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Abstract

This paper investigates nonsmooth multiobjective optimization prob-
lems with set constraints, and equality-inequality constraints. Using ap-
proximations as generalized derivatives we establish second-order suffi-
cient conditions for strict local minima of order-2. The mappings involved
in our problems are assumed only to be continuously differentiable of
order-1. Examples are provided to show advantages of our results over
recent ones in the literature.

1. Introduction
Classical optimality conditions for differentiable programming problems

with constraints are basic results in many fields, such as optimization theory,
control theory, the study of stability and sensitivity in mathematical program-
ming, the convergence of algorithms, the best approximation problems, etc.

It should be noted that a vast range of generalized differentiability con-
structions have been developed for studying optimization-related problems in
general and optimality conditions in particular. First and second-order neces-
sary optimality conditions for programs in abstract spaces, with R-valued or
vector-valued functions, have been provided by many authors. Among those
we may refer to Ben-Tal and Zowe [2], Cominetti [6],. . . Of these, only in [2]
second-order sufficient conditions are established for differentiable programs.
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Borwein [5] also established sufficient conditions for differentiable programs
with equality and set constraints. The reason for us to utilize second-order
approximations is that their definitions are very simple and even discontinuous
mappings may have second-order approximations. Although these approxima-
tions may not be the most powerful tools for nonsmooth analysis, our moti-
vation in this respect lies in the advantages of our results over several recent
papers in many situations provided by examples. The purpose of the present
paper is to establish second-order optimality conditions for constraints multi-
objective problem. We also establish the sufficient conditions for existence of
support function, which is concerned in [14, 15, 16].

The paper is organized as follows: in Section 2, we introduce the notions
related to vector optimization problem; in Section 3, we establish the condition
for existence of support function; in Section 4, we investigate the optimality
conditions for problem with set constraints; and Section 5 is devoted to the
case where the constrained set is given explicitly by a system of equations and
inequalities with functions.

2. Preliminaries
Let X be a Banach space and M be a nonempty subset of X. As usual

we denote by BX(x, r) the open ball centered at x and radius r > 0 in X, by
intM (clM , respectively) the interior (closure, respectively) of the set M , by
convM the convex hull of M , by coneM the cone generated by M and by X∗

the topological dual space to X. For λ ∈ X∗ and x ∈ X, we will use λx instead
of λ(x) or the also usual 〈λ, x〉. The positive polar cone to M is

M+ := {λ ∈ X∗ : λx ≥ 0, ∀x ∈ M \ {0}},
and the strictly positive polar cone to M is

M++ := {λ ∈ X∗ : λx > 0, ∀x ∈ M \ {0}}.
For Banach spaces X and Y , L(X, Y ) denotes the space of the continuous

linear mappings from X to Y , and B(X, X, Y ) denotes the space of the contin-
uous bilinear mappings from X ×X to Y . In the next definition, the notations
of the first-order and second-order approximation in [1, 17] will be recalled.

Definition 2.1. Let x ∈ X and g : X → Y be a mapping.

(i) The set Ag(x) ⊂ L(X, Y ) is said to be a first-order approximation of g at
x if there exists a neighborhood U of x such that,

g(x) − g(x) ∈ Ag(x)(x − x) + o(‖x − x‖), ∀x ∈ U,

where
o(‖x − x‖)
‖x− x‖ tends to 0, as x → x.

(ii) A pair (Ag(x), Bg(x)), with Ag(x) ⊂ L(X, Y ) and Bg(x) ⊂ B(X, X, Y ),
is said to be a second-order approximation of g at x if
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(a) Ag(x) is a first-order approximation of g at x;
(b) g(x) − g(x) ∈ Ag(x)(x − x) + Bg(x)(x − x, x− x) + o(‖x − x‖2).

Note that if g is twice Fréchet differentiable at x, then (∇g(x), 1
2∇2g(x)) is

the second-order approximation of g at x, where ∇g(x) and ∇2g(x) are the first
and the second Fréchet derivative of g at x, respectively. Various properties
and examples of the first-order and the second-order approximation could be
found in [1, 17, 18, 19].

The Calrke generalized Jacobian and the Clarke generalized Hessian in [7],
[8] will be stated in the following definition.

Definition 2.2. (i) Let g : R
m → R

n be a mapping of class C1,0 (i.e. the set
of functions whose gradient mappings is calm) . The Clarke generalized
Jacobian of g at x ∈ R

m, denoted by ∂Cg(x), is defined by

∂Cg(x) := clconv
{

lim
xi→x

∇g(xi) : ∇g(xi) exists
}

.

