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Abstract

We study the algebraic transfer constructed by Singer [16] using tech-
nique of the hit problem. In this paper, we show that Singer’s conjecture
for the algebraic transfer is true in the case of five variables and degree
r.2s − 5 with r = 3, 4 and s an arbitrary positive integer.

1 Introduction

Let Vk be an elementary abelian 2-group of rank k. Denote by BVk the classi-
fying space of Vk. It is well-known that

Pk := H∗(BVk) ∼= F2[x1, x2, . . . , xk],

a polynomial algebra in k variables x1, x2, . . . , xk, each of degree 1. Here the
cohomology is taken with coefficients in the prime field F2 of two elements.
Then, Pk is a module over the mod-2 Steenrod algebra, A. The action of A
on Pk is determined by the elementary properties of the Steenrod squares Sqi

and subject to the Cartan formula (see Steenrod and Epstein [18]).
Let GLk be the general linear group over the field F2. This group acts

naturally on Pk by matrix substitution. Since the two actions of A and GLk

upon Pk commute with each other, there is an inherited action of GLk on
F2 ⊗A Pk.
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Denote by (Pk)n the subspace of Pk consisting of all the homogeneous poly-
nomials of degree n in Pk and by (F2⊗APk)n the subspace of F2⊗APk consisting
of all the classes represented by the elements in (Pk)n. In [16], Singer defined
the algebraic transfer, which is a homomorphism

ϕk : TorAk,k+n(F2, F2) → (F2 ⊗A Pk)GLk
n

from the homology of the mod-2 Steenrod algebra to the subspace of (F2⊗APk)n

consisting of all the GLk-invariant classes.
The Singer algebraic transfer was studied by many authors. (See Boardman

[1], Bruner-Ha-Hung [2], Ha [7], Hung [8, 9], Chon-Ha [4, 5, 6], Minami [13],
Nam [14], Hung-Quynh [10], Quynh [15], the first author [21] and others).

Singer showed in [16] that ϕk is an isomorphism for k = 1, 2. Boardman
showed in [1] that ϕ3 is also an isomorphism. However, for any k � 4, ϕk is not
a monomorphism in infinitely many degrees (see Singer [16], Hung [9]). Singer
made the following conjecture.

Conjecture 1.1 (Singer [16]). The algebraic transfer ϕk is an epimorphism
for any k � 0.

The conjecture is true for k � 3. Based on the results in [19, 20], it can be
verified for k = 4. We hope that it is also true in this case.

The purpose of the paper is to verify this conjecture for k = 5. The following
is the main result of the paper.

Theorem 1.2. Singer’s conjecture is true for k = 5 and n = r.2s − 5 with
r = 3, 4 and s an arbitrary positive integer.

We prove this theorem by studying the F2-vector space (F2⊗AP5)GL5 .
Based on the results in [23, 24], we have the following.

Theorem 1.3. Let n be as in Theorem 1.2. Then, we have (F2⊗AP5)GL5
n = 0.

Obviously, Theorem 1.3 implies Theorem 1.2. Note that for r = 4 and
s = 2, the above results are due to Quynh [15].

Furthermore, from the results of Tangora [22], Lin [12] and Chen [3], for r =
3, Ext5,3.2s

A (F2, F2) = 0. By passing to the dual, one gets TorA5,3.2s(F2, F2) = 0.
Hence, by Theorem 1.3, the homomorphism

ϕ5 : TorA5,3.2s(F2, F2) → (F2⊗AP5)GL5
3.2s−5

is an isomorphism. For r = 4,

Ext5,4.2s

A (F2, F2) =

{
〈P (h2)〉, ifs = 2,

0, otherwise.
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By passing to the dual, we obtain

TorA5,4.2s(F2, F2) =

{
〈P (h2)∗〉, ifs = 2,

0, otherwise.

So, by Theorem 1.3, the homomorphism

ϕ5 : TorA5,4.2s(F2, F2) → (F2⊗AP5)GL5
4.2s−5

is an epimorphism. However, it is not a monomorphism for s = 2.
In the remaining part of the paper we prove Theorem 1.3.

