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Abstract

In this paper, we prove the commutativity of ∗-prime rings admitting
homoderivations which commute with ∗ and satisfy certain conditions on
∗-ideals.

1 Introduction

Throughout this paper R represents a ring with center Z(R). For any x, y ∈ R,
the commutator xy−yx will be denoted by [x, y], while the the anticommutator
xy + yx will be denoted by x ◦ y. An additive mapping ∗ : R → R is called
an involution on R if (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A ring
R equipped with an involution ∗ is called a ring with an involution ∗ or a
∗-ring. The set of symmetric and skew elements of R will be denoted by
S∗(R) = {x ∈ R|x∗ = ±x} (see [3]). An ideal I of R is a ∗-ideal if I∗ = I. A
ring R with an involution ∗ is ∗-prime if xRy = 0 = xRy∗ implies that x = 0 or
y = 0 (or equivalently xRy = 0 = x∗Ry implies that x = 0 or y = 0). Clearly,
every prime ring having an involution ∗ is ∗-prime but the converse is not true
in general. However, if R is a ∗-prime ring such that x ∈ R and xRx = 0,
then xRxRx∗ = 0. By ∗-primeness of R, it follows that x = 0 or xRx∗ = 0. If
xRx∗ = 0, then xRx = 0 = xRx∗. Since R is ∗-prime, we have x = 0. Hence,
every ∗-prime ring is a semiprime ring.

An additive mapping h : R → R is called a homoderivation on R if h(xy) =
h(x)h(y) + h(x)y + xh(y) for all x, y ∈ R. An example of such mapping is to
let h(x) = f(x) − x for all x ∈ R where f is an endomorphism on R.
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For S ⊆ R, a mapping f : R → R is said to be centralizing on S if
[x, f(x)] ∈ Z(R) for all x ∈ S; and f is called zero-power valued on S if
f(S) ⊆ S and if for each x ∈ S, there exists a positive integer n(x) > 1 such
that fn(x)(x) = 0.

Ashraf and Siddeeque [1] and Oukhtite and Salhi [4] proved the commu-
tativity of ∗-prime rings under suitable differential conditions. In this paper,
we prove commutativity theorems analogous to some of the results presented
in [1, 4] using the concept of homoderivations. In particular, under some re-
strictions, we prove the commutativity of ∗-prime rings satisfying any of the
following conditions on ∗-ideals:

i [h(x), x] ∈ Z(R),

ii [ah(x), x] = 0 where 0 �= a ∈ S∗(R),

iii h([x, y]) = 0,

iv h(x ◦ y) = 0,

v h([x, y]) = [x, y], or

vi h(x ◦ y) = x ◦ y.

2 Preliminary Results

We start with the following lemma which is essential for proving our results.

Lemma 2.1 ([4], Lemma 1). Let R be a ∗-prime ring and let I be a nonzero
∗-ideal of R. If x, y ∈ R are such that xIy = 0 = xIy∗, then x = 0 or y = 0
(or equivalently xIy = 0 = x∗Iy, then x = 0 or y = 0).

Now we prove the following lemmas which will frequently be used in devel-
oping the proofs of our main results.

Lemma 2.2. Let R be a ∗-prime ring, I a nonzero ∗-ideal of R, and h a
nonzero homoderivation on R which commutes with ∗. If [x, R]Ih(x) = 0 for
all x ∈ I, then R is commutative.

Proof. By hypothesis, we have

[x, R]Ih(x) = 0 for all x ∈ I. (1)

For any x ∈ I, we have t = x− x∗ ∈ I. It follows by (1) that [t, r]Ih(t) = 0 for
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all r ∈ R. Since t∗ = (x − x∗)∗ = x∗ − x = −t, we find that

([t, r])∗Ih(t) = (tr − rt)∗Ih(t)
= (r∗t∗ − t∗r∗)Ih(t)
= (−r∗t + tr∗)Ih(t)
= ([t, r∗])Ih(t)
= 0.