(ii) Let g : R
m → R

n be a mapping of class C1,1 (i.e. the set of functions
whose gradient mappings is locally Lipschitz). The Clarke generalized
Hessian of g at x ∈ R

m, denoted by ∂2
Cg(x), is defined by

∂2
Cg(x) := clconv

{
lim

xi→x
∇2g(xi) : ∇2g(xi) exists

}
.

We recall the following relaxed compactness in [19] which will be needed
for establishing optimality conditions in the sequel.

Definition 2.3. (i) The sequence (Mk) ⊂ L(X, Y ) is said to pointwisely con-
verge to M ∈ L(X, Y ) and wirtten as Mk →p

M or M = p - limMk if
limMk(x) = M(x) for all x ∈ X. A similar definition is adopted for
sequence (Nk) ⊂ B(X, X, Y ) and N ∈ B(X, X, Y ).

(ii) A subset A ⊂ L(X, Y ) (B ⊂ B(X, X, Y ), respectively) is called (sequen-
tially) asymptotically pointwisely compact, or (sequentially) asymptoti-
cally p-compact if

(a) each norm bounded sequence (Mk) ⊂ A (⊂ B, respectively) has a
subsequence (Mkj ) and M ∈ L(X, Y ) (M ∈ B(X, X, Y ), respec-
tively) such that M = p - limMkj ,

(b) for each sequence (Mk) ⊂ A (⊂ B, respectively) with lim‖Mk‖ = ∞,

the sequence
Mk

‖Mk‖ has a subsequence which pointwisely converges

to some M ∈ L(X, Y ) \ {0} (M ∈ B(X, X, Y ) \ {0}, respectively).

(iii) If in (ii), pointwise convergence, i.e. p - lim, is replaced by convergence,
i.e. lim, a subset A ⊂ L(X, Y ) (or B ⊂ B(X, X, Y )) is called (sequen-
tially) asymptotically compact.
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In the sequel we omit the term ”sequentially” for short. Note that the
asymptotical p-compactness in Definition 2.3 is equivalent to the relative p-
compactness and the asymptotical p-compactness together is defined in [18].

For A ⊂ L(X, Y ) and B ⊂ B(X, X, Y ) we adopt the notations:

p-clA := {M ∈ L(X, Y ) : ∃(Mk) ⊂ A, M = p - limMk}, (1)
p-clB := {N ∈ B(X, X, Y ) : ∃(Nk) ⊂ B, N = p - limNk}, (2)
A∞ := {M ∈ L(X, Y ) : ∃(Mk) ⊂ A, ∃tk ↓ 0, M = lim tkMk}, (3)
p-A∞ := {M ∈ L(X, Y ) : ∃(Mk) ⊂ A, ∃tk ↓ 0, M = p - lim tkMk}, (4)
p-B∞ := {N ∈ B(X, X, Y ) : ∃(Nk) ⊂ B, ∃tk ↓ 0, N = p - lim tkNk}. (5)

The sets (3), (4) are pointwise closures; (5) is just the definition of the
recession cone of A. So (??), (??) are pointwise recession cones.

Subsequently, some useful notes in [18] are recalled for illustrating the char-
acteristics of asymptotically p-compact sets and asymptotically compact sets.

Remark 2.4. (i) If X and Y are finite dimensional, a convergence occurs if
and only if the corresponding pointwise convergence does, but in general
the ”if” does not hold.

(ii) If X and Y are finite dimensional, every subset is asymptotically p-compact
and asymptotically compact but in general the asymptotical compactness
is stronger.

In the next definition, the contingent tangent set will be restated.

Definition 2.5. Let S be a subset of X and x be an element of S. The
contingent (or Bouligand) cone of S at x is

T (S, x) := {v ∈ X : ∃tn ↓ 0, ∃vn → v such that x + tnvn ∈ M, ∀n ∈ N}.
Let f be a mapping from X to Y . In this paper, we are interested in the

general vector optimization problem:

D − minf(x), subject to x ∈ M, (6)

where D ⊂ Y is a closed, convex, pointed cone with nonempty interior and the
partial order in Y is defined by D through the relation y1 ≤D y2 if and only if
y1 − y2 ∈ −D.

Let us recall that the point x ∈ M is said to be a local minimum for problem
6, denoted by x ∈ lmin(f, M) if there exists a neighborhood U of x such that,(

f(M ∩U) − f(x)
)∩(−D) = {0}.