2 Preliminaries

In this section, we recall a result from Singer [17] which will be used in the
next section.

Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative
integer a. That means

a = α0(a)20 + α1(a)21 + α2(a)22 + . . . ,

for αi(a) = 0, 1 and i � 0.

Definition 2.1. For a monomial x = xa1
1 xa2

2 . . . xak

k ∈ Pk, we define two se-
quences associated with x by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .), σ(x) = (a1, a2, . . . , ak),

where ωi(x) =
∑

1�j�k αi−1(aj), i � 1. The sequence ω(x) is called the weight
vector of x.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The
sequence ω is called the weight vector if ωi = 0 for i � 0.

The sets of all the weight vectors and the sigma vectors are given the left
lexicographical order.

For a weight vector ω, we define deg ω =
∑

i>0 2i−1ωi. Denote by Pk(ω)
the subspace of Pk spanned by monomials y such that deg y = deg ω, ω(y) � ω,
and by P−

k (ω) the subspace of Pk spanned by monomials y ∈ Pk(ω) such that
ω(y) < ω.

Definition 2.2. Let ω be a weight vector of degree n and f, g ∈ (Pk)n.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0, then f is called hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−

k (ω).
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Obviously, the relations ≡ and ≡ω are equivalence ones. Note that if ω is a
minimal sequence of degree n, then f ≡ω g if and only if f ≡ g (see Theorem
2.4.) Denote by QPk(ω) the quotient of Pk(ω) by the equivalence relation ≡ω.
Then, we have

QPk(ω) = Pk(ω)/((A+Pk ∩ Pk(ω)) + P−
k (ω)).

It is easy to see that

QPk(ω) ∼= QP ω
k := 〈{[x] ∈ QPk : xisadmissibleandω(x) = ω}〉.

So, we get
(F2⊗APk)n =

⊕
deg ω=n

QP ω
k
∼=

⊕
deg ω=n

QPk(ω).

Hence, we can identify the vector space QPk(ω) with QP ω
k ⊂ QPk.

We note that the weight vector of a monomial is invariant under the per-
mutation of the generators xi, hence QPk(ω) has an action of the symmetric
group Σk. Furthermore, QPk(ω) is also an GLk-module.

For polynomials f ∈ Pk and g ∈ Pk(ω), we denote by [f ] the class in
F2⊗APk represented by f , and by [g]ω the class in QPk(ω) represented by g.
For M ⊂ Pk and S ⊂ Pk(ω), denote

[M ] = {[f ] : f ∈ M} and [S]ω = {[g]ω : g ∈ S}.
If ω is the minimal sequence, then [S]ω = [S] and [g]ω = [g].

Definition 2.3. A monomial z = xb1
1 xb2

2 . . . xbk

k is called a spike if bj = 2sj − 1
for sj a non-negative integer and j = 1, 2, . . . , k. If z is a spike with s1 > s2 >
. . . > sr−1 � sr > 0 and sj = 0 for j > r, then it is called a minimal spike.

For a positive integer n, by μ(n) one means the smallest number r for which
it is possible to write n =

∑
1�i�r(2

di−1), where di > 0. In [17], Singer showed
that if μ(n) � k, then there exists uniquely a minimal spike of degree n in Pk.

The following is a criterion for the hit monomials in Pk.

Theorem 2.4 (Singer [17]). Suppose x ∈ Pk is a monomial of degree n,
where μ(n) � k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then
x is hit.

Definition 2.5. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.6. A monomial x is said to be inadmissible if there exist mono-
mials y1, y2, . . . , yt such that yj < x for j = 1, 2, . . . , t and x ≡ y1 +y2 + . . .+yt.

A monomial x is said to be admissible if it is not inadmissible.
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Obviously, the set of all the admissible monomials of degree n in Pk is a
minimal set of A-generators for Pk in degree n.

The proof of the following lemma is elementary.

Lemma 2.7.
i) All the spikes in Pk are admissible and their weight vectors are weakly

decreasing.
ii) If a weight vector ω is weakly decreasing and ω1 � k, then there is a

spike z in Pk such that ω(z) = ω.