Thus, [t, r]Ih(t) = 0 = ([t, r])∗Ih(t) for all r ∈ R. According to Lemma 2.1, we
have

[t, r] = 0 or h(t) = 0. (2)

Therefore, for each x ∈ I, we have either

[x, r] = [x∗, r] or h(x) = h(x∗). (3)

Suppose that h(x) = h(x∗). Since h commutes with ∗, h(x) = (h(x))∗. There-
fore, 0 = [x, r]Ih(x) = [x, r]I(h(x))∗ for all r ∈ R. Thus, h(x) = 0 or [x, r] = 0,
by Lemma 2.1.
Now suppose that [x, r] = [x∗, r]. Observe that

([x, r])∗Ih(x) = (xr − rx)∗Ih(x)
= (r∗x∗ − x∗r∗)Ih(x)
= [r∗, x∗]Ih(x)
= [r∗, x]Ih(x)
= − [x, r∗]Ih(x)
= 0.

Therefore, [x, r]Ih(x) = 0 = ([x, r])∗Ih(x) for all r ∈ R and so h(x) = 0 or
[x, r] = 0, by Lemma 2.1.
Hence, both conditions in (3) imply that for each x ∈ I, either

h(x) = 0 or x ∈ Z(R).

Notice that the sets of x ∈ I for which these two conditions hold are additive
subgroups of I whose union is I; but since a group cannot be the union of two
of its proper subgroups, we have either

h(I) = 0 or I ⊆ Z(R). (4)

If h(I) = 0, then h(x) = 0 for all x ∈ I. Therefore, for all r ∈ R, 0 = h(xr) =
h(x)h(r)+h(x)r+xh(r) = xh(r). Hence, Ih(r) = 0 for all r ∈ R. This implies
that

IRh(r) = 0 = I∗Rh(r) for all r ∈ R.
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By ∗-primeness of R, h = 0 which is a contradiction. From (4), it follows that
I ⊆ Z(R). Let r, s ∈ R and x ∈ I. Then, rsx = rxs = srx and so [r, s]x = 0.
Thus, [r, s]I = 0 and

[r, s]RI = 0 = [r, s]RI∗ for all r, s ∈ R.

By ∗-primeness of R, [r, s] = 0 for all r, s ∈ R. Hence, R is commutative. �

Lemma 2.3. Let R be a ∗-prime ring, I a nonzero ∗-ideal of R, and h a
nonzero homoderivation on R which commutes with ∗. If h is zero-power valued
on I and [h(x), x] = 0 for all x ∈ I, then R is commutative.

Proof. By hypothesis, we have

[h(x), x] = 0 for all x ∈ I. (5)

Linearizing (5), we obtain

[h(x), y] + [h(y), x] = 0 for all x, y ∈ I. (6)

Replacing y by yx, we get [h(x), yx]+[h(yx), x] = 0. Expanding this and using
(5), we get

[h(x), y]x + [h(y), x]h(x) + [h(y), x]x + [y, x]h(x) = 0 for all x, y ∈ I.

Applying (6), we get

[h(y) + y, x]h(x) = 0 for all x, y ∈ I.

Since h is zero-power valued on I, we can replace y by y −h(y) +h2(y) + · · ·+
(−1)n(y)−1hn(y)−1(y) to get

[x, y]h(x) = 0 for all x, y ∈ I.

Replacing y by ry for arbitrary r ∈ R, we obtain 0 = [x, ry]h(x) = [x, r]yh(x)
for all x, y ∈ I. Hence, [x, R]Ih(x) = 0 for all x ∈ I. By Lemma 2.2, R is
commutative. �

Lemma 2.4. Let R be a ∗-prime ring and let I be a nonzero ∗-ideal of R. If
x ∈ R and x centralizes I, then x ∈ Z(R).

Proof. Let x ∈ R. Suppose that [x, u] = 0 for all u ∈ I. Then, for arbitrary
r ∈ R, we have 0 = [x, ru] = [x, r]u for all u ∈ I. That is, [x, R]I = 0. Thus,

[x, R]RI = 0 = [x, R]RI∗.