Let m be a positive integer. The point x ∈ M is said to be a strict local
minimum of order m for problem 6, denoted by x ∈ strl(m, f, M), if there exist
a neighborhood U of x and a positive real number α such that,(

f(x) + D
)∩BY

(
f(x), α‖x− x‖m

)
= ∅, ∀x ∈ M ∩ U \ {x}.
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For j ≥ m ≥ 1, it is clear that

strl(m, f, M) ⊂ strl(j, f, M) ⊂ lmin(f, M)

Therefore, necessary conditions for the right-most term hold true also for
the others and sufficient conditions for the left-most term are valid for the
others as well.

Instead of ”strict local minimum”, other term like ”firm efficient”, ”strict
efficient” or ”isolated efficient” are also used in the literature [9, 18, 19].

In finite dimensional spaces, two linearized cones of function f at x, the
first one open and the second one closed , is defined by:

C0(f, x) := {v ∈ X : ∇f(x)v ∈ −intD},
and

C(f, x) := {v ∈ X : ∇f(x)v ∈ −D}.
More characteristic of those cones could be found in [14, 15].

3. Support functions
Let f be a mapping which is introduced in Section 2. Subsequently, we will

recall the notation of support function to general vector optimization problem
in [16].

Definition 3.1. Let F : X → R be a differentiable function at x ∈ M ⊂ X
and λ ∈ D+. We will say that the pair (λ, F ) is a (lower) local support for f
at x on M if these following conditions hold:

(i) F (x) ≤ λf(x), ∀x ∈ M ∩ BX(x, δ) for some δ > 0;

(ii) F (x) = λf(x);

(iii) ∇F (x) = 0;

(iv) λ �= 0.

We will say that (λ, F ) is a (global) support if condition (i) satisfied for all
x ∈ M , and we will say that it is a weak local support if conditions (i)−(iii)
are satisfied.

The scalarization process in the previous definition is going to allow us to
follow a parallel path to the scalar case and apply the results to the scalar
programming.

Now we recall some useful notes in [12, 14, 15].

Remark 3.2. Suppose that X = R
m, Y = R

n and, D = R
n
+.

(i) The Definition (3.1) is equivalent to a staement that F is a support (in

the Hestenes sense) for the scalar function 〈λ, f〉 =
n∑

i=1
λifi;
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(ii) If n = 1 then, saying that (λ, F ) is a support of f at x is equivalent to

λ > 0, F (x) ≤ λf(x), ∀x ∈ M, F (x) = λf(x) and ∇F (x) = 0.

Hence, calling F̃ =
F

λ
, it can be concluded that F̃ is a support for f in

usual sense: F̃ (x) ≤ f(x), ∀x ∈ M, F̃ (x) = f(x) and ∇F̃ (x) = 0.

Remark 3.3. Let f : R
m → R

n, g : R
m → R

k and h : R
m → R

p be differen-
tiable mappings, D = R

n
+, K = R

k
+ and M is given by

M := {x ∈ R
m : g(x) ∈ −K, h(x) = 0}.

If x ∈ M and the Fritz John conditions for the set M are satisfied, that is,
there exist λ ∈ R

n, μ ∈ R
k, ν ∈ R

p all nonzero such that,

λ ∈ D+, μ ∈ K+, μg(x) = 0,

λ∇f(x, v) + μ∇g(x, v) + ν∇h(x, v) ≥ 0, ∀v ∈ T (M, x),

then, letting F be the Lagrangian function,

F = λf + μg + νh,

we have that (λ, F ) is a support for f at x on M . And, if the Kuhn Tucker
conditions, i.e. λ �= 0, for the set M hold then (λ, F ) is a support.

The ε-normal cone in [20] will be stated in order to establish conditions for
the existence of support function.

Definition 3.4. Let S be a subset of X and x ∈ S.

(i) A vector v ∈ X∗ is said to be a ε-normal to S at x if

lim sup
u→S x

〈v, u − x〉
‖u − x‖ ≤ ε,

where u →S x means that u → x and u ∈ S. The set of all ε-normals to S
at x is called the ε-normal cone to S at x and denoted by N̂ε(S, x). When
ε = 0, this set is called the Fréchet normal cone to S at x and denoted by
N̂(S, x).

(ii) The limiting Fréchet normal cone to S at x is defined by

NF (S, x) := {v ∈ X∗ : ∃εn ↓ 0, xn →S x, v∗n →w
∗

v,

with v∗n ∈ N̂εn(S, xn) for all n ∈ N}.
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Note also that the Fréchet normal cone is obviously convex and closed in
the norm topology of X∗. When X is finite dimensional, the Fréchet normal
cone to S at x is the polar of the contingent cone, that is,

v ∈ N̂(S, x) ⇐⇒ 〈v, z〉 ≤ 0, ∀z ∈ T (S, x).