One of the main tools in the study of the hit problem is Kameko’s ho-
momorphism S̃q

0

∗ : F2 ⊗A Pk → F2 ⊗A Pk. This homomorphism is an GLk-

homomorphism induced by the F2-linear map, also denoted by S̃q
0

∗ : Pk → Pk,
given by

S̃q
0

∗(x) =

{
y, ifx = x1x2 . . . xky2,

0, otherwise,

for any monomial x ∈ Pk. Note that S̃q
0

∗ is not an A-homomorphism. However,

S̃q
0

∗Sq2t = SqtS̃q
0

∗, S̃q
0

∗Sq2t+1 = 0

for any non-negative integer t.
Observe obviously that S̃q

0

∗ is surjective on Pk and therefore on F2 ⊗A Pk.
So, one gets

dim(F2 ⊗A Pk)2m+k = dimKer(S̃q
0

∗)(k,m) + dim(F2 ⊗A Pk)m,

for any positive integer m. Here

(S̃q
0

∗)(k,m) : (F2 ⊗A Pk)2m+k → (F2 ⊗A Pk)m

denotes Kameko’s homomorphism S̃q
0

∗ in degree 2m + k.

Theorem 2.8 (Kameko [11]). Let m be a positive integer. If μ(2m+k) = k,
then

(S̃q
0

∗)(k,m) : (F2 ⊗A Pk)2m+k → (F2 ⊗A Pk)m

is an isomorphism of GLk-modules.

For 1 � i � k, define the A-homomorphism gi : Pk → Pk, which is deter-
mined by gi(xi) = xi+1, gi(xi+1) = xi, gi(xj) = xj for j �= i, i + 1, 1 � i < k,
and gk(x1) = x1 + x2, gk(xj) = xj for j > 1. Note that the general linear
group GLk is generated by the matrices associated with gi, 1 � i � k, and the
symmetric group Σk is generated by gi, 1 � i < k.

So, a homogeneous polynomial f ∈ Pk is an GLk-invariant if and only if
gi(f) ≡ f for 1 � i � k. If gi(f) ≡ f for 1 � i < k, then f is an Σk-invariant.
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3 Proof of Theorem 1.3

From now on, we denote by Bk(n) the set of all admissible monomials of degree
n in Pk.

For any monomials z, z1, z2, . . . , zm in (Pk)n with m � 1, we denote

Σk(z1, z2, . . . , zm) = {σzt : σ ∈ Σk, 1 � t � m} ⊂ (Pk)n,

[B(z1, z2, . . . , zm)]ω = [Bk(n)]ω ∩ 〈[Σk(z1, z2, . . . , zm)]ω〉,
p(z) =

∑
y∈Bk(n)∩Σk(z)

y.

If ω is the minimal sequence of degree n, then we write

[B(z1 , z2, . . . , zm)]ω = [B(z1, z2, . . . , zm)].

3.1 The case r = 3

For r = 3, we have n = 2s+1 +2s −5. If s > 3, then μ(n) = 5. Hence, using
Theorem 2.8, we see that the iterated Kameko’s homomorphism

(S̃q
0

∗)
s−3
(5,3.2s−1−5) : (F2⊗AP5)2s+1+2s−5 −→ (F2⊗AP5)19

is an isomorphism of the GL5-modules. So, we need only to prove the theorem
for s = 1, 2, 3. For s = 1, we have n = 1. By a simple computation, one gets
the following.

Proposition 3.1.1. dim(F2⊗AP5)1 = 5 and (F2⊗AP5)GL5
1 = 0.

For s = 2, we have n = 7.

Proposition 3.1.2. (F2⊗AP5)GL5
7 = 0.

Since Kameko’s homomorphism

(S̃q
0

∗)(5,1) : (F2⊗AP5)7 −→ (F2⊗AP5)1

is a homomorphism of GL5-modules and (F2⊗AP5)GL5
1 = 0, we have

(F2⊗AP5)GL5
7 ⊂ Ker(S̃q

0

∗)(5,1).