Since R is ∗-prime, we conclude that [x, R] = 0 and hence x ∈ Z(R). �
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3 The Main Results

The study of centralizing mappings and commutativity of certain rings began
in the 1950’s. Posner [5] established the commutativity of prime rings admit-
ting nonzero centralizing derivations. El Sofy [2] proved an analogous result
concerning homodervations. More recently, Oukhtite and Salhi [4] proved the
commutativity of ∗-prime rings applying Posner’s conditions on ∗-ideals. Mo-
tivated by this work, we explore the commutativity of ∗-prime rings admitting
centralizing homoderivations and we prove the following theorem.

Theorem 3.1. Let R be a ∗-prime ring with characteristic different from two, I
a nonzero ∗-ideal of R, and h a nonzero homoderivation on R which commutes
with ∗. If h is centralizing and zero-power valued on I, then R is commutative.

Proof. By hypothesis, we have

[h(x), x] ∈ Z(R) for all x ∈ I. (7)

Linearizing (7), we obtain

[h(x), y] + [h(y), x] ∈ Z(R) for all x, y ∈ I.

Replacing y by x2, we get [h(x), x2] + [h(x2), x] ∈ Z(R) which can be extended
to

x[h(x), x]+[h(x), x]x+h(x)[h(x), x]+[h(x), x]h(x)+[h(x), x]x+x[h(x), x] ∈ Z(R)

for all x ∈ I. Applying (7) yields

(4x + 2h(x))[h(x), x] ∈ Z(R) for all x ∈ I.

Since char R �= 2,

(2x + h(x))[h(x), x] ∈ Z(R) for all x ∈ I.

Thus, for arbitrary r ∈ R, we have [(2x+h(x))[h(x), x], r] = 0. Expanding this
and using (7) yields

[2x + h(x), r][h(x), x] = 0 for all x ∈ I, r ∈ R.

In particular, [2x+ h(x), x][h(x), x] = 0 for all x ∈ I. This can be simplified to

[h(x), x]2 = 0 for all x ∈ I. (8)

Since every ∗-prime ring is semiprime and since the center of semiprime rings
contains no nonzero nilpotent elements, we find that [h(x), x] = 0 for all x ∈ I
and hence by Lemma 2.3, R is commutative. �
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Also, Oukhtite and Salhi [4] proved that if a ∗-prime ring R with charac-
teristic different from two has a nonzero derivation d which commutes with ∗
and satisfies [ad(x), x] = 0 on ∗-ideals, then a = 0 or R is commutative. Our
next result will provide an analogous conclusion using the concept of homod-
erivations.

Theorem 3.2. Let R be a ∗-prime ring with characteristic different from two, I
a nonzero ∗-ideal of R, and h a nonzero homoderivation on R which commutes
with ∗. If h is zero-power valued on I and a ∈ S∗(R) such that [ah(x), x] = 0
for all x ∈ I, then a = 0 or R is commutative.

Proof. By hypothesis, we have

[ah(x), x] = 0 for all x ∈ I. (9)

Linearizing (9), we obtain

[ah(x), y] + [ah(y), x] = 0 for all x, y ∈ I. (10)

Replacing y by yx, we get [ah(x), yx]+[ah(y)h(x), x]+[ah(y)x, x]+[ayh(x), x] =
0 which is equivalent to y[ah(x), x]+[ah(x), y]x+ah(y)[h(x), x]+[ah(y), x]h(x)+
[ah(y), x]x+ ay[h(x), x]+ a[y, x]h(x)+ [a, x]yh(x) = 0. Applying (9) and (10),
yields

ah(y)[h(x), x]+[ah(y), x]h(x)+ay[h(x), x]+a[y, x]h(x)+[a, x]yh(x) = 0 for all x, y ∈ I.

This can be written as

a(h(y)+y)[h(x), x]+[a, x](h(y)+y)h(x)+a[h(y)+y, x]h(x) = 0 for all x, y ∈ I.