Remark 3.5. Suppose that X is finite dimensional. Then a vector v is a
Fréchet normal to subset S at x if and only if

〈v, x − x〉 ≤ o(‖x − x‖), ∀x ∈ S,

where
o(‖x − x‖)
‖x − x‖ → 0 when ‖x − x‖ → 0.

When X is finite dimensional, the Fréchet normal cone N̂(S, x) has also
been referred to as the regular normal cone in literature (for details see for
Rockafellar and Wets [22]).

For Φ : X → 2Y a multifunction, let GrΦ denote the graph of Φ, that is,

GrΦ := {(x, y) ∈ X × Y : y ∈ Φ(x)}.

For x ∈ X and y ∈ Φ(x), let D̂∗Φ(x, y) : Y ∗ → 2X∗
and D̂∗

F (x, y) : Y ∗ →
2X∗

respectively denote Fréchet and limiting Fréchet coderivatives of Φ at (x, y)
in Mordukhovich’s sense, that is,

D̂∗Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(GrΦ, (x, y))}, for all y∗ ∈ Y ∗,

and

D̂∗
F Φ(x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ NF (GrΦ, (x, y))} for all y∗ ∈ Y ∗.

When Φ is singular-value, we denote Fréchet and limiting Fréchet coderiva-
tives by D̂∗Φ(x) and D̂∗

F Φ(x), respectively.
The multifunction Φ is said to be regular normal at (x, y) ∈ X × Y if

D̂∗Φ(x, y)(y∗) = D̂∗
F Φ(x, y)(y∗), ∀y∗ ∈ Y ∗.

The set S is said to be regular normal at x if

N̂(S, x) = NF (S, x).

The following propositions establish sufficient conditions for the existence
of support function.

Proposition 3.6. If there exist λ ∈ Y ∗ and y ∈ X∗ such that (y,−λ) ∈
N̂(Grf, (x, f(x))) then there exists a function F : X → R, which is differen-
tiable at x, such that
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(i) F (x) ≤ λf(x), ∀x ∈ M ∩ B(x, δ) for some δ > 0;

(ii) F (x) = λf(x);

(iii) ∇F (x) = y.

Proof. Let h(t) := sup{〈(y,−λ), (x, α)−(x, f(x))〉, (x, α) ∈ Grf∩B((x, f(x)), t)},
for all t ∈ R

+. Then h(.) is a nondecreasing function on [0,∞) and h(t) ≥
0, ∀t ∈ R

+. Since (y,−λ) ∈ N̂(Grf, (x, f(x))), we deduce that t−1h(t) tends to
0 as t ↓ 0. The function

g(x, α) := 〈(y,−λ), (x, α) − (x, f(x))〉 − h(‖(x, α)− (x, f(x))‖), (1)

is, therefore, differentiable at (x, f(x)). From (1) and the definition of h, we
have g(x, α) ≤ 0, for all (x, α) ∈ Grf . Since (x, f(x)) ∈ Grf , we get

g(x, f(x)) = 〈y, x−x〉+〈λ, f(x)〉−〈λ, f(x)〉−h(‖(x, f(x))−(x, f(x))‖) ≤ 0. (2)

Let F (x) := 〈y, x − x〉 + 〈λ, f(x)〉 − h(‖(x, f(x)) − (x, f(x))‖). From (2) we
deduce that

(i) F (x) ≤ λf(x);

(ii) F (x) = λf(x).

Furthermore F (x) is differentiable at x and ∇F (x) = y, since (y,−λ) ∈
N̂(Grf, (x, f(x))). �

The two next propositions are quoted from [23].

Proposition 3.7. Suppose that x is a local minimum for problem 6. Then
there exists c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D̂∗
F f(x)(c∗) + NF (M, x).

Proposition 3.8. Suppose that x is a local minimum for problem 6, f is a
regular normal mapping and M is a regular normal subset. Then there exists
c∗ ∈ C+ with ‖c∗‖ = 1 such that

0 ∈ D̂∗f(x)(c∗) + N̂(M, x).

Using the Proposition 3.6, Proposition 3.8 and the definition of Fréchet
coderivative of f , we get the sufficient condition for the existence of support
function.

Proposition 3.9. Suppose that x is a local minimum for problem 6, f is a
regular normal mapping and M is a regular normal subset. Then there exist
λ ∈ C+ with ‖λ‖ = 1 and a function F : X → R, which is differentiable at x,
such that (λ, F ) is a local support for f at x on M .
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The proof is easy, so it is omitted.