From a result in [24], we see that dim(Ker(S̃q
0

∗)(5,1)) = 105 with the basis⋃7
i=1[B5(ui)], where

u1 = x7
1, u2 = x1x

6
2, u3 = x1x

2
2x

4
3, u4 = x1x

3
2x

3
3,

u5 = x1x
2
2x

2
3x

2
4, u6 = x1x2x

2
3x

3
5, u7 = x1x2x3x

2
4x

2
5.

By a routine computation we obtained the following.
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Lemma 3.1.3.
i) The subspaces 〈[Σ5(ui)]〉, 1 � i � 4, 〈[Σ5(u5, u6)]〉 and 〈[Σ5(u7)]〉 are

Σ5-submodules of (F2⊗AP5)7.
ii) We have the direct summand decompositions of the Σ5-modules:

(Ker(S̃q
0

∗)(5,1) =
4⊕

i=1

〈[Σ5(ui)]〉
⊕

〈[Σ5(u5, u6)]〉
⊕

〈Σ5[(u7)]〉.

Lemma 3.1.4. 〈[Σ5(ui)]〉Σ5 = 〈[p(ui)]〉, i = 1, 2, 3, 4, 〈[Σ5(u7)]〉Σ5 = 0 and
〈[Σ5(u5, u6)]〉Σ5 = 〈[p(u5]〉.
Proof. We compute 〈[Σ5(ui)]〉Σ5 for i = 3, 7. The others can be proved by a
similar computation.

Note that dim〈[Σ5(u3)]〉 = 10 with a basis consisting of all the classes
represented by the following admissible monomials:

a1 = x3x
2
4x

4
5, a2 = x2x

2
4x

4
5, a3 = x2x

2
3x

4
5, a4 = x2x

2
3x

4
4, a5 = x1x

2
4x

4
5,

a6 = x1x
2
3x

4
5, a7 = x1x

2
3x

4
4, a8 = x1x

2
2x

4
5, a9 = x1x

2
2x

4
4, a10 = x1x

2
2x

4
3.

Suppose p =
∑10

j=1 γjaj and [p] ∈ 〈[Σ5(u3)]〉Σ5 with γj ∈ F2. By a direct
computation, one gets

g1(p) + p ≡ (γ2 + γ5)(a2 + a5) + (γ3 + γ6)(a3 + a6) + (γ4 + γ7)(a4 + a7) ≡ 0,

g2(p) + p ≡ (γ1 + γ2)(a1 + a2) + (γ6 + γ8)(a6 + a8) + (γ7 + γ9)(a7 + a9) ≡ 0,

g3(p) + p ≡ (γ2 + γ3)(a2 + a3) + (γ5 + γ6)(a5 + a6) + (γ9 + γ10)(a9 + a10) ≡ 0,

g4(p) + p ≡ (γ3 + γ4)(a3 + a4) + (γ6 + γ7)(a6 + a7) + (γ8 + γ9)(a8 + a9) ≡ 0.

These relations imply γj = γ1, for j = 2, 3, . . . , 10.
For i = 7, dim〈[Σ5(u7)]〉 = 5, with a basis consisting of the classes repre-

sented by the following admissible monomials:

b1 = x1x2x3x
2
4x

2
5, b2 = x1x2x

2
3x4x

2
5, b3 = x1x2x

2
3x

2
4x5,

b4 = x1x
2
2x3x4x

2
5, b5 = x1x

2
2x3x

2
4x5.

If q =
∑5

j=1 γj [bj] ∈ 〈[Σ5(u7)]〉Σ5 with γj ∈ F2, then

g1(q) + q ≡ (γ4 + γ5)b1 + γ4b2 + γ5b3 ≡ 0.

This implies γ4 = γ5 = 0. So, q = γ1b1 + γ2b2 + γ3b3. A simple computation
shows

g2(q) + q ≡ γ2(b2 + b4) + γ3)(b3 + b5) ≡ 0,

g3(q) + q ≡ (γ1 + γ2)(b1 + b2) ≡ 0.