Since h is zero-power valued on I,

ay[h(x), x] + [a, x]yh(x) + a[y, x]h(x) = 0 for all x, y ∈ I. (11)

Replacing y by ay, we get

a2y[h(x), x]+ [a, x]ayh(x)+ a2[y, x]h(x)+ a[a, x]yh(x) = 0 for all x, y ∈ I.
(12)

Applying (11) to (12) yields [a, x]ayh(x) = 0 for all x, y ∈ I. That is,

[a, x]aIh(x) = 0 for all x ∈ I. (13)

Observe that for x ∈ I ∩ S∗(R) we have x∗ = ±x. Thus, since h commutes
with ∗, we have (h(x))∗ = h(x∗) = ±h(x). So, by (13), [a, x]aIh(x) = 0 =
[a, x]aI(h(x))∗ and by Lemma 2.1, it follows that [a, x]a = 0 or h(x) = 0.
Now consider y ∈ I. Since (y + y∗) ∈ I ∩ S∗(R), by the above observation we
have

[a, y + y∗]a = 0 or h(y + y∗) = 0. (14)
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Case1:
Let h(y + y∗) = 0. Then, h(y) = −h(y∗) = −(h(y))∗ . Therefore, by (13),
we have 0 = [a, y]aIh(y) = [a, y]aI(h(y))∗ and by Lemma 2.1, it follows that
[a, y]a = 0 or h(y) = 0.
Case2:
Let [a, y + y∗]a = 0. Since (y − y∗) ∈ I ∩ S∗(R), by the above observation we
have either h(y−y∗) = 0 or [a, y−y∗]a = 0. If h(y−y∗) = 0, then by a similar
approach to Case 1, we get [a, y]a = 0 or h(y) = 0. If [a, y − y∗]a = 0, then
[a, y − y∗]a + [a, y + y∗]a = 0 which can be reduced to 2[a, y]a = 0. Since char
R �= 2, [a, y]a = 0.
Thus, both cases in (14) imply that for each y ∈ I,

[a, y]a = 0 or h(y) = 0.

Notice that the sets of y ∈ I for which these two conditions hold are additive
subgroups of I whose union is I; but since a group cannot be the union of two
of its proper subgroups, we have either

[a, I]a = 0 or h(I) = 0. (15)

If h(I) = 0, then h(x) = 0 for all x ∈ I. Then, for arbitrary r ∈ R, 0 =
h(rx) = h(r)h(x) + h(r)x + rh(x) = h(r)x. Thus, h(r)I = 0 for all r ∈ R; and
h(r)RI = 0 = h(r)RI∗ for all r ∈ R. By ∗-primeness of R, h = 0 which is a
contradiction.
Consequently, we must have [a, I]a = 0. Then, [a, x]a = 0 for all x ∈ I.
Replacing x by xy yields [a, x]ya = 0 for all x, y ∈ I. Thus,

[a, x]Ia = 0 for all x ∈ I.

As a ∈ S∗(R), then

0 = [a, x]Ia = [a, x]Ia∗ for all x ∈ I.

By Lemma 2.1, a centralizes I or a = 0. By Lemma 2.4, a ∈ Z(R) or a = 0. If
0 �= a ∈ Z(R), then by (9), 0 = [ah(x), x] = a[h(x), x] + [a, x]h(x) = a[h(x), x].
Since a ∈ Z(R), aR[h(x), x] = 0. Since a ∈ S∗(R),

0 = aR[h(x), x] = a∗R[h(x), x] for all x ∈ I.

As a �= 0, then ∗-primeness of R implies that [h(x), x] = 0 for all x ∈ I. It
follows from Lemma 2.3 that R is commutative. �

Ashraf and Siddeeque [1] studied the commutativity of ∗-prime rings ad-
mitting nonzero derivations which commute with ∗ and satisfy any one of the
following identities on ∗-ideals:

1. h([x, y]) = 0,
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2. h(x ◦ y) = 0,

3. h([x, y]) = [x, y], or

4. h(x ◦ y) = x ◦ y.

Investigating these identities on homoderivations, we obtain the following
two results.

Theorem 3.3. Let R be a ∗-prime ring, I a nonzero ∗-ideal of R, and h a
nonzero homoderivation on R which commutes with ∗. If h satisfies either

1. h([x, y]) = 0 for all x, y ∈ I, or

2. h(x ◦ y) = 0 for all x, y ∈ I,

then R is commutative.

