2] € Z(R)  forall z € 1.
Since char R # 2,

(22 + h(z))[h(x),2] € Z(R)  forall z €I

Thus, for arbitrary r € R, we have [(2z +h(z))[h(x), ], ] = 0. Expanding this
and using (7) yields

2z + h(z),r][h(z),z] =0 forall z €I, € R.
In particular, [2z 4+ h(x), z][h(z), 2] = 0 for all x € I. This can be simplified to
[h(z),2]* =0 for all = € 1. (8)

Since every #-prime ring is semiprime and since the center of semiprime rings
contains no nonzero nilpotent elements, we find that [h(z),z] =0 for all z € T
and hence by Lemma 2.3, R is commutative. ]
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Also, Oukhtite and Salhi [4] proved that if a %-prime ring R with charac-
teristic different from two has a nonzero derivation d which commutes with x*
and satisfies [ad(z), ] = 0 on #-ideals, then a = 0 or R is commutative. Our
next result will provide an analogous conclusion using the concept of homod-
erivations.

Theorem 3.2. Let R be a x-prime ring with characteristic different from two, 1
a nonzero x-ideal of R, and h a nonzero homoderivation on R which commutes
with *. If h is zero-power valued on I and a € S, (R) such that [ah(x),z] =0
for allz € I, then a =0 or R is commutative.

Proof. By hypothesis, we have
[ah(x),2] =0 for all = € I. (9)
Linearizing (9), we obtain
[ah(z),y] + [ah(y),z] =0  forall z,y €I (10)

Replacing y by yz, we get [ah(z), yz]+[ah(y)h(z), z]+[ah(y)x, 2]+ [ayh(z), x] =
0 which is equivalent to y[ah(z), z]+[ah(z), y|z+ah(y)[h(z), z]+[ah(y), z]h(z)+
[th(é;), x|z + ay[h(z), z] + aly, z]h(z) + [a, z]yh(z) = 0. Applying (9) and (10),
yields

ah(y)[h(x), z]+[ah(y), z]h(x)+ay[h(x), ]+aly, z]h(z)+]a, z]yh(z) = O for all z,y € 1.
This can be written as
a(h(y)+y)[h(z), z]+[a, 2] (h(y)+y)h(z)+a[h(y)+y, z]h(z) =0  forall z,y € L.
Since h is zero-power valued on I,
ay[h(z), 2] + [a, 2]yh(z) + aly, 2]h(z) =0 forall z,yecl.  (11)

Replacing y by ay, we get

a*y[h(z), z] + [a, 2]ayh(z) + a*[y, z]h(z) + ala, z]yh(z) =0  for all z,y € I.

(12)
Applying (11) to (12) yields [a, z]ayh(z) = 0 for all z,y € I. That is,

[a, z]alh(z) =0 for all x € 1. (13)

Observe that for z € I N S,(R) we have z* = +x. Thus, since h commutes
with *, we have (h(z))* = h(z*) = xh(x). So, by (13), [a,z]alh(z) =0 =
[a, z]aI(h(x))* and by Lemma 2.1, it follows that [a,z]a =0 or h(z) = 0.
Now consider y € I. Since (y + y*) € I N S.(R), by the above observation we
have

[a,y+y“la=0 or  h(y+y")=0. (14)
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Casel:

Let h(y + y*) = 0. Then, h(y) = —h(y*) = —(h(y))*. Therefore, by (13),
we have 0 = [a,y]lalh(y) = [a,y]al(h(y))* and by Lemma 2.1, it follows that
[a,y]la =0 or h(y) = 0.

Case2:

Let [a,y + y*]a = 0. Since (y — y*) € I N S.(R), by the above observation we
have either h(y —y*) =0 or [a,y —y*]a = 0. If h(y —y*) = 0, then by a similar
approach to Case 1, we get [a,yla = 0 or h(y) = 0. If [a,y — y*]a = 0, then
[a,y — y*]a + [a,y + y*]a = 0 which can be reduced to 2[a, y]a = 0. Since char
R # 2, [a,yla=0.

Thus, both cases in (14) imply that for each y € T,

[a,yla=0 or h(y) = 0.

Notice that the sets of y € I for which these two conditions hold are additive
subgroups of I whose union is I; but since a group cannot be the union of two
of its proper subgroups, we have either

[a,Ila=0 or h(I)=0. (15)

If h(I) = 0, then h(z) = 0 for all z € I. Then, for arbitrary » € R, 0 =
h(rz) = h(r)h(z) + h(r)x + rh(x) = h(r)x. Thus, h(r)I =0 for all » € R; and
h(r)RI = 0 = h(r)RI* for all r € R. By x-primeness of R, h = 0 which is a
contradiction.