4. Problem with set constraints
Consider the problem 6 stated in Section 2. Throughout this paper, we

assume that X and Y are finite dimensional spaces and f is differentiable at
x. The following proposition states the basic properties which are verified if a
support function for f at x on M exists. Note that the first property is also
the first-order necessary condition.

Theorem 4.1. Assume that (∇F (x), BF (x)) is a asymptotically p-compact
second-order approximation of F at x. Then we have,

(i) If (λ, F ) is a local support for f at x on M then

T (M, x) ∩ C0(f, x) = ∅; (1)

(ii) If (λ, F ) is a weak local support for f at x on M and there exists v ∈
T (M, x) such that N(v, v) > 0, ∀N ∈ p-clBF (x) ∪ p-BF (x)∞\{0} then
λ �= 0, that is (λ, F ) is a local support.

Proof. (i) The proof is similar to that of Proposition 3.1 in [14] and therefore
omitted.

(ii) For v ∈ T (M, x), there exist some sequence (vn) ⊂ X, vn → v and
tn ⊂ R, tn → 0+ such that xn = x + tnvn ∈ M , for all n ∈ N.

If λ = 0 then we have

F (x) ≤ F (x) = 0, ∀x ∈ M ∩ B(x, δ),

for some δ > 0. By the definition of the second-order approximation, for n
sufficiently large,

0 ≥ F (x + tnvn) − F (x) = tn∇F (x)(vn) + t2nNn(vn, vn) + o(t2n)
= t2nNn(vn, vn) + o(t2n), (2)

for some Nn ∈ BF (x).
If Nn is norm bounded, assume that Nn → N ∈ p-clBF (x), then we obtain

N(v, v) = lim
n→∞

F (x + tnvn) − F (x)
t2n

≤ 0,

which is contradiction.
If Nn is norm unbounded, one can assume that ‖Nn‖ → +∞ and

Nn

‖Nn‖ →
N ∈ p-BF (x)∞. Dividing (2) by t2n‖Nn‖ and letting n → ∞, we obtain
N(v, v) ≤ 0, a contradiction. �

Next we recall a result about the necessary and sufficient conditions to strict
local minimum of order 1 in [14].
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Theorem 4.2.

T (M, x) ∩ C(f, x) = {0} ⇐⇒ x ∈ strl(1, f, M). (3)

Theorem 4.3. If for every v ∈ T (M, x) ∩ C(f, x)\{0} there exists (λ, F ), a
weak local support for f at x on M and N(v, v) > 0 for all N ∈ p-clBF (x) ∪
p-BF (x)∞\{0} then x ∈ strl(2, f, M), where (∇F (x), BF (x)) is a asymptoti-
cally p-compact second-order approximation of F at x.

Proof. Suppose that x �∈ strl(2, f, M). Then exist sequences xn ∈ M ∩
B

(
x,

1
n

)\{0} and dn ∈ D such that

f(xn) − f(x) + dn = cn ∈ B
(
0,

1
n

t2n
)
, (4)

where tn = ‖xn − x0‖. Since X is finite dimension space, we assume that

lim
n→∞

xn − x

tn
= v ∈ T (M, x), ‖v‖ = 1. (5)

From (5), we have ∇f(x) ∈ −D and therefore v ∈ T (M, x) ∩ C(f, x)\{0}.
Since N(v, v) > 0 for all N ∈ p-clBF (x)∪ p-BF (x)∞\{0}, by Theorem 4.1, we
have λ �= 0. Thus, applying to (4) the continuous linear function we have

λf(xn) − λf(x) + λdn = λcn

⇔ [
λf(xn) − F (xn)

]
+F (xn) − F (x) − [

λf(x) − F (x)
]
+λdn = λcn

⇔ F (xn) − F (x) +
[
λf(xn) − F (xn)

]
+λdn = λcn.

(6)

By the definition of the second-order approximation with ∇F (x) = 0, we
get

Nn(xn − x, xn − x) + o(t2n) − [
λf(xn) − F (xn)

]
+λdn = λcn,

where Nn ∈ BF (x).
If Nn is norm bounded, assume that Nn → N ∈ p-clBF (x). Dividing by t2n

and taking the limit we obtain

lim
n→∞

Nn(xn − x, xn − x) + o(t2n)
t2n

+ lim
n→∞

[
λf(xn) − F (xn)

]
+λdn

t2n
= 0.

The first limit exists and equal to N(v, v), for some N ∈ p-clBF (x). Thus
the second limit exists and since λf(xn)−F (xn) ≥ 0 and λdn ≥ 0. This follows
N(v, v) ≤ 0, which is a contradiction.