From the last equalities, we get γ1 = γ2 = γ3 = 0.
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Proof of Proposition 3.1.2. Let f ∈ (P5)7 such that [f ] ∈ (F2⊗AP5)GL5
7 . Since

[f ] ∈ (F2⊗AP5)Σ5
7 , using Proposition 3.1.1, Lemmas 3.1.3 and 3.1.4, we have

f ≡ ∑5
j=1 γjp(uj) with γj ∈ F2. By computing g5(f) + f in terms of the

admissible monomials, we obtain

g5(f) + f ≡ (γ1 + γ2)x7
2 + (γ2 + γ3 + γ5)x2x

6
3 + (γ3 + γ4)x2x

2
3x

4
4

+ γ4x2x
2
3x

2
4x

2
5 + γ5x1x

3
3x

3
3 + otherterms ≡ 0.

This relation implies γj = 0 for 1 � j � 5. The proposition is proved.

We now prove Theorem 1.3 for r = 3 and s = 3. Then, we have n = 19.

Since Kameko’s homomorphism (S̃q
0

∗)(5,7) : (F2⊗AP5)19 −→ (F2⊗AP5)7 is
a homomorphism of GL5-module and (F2⊗AP5)GL5

7 = 0, we have

(F2⊗AP5)GL5
7 ⊂ Ker(S̃q

0

∗)(5,7).

From a result in [24], we see that dim(Ker(S̃q
0

∗)(5,7)) = 802 and

Ker(S̃q
0

∗)(5,7)
∼= QP5(ω)

⊕
QP5(ω̄)

⊕
QP5(ω̃).

Here ω = (3, 2, 1, 1), ω̄ = (3, 2, 3) and ω̃ = (3, 4, 2).

Proposition 3.1.5. QP5(ω̃)GL5 = 0 and QP5(ω̄)GL5 = 0.

According to a result in [24], dim(QP5(ω̃)) = 55 with the basis
⋃3

j=1[B5(vj)]ω̃,
where

v1 = x1x
2
2x

2
3x

7
4x

7
5, v2 = x1x

2
2x

3
3x

6
4x

7
5, v3 = x1x

3
2x

3
3x

6
4x

6
5;

dim(QP5(ω̄)) = 47 with the basis
⋃6

j=4[B5(vj)]ω̄, where

v4 = x1x
2
2x

4
3x

5
4x

7
5, v5 = x1x

2
2x

3
3x

6
4x

7
5, v6 = x2

1x
3
2x

4
3x

5
4x

5
5.

By a simple computation using technique as given in the proof of Lemma 3.1.4,
we obtain the following.

Lemma 3.1.6.
i) The subspaces 〈[Σ5(vi)]ω̃〉, i = 1, 2, 3, are Σ5-submodules of QP5(ω̃);

〈[Σ5(v4)]ω̄〉 and 〈[Σ5(v5, v6)]ω̄〉 are Σ5-submodules of QP5(ω̄).
ii) We have the direct summand decompositions of the Σ5-modules:

QP5(ω̃) = 〈[Σ5(v1)]ω̃〉
⊕

〈[Σ5(v2)]ω̃〉
⊕

〈[Σ5(v3)]ω̃〉,
QP5(ω̄) = 〈[Σ5(v4)]ω̄〉

⊕
〈[Σ5(v5, v6)]ω̄〉.
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Lemma 3.1.7. We have

〈[Σ5(vi)]ω̃〉Σ5 = 〈[p(vi)]ω̃〉, i = 1, 2, 3,

〈[Σ5(v4)]ω̄〉Σ5 = 〈[p(v4)]ω̄〉, 〈[Σ5(v5, v6)]ω̄〉Σ5 = 0.

Proof of Proposition 3.1.5. Let p ∈ (P5)19 such that [p]ω̃ ∈ QP5(ω̃)GL5 . Since
[p]ω̃ ∈ QP5(ω̃)Σ5 , using Lemma 3.1.6, one gets p ≡ω̃

∑3
j=1 γjp(vj) with γj ∈ F2.