Consequently, we must have [a,I]a = 0. Then, [a,z]a = 0 for all z € I.
Replacing x by xy yields [a, z]ya = 0 for all z,y € I. Thus,

[a,z]Ta =0 forall = eI

As a € S.(R), then

0= [a,z]la = [a,z]Ia” for all z € 1.
By Lemma 2.1, a centralizes I or a = 0. By Lemma 2.4, a € Z(R) or a = 0. If
0 # a € Z(R), then by (9), 0 = [ah(x), x] = a[h(x), z] + [a, z]h(z) = alh(z), x]

Since a € Z(R), aR[h(z),z] = 0. Since a € S.(R),
0 = aR[h(z),z] = a*R[h(x), x] forall = e 1.

As a # 0, then x-primeness of R implies that [h(z),z] = 0 for all z € I. Tt
follows from Lemma 2.3 that R is commutative. O

Ashraf and Siddeeque [1] studied the commutativity of *-prime rings ad-
mitting nonzero derivations which commute with * and satisfy any one of the
following identities on *-ideals:

L h([z, 4)) =0,
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2. h(zoy) =0,
3. h([xay]) = [xay]’ or
4. h(zoy) =z oy.

Investigating these identities on homoderivations, we obtain the following
two results.

Theorem 3.3. Let R be a x-prime ring, I a nonzero x-ideal of R, and h a
nonzero homoderivation on R which commutes with . If h satisfies either

1. h([z,y]) =0 forall z,y €I, or
2. h(xoy)=0 forallz,yel,

then R is commutative.

Proof. (i) By hypothesis, we have
h([z,y]) =0 for all z,y € I. (16)

Replacing y by yz yields 0 = h([z, ya]) = h([z, 1) = h((, y])h(z)+h(z )+
[z, y]h(x) for all z,y € I. Applying (16), we get

[z,ylh(xz) =0 for all x,y e I. (17)

Replacing y by ry for arbitrary r € R gives [z, rylh(z) = 0 for all z,y € I.
Expanding this and using (17), we get

[z, r]yh(z) =0 for all z,y € I,r € R.
Therefore, [z, R]ITh(x) =0 for all x € I. By Lemma 2.2, R is commutative.

(#i) By hypothesis, we have
h(zoy)=0 for all z,ye€ I (18)

Replacing y by yx yields 0 = h(z o yz) = h((z o y)x) = h(z o y)h(z) + h(x o
y)x + (zoy)h(z) for all z,y € I. Applying (18), we get

(xoy)h(z)=0 for all x,ye 1.
This is equivalent to
zyh(x) = —yzh(x) for all z,y e I. (19)
Replacing y by ry for arbitrary r € R gives
zryh(x) = —ryxh(x) for all z,y e I. (20)

From (19) and (20), it follows that xzryh(z) = rayh(z) for all z,y € I. Thus,
[z, r]yh(z) = 0 for all z,y € I and r € R. Therefore, [z, R]Ih(z) = 0 for all
z € I. By Lemma 2.2, R is commutative. O
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Theorem 3.4. Let R be a *-prime ring with characteristic different from two,
I a nonzero x-ideal of R and let h be a nonzero homoderivation on R which
commutes with x. If If h satisfies either

1. h([z,y]) = [z,y] forall z,y €I, or
2. h(zoy)=xzoy forallxz,yel,
then R is commutative.
Proof. (i) By hypothesis, we have
h([z,y]) = [z, ] for all z,y € 1. (21)
Replacing y by yz, we get h([z, y]z) = [z, y]x for all x,y € I. Thus,
h([z, y)h(x) + h([z, y])x + [z, ylh(z) = [z, y]z for all z,y € I.
Applying (21), we get
2]z, ylh(z) =0 for all z,y € I.

Since char R # 2,
[z,ylh(x) =0 for all z,ye€ I (22)

Replacing y by ry for arbitrary r € R gives [z, rylh(z) = 0 for all z,y € I.
Expanding this and using (22), we get

[z, r]yh(z) =0 for all z,y € I,r € R.
Therefore, [z, R]ITh(x) = 0 for all x € I. By Lemma 2.2, R is commutative.
(#i) By hypothesis, we have

hMzoy)=x0y for all z,y € I. (23)

Replacing y by yz, we get h((z o y)z) = (x o y)x for all z,y € I. Thus,
h(zoy)h(x) + h(zoy)xr + (xoy)h(x) = (x oy)x for all z,y € I.

Applying (23), we get

2(xoy)h(z) =0 for all z,y € 1.
Since char R # 2,

(xoy)h(z)=0 for all z,y e I.
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This is equivalent to
zyh(x) = —yzh(x) for all z,y e I. (24)
Replacing y by ry for arbitrary r € R gives
zryh(x) = —ryxh(x) for all z,y e I. (25)

From (24) and (25), it follows that xzryh(z) = rayh(z) for all z,y € I. Thus,
[z, r]yh(z) = 0 for all x,y € I and r € R. Therefore, [z, R]Ih(z) = 0 for all
z € I. By Lemma 2.2, R is commutative. O
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