Proof. (i) By hypothesis, we have

h([x, y]) = 0 for all x, y ∈ I. (16)

Replacing y by yx yields 0 = h([x, yx]) = h([x, y]x) = h([x, y])h(x)+h([x, y])x+
[x, y]h(x) for all x, y ∈ I. Applying (16), we get

[x, y]h(x) = 0 for all x, y ∈ I. (17)

Replacing y by ry for arbitrary r ∈ R gives [x, ry]h(x) = 0 for all x, y ∈ I.
Expanding this and using (17), we get

[x, r]yh(x) = 0 for all x, y ∈ I, r ∈ R.

Therefore, [x, R]Ih(x) = 0 for all x ∈ I. By Lemma 2.2, R is commutative.

(ii) By hypothesis, we have

h(x ◦ y) = 0 for all x, y ∈ I. (18)

Replacing y by yx yields 0 = h(x ◦ yx) = h((x ◦ y)x) = h(x ◦ y)h(x) + h(x ◦
y)x + (x ◦ y)h(x) for all x, y ∈ I. Applying (18), we get

(x ◦ y)h(x) = 0 for all x, y ∈ I.

This is equivalent to

xyh(x) = −yxh(x) for all x, y ∈ I. (19)

Replacing y by ry for arbitrary r ∈ R gives

xryh(x) = −ryxh(x) for all x, y ∈ I. (20)

From (19) and (20), it follows that xryh(x) = rxyh(x) for all x, y ∈ I. Thus,
[x, r]yh(x) = 0 for all x, y ∈ I and r ∈ R. Therefore, [x, R]Ih(x) = 0 for all
x ∈ I. By Lemma 2.2, R is commutative. �
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Theorem 3.4. Let R be a ∗-prime ring with characteristic different from two,
I a nonzero ∗-ideal of R and let h be a nonzero homoderivation on R which
commutes with ∗. If If h satisfies either

1. h([x, y]) = [x, y] for all x, y ∈ I, or

2. h(x ◦ y) = x ◦ y for all x, y ∈ I,

then R is commutative.

Proof. (i) By hypothesis, we have

h([x, y]) = [x, y] for all x, y ∈ I. (21)

Replacing y by yx, we get h([x, y]x) = [x, y]x for all x, y ∈ I. Thus,

h([x, y])h(x) + h([x, y])x + [x, y]h(x) = [x, y]x for all x, y ∈ I.

Applying (21), we get

2[x, y]h(x) = 0 for all x, y ∈ I.

Since char R �= 2,
[x, y]h(x) = 0 for all x, y ∈ I. (22)

Replacing y by ry for arbitrary r ∈ R gives [x, ry]h(x) = 0 for all x, y ∈ I.
Expanding this and using (22), we get

[x, r]yh(x) = 0 for all x, y ∈ I, r ∈ R.

Therefore, [x, R]Ih(x) = 0 for all x ∈ I. By Lemma 2.2, R is commutative.

(ii) By hypothesis, we have

h(x ◦ y) = x ◦ y for all x, y ∈ I. (23)

Replacing y by yx, we get h((x ◦ y)x) = (x ◦ y)x for all x, y ∈ I. Thus,

h(x ◦ y)h(x) + h(x ◦ y)x + (x ◦ y)h(x) = (x ◦ y)x for all x, y ∈ I.

Applying (23), we get

2(x ◦ y)h(x) = 0 for all x, y ∈ I.

Since char R �= 2,

(x ◦ y)h(x) = 0 for all x, y ∈ I.
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This is equivalent to

xyh(x) = −yxh(x) for all x, y ∈ I. (24)

Replacing y by ry for arbitrary r ∈ R gives

xryh(x) = −ryxh(x) for all x, y ∈ I. (25)

From (24) and (25), it follows that xryh(x) = rxyh(x) for all x, y ∈ I. Thus,
[x, r]yh(x) = 0 for all x, y ∈ I and r ∈ R. Therefore, [x, R]Ih(x) = 0 for all
x ∈ I. By Lemma 2.2, R is commutative. �
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