By computing g5(p) + p in terms of the admissible monomials, we obtain

g5(p) + p ≡ω̃ (γ1 + γ2)x1x
7
2x

2
3x

2
4x

7
5 + γ2x1x

3
2x

2
3x

6
4x

7
5

+ γ3x1x
3
3x

3
3x

6
4x

6
5 + otherterms ≡ω̃ 0.

The last equality implies γ1 = γ2 = γ3 = 0.
Now, let q ∈ (P5)19 such that [p]ω̄ ∈ QP5(ω̄)GL5 . Since [p]ω̄ ∈ QP5(ω̄)Σ5 ,

using Lemma 3.1.6, we have q ≡ω̄ γp(v4) with γ ∈ F2. By a direct computation,
we get

g5(q) + q ≡ω̄ γx1x
3
3x

4
3x

4
4x

7
5 + otherterms ≡ω̄ 0.

From this relation it implies γ = 0. The proposition follows.

Using Propositions 3.1.2 and 3.1.5, we obtain (F2⊗AP5)GL5
19 = QP5(ω)GL5 .

In the remain part of this subsection, we prove the following.

Proposition 3.1.8. QP5(ω)GL5 = 0.

Based on the results in [24], we see that dimQP5(ω) = 700 with the basis⋃10
j=1[B5(wj)]ω, where

w1 = x1x
3
2x

15
3 , w2 = x1x

7
2x

11
3 , w3 = x3

1x
7
2x

9
3, w4 = x1x2x

2
3x

15
4 ,

w5 = x1x
3
2x

6
3x

9
4, w6 = x1x2x

2
3x

4
4x

11
5 , w7 = x1x

2
2x

3
3x

13
4 ,

w8 = x1x2x
2
3x

6
4x

9
5, w9 = x1x

3
2x

4
3x

11
4 , w10 = x1x

2
2x

3
3x

5
4x

8
5.

By a direct computation, using technique as given in the proof of Lemma
3.1.4, we obtain the following lemmas.

Lemma 3.1.9.
i) The subspaces 〈[Σ5(wi)]〉, 1 � i � 6, 〈[Σ5(w7, w9)]〉 and 〈[Σ5(w8, w10)]〉

are Σ5-submodules of QP5(ω).
ii) We have a direct summand decomposition of the Σ5-modules:

QP5(ω) =
6⊕

i=1

〈[Σ5(wi)]〉
⊕

〈[Σ5(w7, w9)]〉
⊕

〈[Σ5(w8, w10)]〉.
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Lemma 3.1.10. We have
i) 〈[Σ5(wi)]〉Σ5 = 〈[p(ui)]〉, for i = 1, 2 and 〈[Σ5(w4)]〉Σ5 = 〈[Σ5(w6)]〉Σ5 =

0.
ii) 〈[Σ5(w3)]〉Σ5 = 〈[p(1,ω)]〉, where

p(1,ω) =
∑

1�i<j<t�5

(
x3

i x
3
jx

13
t + x3

i x
13
j x3

t + x7
i x

3
jx

9
t + x7

i x
9
jx

3
t

)
.

iii) 〈[Σ5(w5)]〉Σ5 = 〈[p(2,ω)]〉, where

p(2,ω) =
∑

1�i<j<t<u�5

(
x3

i xjx
5
tx

10
u + x3

i xjx
6
t x

9
u + x3

i x
3
jx

4
tx

9
u + x3

i x
3
jx

5
tx

8
u

)
+

∑
1�i<j<t,u�5

(
xix

3
jx

3
tx

12
u + xix

6
jx

3
t x

9
u + x3

i x
4
jx

3
tx

9
u + x3

i x
5
jx

2
tx

9
u + x3

i x
5
jx

3
tx

8
u

)
.

iv) 〈[Σ5(w7, w9)]〉Σ5 = 〈[p(3,ω) + p(4,ω)], [p(4,ω) + p(5,ω)]〉, where

p(3,ω) =
∑

1�i<j,t,u�5

(
xixjx

3
t x

14
u + x7

i xjx
3
tx

8
u

)
,

p(4,ω) =
∑

1�i<j<t,u�5

(
x3

i xjxtx
14
u + x3

i x
13
j xtx

2
u + x7

i xjxtx
10
u + x7

i x
9
jxtx

2
u

)
,

p(5,ω) =
∑

1�i<j,t,u�5; t<u

(
xixjx

6
tx

11
u + xixjx

7
t x

10
u + x3

i xjx
4
tx

11
u + x3

i xjx
7
t x

8
u

)
.