If Nn is norm unbounded, one can assume that ‖Nn‖ → +∞ and
Nn

‖Nn‖ →
N ∈ p-BF (x)∞. Dividing (6) by t2n‖Nn‖ and letting n → ∞, by an argument
similar to that for the above boundedness case, we obtain N(v, v) ≤ 0, for some
N ∈ p-BF (x)∞, a contradiction. �
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Remark 4.4. In this theorem we only concern the case T (M, x)∩C(f, x) �= {0}
because if T (M, x)∩C(f, x) = {0}, by Theorem 4.2, x ∈ strl(1, f, M) and thus
x ∈ strl(2, f, M).

Corollary 4.5. Assume that (∇f(x, Bf(x)) is asymptotically p-compact second-
order approximation of f at x. If v ∈ T (M, x) ∩ C(f, x)\{0}, ∃λ ∈ D+ :
λ∇f(x) = 0 and λN(v, v) > 0, ∀N ∈ p-clBf (x) ∪ p-Bf (x)∞\{0}, then x ∈
strl(2, f, M).

Proof. Let F (x) = λf(x). It is easy to check that (λ, F ) is weak local support
for f at x on M . Indeed, from the definition of F , the condition F (x) ≤
λf(x), ∀x ∈ M ∩ B(x, δ) and F (x) = λf(x) are held. On the other hand,
∇F (x) = λ∇f(x) = 0 and therefore (iii) of Definition 3.1 is held. Moreover,
one can check that BF (x) = λBf (x), where (∇F (x), BF (x)) is asymptotically
p-compact second-order approximation of F at x. Thus, we may apply Theorem
4.3 to obtain above results. �

We can see that Theorem 4.3 is general and Corollary 4.4 is more simple to
apply. In the following results we address other sufficient conditions in which
the support function does not change with the vector.

Proposition 4.6. Assume that (∇f(x), Bf(x)) is an asymptotically p-compact
second-order approximation of f at x.

(i) If ∃λ ∈ D+ : λ∇f(x) = 0 and λN(v, v) > 0, ∀v ∈ T (M, x) ∩C(f, x)\{0},
∀N ∈ p-clBf (x) ∪ p-Bf (x)∞\{0}, then x ∈ strl(2, f, M).

(ii) If ∃λ ∈ D++ : λ∇f(x) = 0 and λN(v, v) > 0, ∀v ∈ T (M, x)∩Ker∇f(x)\{0},
∀N ∈ p-clBf (x) ∪ p-Bf (x)∞\{0}, then x ∈ strl(2, f, M).

Proof. (i) It follows Corollary 4.5.
(ii) One can check that T (M, x)∩Ker∇f(x) ⊂ T (M, x)∩C(f, x). Therefore,

based on case (i) we only need to prove that

T (M, x) ∩ C(f, x) ⊂ T (M, x) ∩ Ker∇f(x).

For arbitrary v ∈ T (M, x) ∩ C(f, x), if ∇f(x)v �= 0, λ∇f(x)v > 0 which
contradicts to λ∇f(x) = 0. Therefore, ∇f(x)v = 0. This follows T (M, x) ∩
C(f, x) ⊂ T (M, x) ∩ Ker∇f(x). �

Remark 4.7. The results in Theorem 4.3, Corollary 4.5 and Proposition 4.6
are more applicable then those in [14] because it does not require f is twice
differentiable. We can see that in the following example

Example 4.8. 1. Let X = R, Y = R
2, D = R

2
+, M = R+, x = 0 and f(x) =(‖x‖ 4

3 , 2x2
)
. Then ∇f(x) = (0, 0), Bf(x) = {(a, 4) : a > 1}, p-clBf (x) =

{(a, 4) : a ≥ 1}, p-Bf (x)∞ = {(a, 0) : a ≥ 0}, Ker∇f(x) = R and
T (M, x) = R+. Choose λ = (1, 1) ∈ D++. One can check that all
conditions in (ii) of Proposition 4.6 are held. Thus, x ∈ strl(2, f, M).
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2. Let X = R, Y = R
2, D = R

2
+, M = R+, x = 0 and

f(x) =
{

(|x| 43 , x2), if x ≥ 0,

(|x| 43 ,−x2), otherwise.

Then ∇f(x) = (0, 0), Bf(x) = {(a, b) : a > 1, b ∈ [−2, 2]}, p-clBf (x) =
{(a, b) : a ≥ 1, b ∈ [−2, 2]}, p-Bf (x)∞ = {(a, 0) : a ≥ 0}, C(f, x) = R and
T (M, x) = R+. It is easy to see that we cannot apply (ii) of Proposition
4.6. However, if we choose λ = (1, 0) ∈ D+, one can check that all
conditions in (i) of Proposition 4.6 are held. Thus, x ∈strl(2, f, M).

We can see that in both above examples f is not twice differentiable at x
(f is also not of class C1,1) and then results in [14] cannot be applied.

In the case X = R
m, Y = R

n and f : X → Y is one of class C1,1, from
above results, by a simple implication we have following corollaries.

Corollary 4.9. Assume that f ∈ C1,1. If ∀v ∈ T (M, x) ∩ C(f, x)\{0}, ∃λ ∈
D+ : λ∇f(x) = 0 and λN(v, v) > 0, ∀N ∈ ∂2

Cf(x), then x ∈strl(2, f, M), where
∂2

Cf(x) is Clarke generalized Hessian of f at x.

Corollary 4.10. Assume that f ∈ C1,1.

(i) If ∃λ ∈ D+ : λ∇f(x) = 0 and λN(v, v) > 0, ∀v ∈ T (M, x)∩C(f, x)\{0}, ∀N ∈
∂2

Cf(x), then x ∈strl(2, f, M).

(ii) If ∃λ ∈ D++ : λ∇f(x) = 0 and λN(v, v) > 0, ∀v ∈ T (M, x)∩Ker∇f(x)\{0},
∀N ∈ ∂2

Cf(x), then x ∈strl(2, f, M).

5. Problem with equality-inequaility constraints
Let V, Z be Banach spaces, g : X → V, h : X → Z two functions and

S ⊂ X, K ⊂ V arbitrary subsets. Let M be the set defined by

M := {x ∈ X : g(x) ∈ −K, h(x) = 0}. (1)

We consider following problem

D − minf(x), subject to x ∈ M ∩ S (2)

Setting C(M, x) := {v ∈ X : ∇g(x)v ∈ clcone(−K − g(x)),∇h(x)v = 0}.
For (λ, β, γ) ∈ D+ × K+ × Z∗ we define Lagrangian function

L(x, λ, β, γ) = λf(x) + βg(x) + γh(x).

Assume that (∇f(x), Bf(x)), (∇g(x), Bg(x)) and (∇h(x), Bh(x)) are asymp-
totically p-compact second-order approximation of f, g and h at x, respectively,
with Bf (x), Bg(x) and Bh(x) being norm bounded. Then, we have

Theorem 5.1. If ∀v ∈ C(M, x) ∩ T (S, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ ×
K+ × Z∗:
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(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) (λM+βN+γP )(v, v) > 0, ∀(M, N, P ) ∈ (p-clBf (x), p-clBg(x), p-clBh(x)),

(iv) λN(v, v) > 0, ∀N ∈ p-Bf (x)∞\{0},
then x ∈strl(2, f, M ∩ S).

Proof. Let F (x) = L(x, λ, β, γ). Then F (x) = λf(x) + βg(x) + γh(x) ≤
f(x), ∀x ∈ M and F (x) = λf(x) + βg(x) + γh(x) = λf(x). Besides, we have
∇F (x) = ∇L(x, λ, β, γ) = 0. Thus, F (x) is a weak (local) support for f at x
on M ∩S and BF (x) = λBf (x)+βBg(x)+γBh(x). Moreover, since Bg(x) and
Bh(x) are norm bounded, p-clBF (x) = λ.p-clBf (x)+β.p-clBg(x)+γ.p-clBh(x)
and p-BF (x)∞ = λ.p-Bf (x)∞. From (iii), (iv), this implies, N (v, v) > 0, ∀N ∈
p-clBF (x) ∪ p-BF (x)∞\{0}. Thus, applying Theorem 4.3 we obtain above
results with attention T (M ∩ S, x) ⊂ C(M, x) ∩ T (S, x). �

Remark 5.2. In the case C(M, x) ∩ T (S, x) ∩ C(f, x) = {0}, since T (M ∩
S, x) ⊂ C(M, x)∩T (S, x), we have T (M ∩S, x)∩C(f, x) = {0}. From Theorem
4.2, x ∈strl(1, f, M ∩ S) and therefore x ∈strl(2, f, M ∩ S).

In particular S = X, we induce the following corollary

Corollary 5.3. If ∀v ∈ C(M, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ × K+ × Z∗:

(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) (λM+βN+γP )(v, v) > 0, ∀(M, N, P ) ∈ (p-clBf (x), p-clBg(x), p-clBh(x)),

(iv) λN(v, v) > 0, ∀N ∈ p-Bf (x)∞\{0},
then x ∈strl(2, f, M ∩ S).

Corollary 5.4. If ∀v ∈ T (M, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ × K+ × Z∗:

(i) βg(x) = 0,

(ii) ∇L(x0, λ, β, γ) = 0,

(iii) (λM+βN+γP )(v, v) > 0, ∀(M, N, P ) ∈ (p-clBf (x), p-clBg(x), p-clBh(x)),

(iv) λN(v, v) > 0, ∀N ∈ p-Bf (x)∞\{0},
then x ∈ strl(2, f, M ∩ S).

Remark 5.5. This Corollary show the advantages of our results because it
requires the weaker hypotheses than the Theorem 4.2 in [11].
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Example 5.6. Let X = V = Z = R, Y = R
2, D = R

2
+, K = {0}, S = X, x =

0, f(x) = (|x| 43 , 2x2), g(x) = x2 − 4x, h(x) = 0. Then, M = [0; 4],∇f(x) =
(0; 0), Bf(x) = {(a; 4) : a > 1}, p-clBf (x) = {(a; 4) : a ≥ 1}, p-Bf (x)∞ =
{(a; 0) : a ≥ 0}}, C(f, x) = R and T (M, x) = R+,∇g(x) = −4, Bg(x) =
0,∇h(x) = 0, Bh(x) = 0. It is clear to see that we can not apply results in [11],
because neither f is belong to C1,1 nor f is twice differentiable at x. However,
if we choose λ = (0; 1), β = γ = 0, then we can apply Corollary 5.4. Thus
x ∈strl(2, f, M).

In the rest of paper, we always assume that X = R
m, Y = R

n, V = R
p, Z =

R
q and f : X → Y, g : X → V and h : X → Z are in class C1,1.

Theorem 5.7. If ∀v ∈ C(M, x) ∩ T (S, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ ×
K+ × Z∗:

(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) λN(v, v) > 0, ∀N ∈ ∂2
CL(x, λ, β, γ),

then x ∈strl(2, f, M ∩ S).

The proof of the above theorem was directly deduced form the Theorem
5.1, remark 2.4, and the fact that ∂2

Cg(x), ∂2
Ch(x) are norm bounded. From

above results, we have following corollaries.

Corollary 5.8. If ∀v ∈ C(M, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ × K+ × Z∗:

(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) λN(v, v) > 0, ∀N ∈ ∂2
CL(x, λ, β, γ),

then x ∈strl(2, f, M).

Corollary 5.9. If ∀v ∈ T (M, x) ∩ C(f, x)\{0}, ∃(λ, β, γ) ∈ D+ × K+ × Z∗:

(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) λN(v, v) > 0, ∀N ∈ ∂2
CL(x, λ, β, γ),

then x ∈strl(2, f, M).

To end this section, we give a sufficient condition for local minimum.

Corollary 5.10. If there exists δ > 0 such that, for each v ∈ Mδ(x) := {α(x−
x) : α ≥ 0, x ∈ M, ||x−x|| ≤ δ}, one can find a vector (λ, β, γ) ∈ D++×K+×Z∗

satisfying
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(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) N(v, v) ≥ 0, ∀N ∈ {∂2
CL(x, λ, β, γ) : ||x− x|| ≤ δ}

then x ∈lmin(f, M).

Proof. If x is not a local minimum, then there exists (xn) ⊂ M, xn → x such
that

f(xn) − f(x) ∈ −D\{0}, ∀n ∈ N.

This implies

0 > 〈λ, f(xn) − f(x)〉
≥ L(xn, λ, β, γ) − L(x, λ, β, γ)
≥ ∇L(x, λ, β, γ)(xn − x) + 1

2Nn(xn − x, xn − x),

for some Nn ∈ clconv{∂2
CL(x, λ, β, γ) : x ∈ [

xn, x
]}. For n sufficiently large

such that ‖xn − x‖ ≤ δ, we conclude that

L(xn, λ, β, γ) − L(x, λ, β, γ) ≥ 0.

A contradiction. �
If M is a convex set. By the same argument we have

Corollary 5.11. If M is a convex set and exists δ > 0 such that, for each
v ∈ T (M, x), one can find a vector (λ, β, γ) ∈ D++ × K+ × Z∗ satisfying

(i) βg(x) = 0,

(ii) ∇L(x, λ, β, γ) = 0,

(iii) N(v, v) ≥ 0, ∀N ∈ {∂2
CL(x, λ, β, γ) : ||x− x|| ≤ δ},

then x ∈lmin(f, M).
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