v) 〈[Σ5(w8, w10)]〉Σ5 = 〈[p(6,ω)], [p(7,ω)]〉, where

p(6,ω) = x1x2x
6
3x4x

10
5 + x1x2x

6
3x

10
4 x5 + x1x2x

3
3x

12
4 x2

5 + x1x2x
2
3x

5
4x

10
5

+ x1x
2
2x3x

5
4x

10
5 + x1x

2
2x3x

6
4x

9
5 + x1x2x

6
3x

3
4x

8
5 + x1x2x

6
3x

8
4x

3
5

+ x1x
2
2x

5
3x

2
4x

9
5 + x1x

2
2x

5
3x

9
4x

2
5 + x1x2x

2
3x

3
4x

12
5 + x1x2x

2
3x

12
4 x3

5

+ x1x2x
3
3x

2
4x

12
5 + x1x2x

2
3x

6
4x

9
5 + x1x2x

6
3x

2
4x

9
5 + x1x2x

6
3x

9
4x

2
5

+ x1x
3
2x3x

4
4x

10
5 + x1x

3
2x

4
3x4x

10
5 + x1x

3
2x

4
3x

10
4 x5 + x1x

3
2x3x

6
4x

8
5

+ x1x
3
2x

6
3x4x

8
5 + x1x

3
2x

6
3x

8
4x5 + x1x

3
2x

3
3x

4
4x

8
5 + x1x

3
2x

4
3x

3
4x

8
5

+ x1x
3
2x

4
3x

8
4x

3
5 + x3

1x2x
3
3x

4
4x

8
5 + x3

1x2x
4
3x

3
4x

8
5 + x3

1x2x
4
3x

8
4x

3
5

+ x3
1x

3
2x3x

4
4x

8
5 + x3

1x
3
2x

4
3x4x

8
5 + x3

1x
3
2x

4
3x

8
4x5 + x1x

2
2x3x

3
4x

12
5

+ x1x
2
2x3x

12
4 x3

5 + x1x
2
2x

3
3x4x

12
5 + x1x

2
2x

3
3x

12
4 x5 + x1x

2
2x

12
3 x4x

3
5

+ x1x
2
2x

12
3 x3

4x5 + x1x
6
2x3x

3
4x

8
5 + x1x

6
2x3x

8
4x

3
5 + x1x

6
2x

3
3x4x

8
5

+ x1x
6
2x

3
3x

8
4x5 + x1x

6
2x

8
3x4x

3
5 + x1x

6
2x

8
3x

3
4x5 + x1x

2
2x

3
3x

4
4x

9
5

+ x1x
2
2x

4
3x

3
4x

9
5 + x1x

2
2x

4
3x

9
4x

3
5 + x1x

2
2x

3
3x

5
4x

8
5 + x1x

2
2x

5
3x

3
4x

8
5

+ x1x
2
2x

5
3x

8
4x

3
5 + x3

1x
4
2x3x

3
4x

8
5 + x3

1x
4
2x3x

8
4x

3
5 + x3

1x
4
2x

3
3x4x

8
5

+ x3
1x

4
2x

3
3x

8
4x5 + x3

1x
4
2x

8
3x4x

3
5 + x3

1x
4
2x

8
3x

3
4x5.
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p(7,ω) = x1x2x3x
6
4x

10
5 + x3

1x2x3x
4
4x

10
5 + x3

1x2x3x
6
4x

8
5 + x1x2x

6
3x4x

10
5

+ x1x2x
6
3x

10
4 x5 + x1x

6
2x3x4x

10
5 + x1x

6
2x3x

10
4 x5 + x1x

3
2x

12
3 x4x

2
5

+ x1x
3
2x

12
3 x2

4x5 + x1x
6
2x

9
3x4x

2
5 + x1x

6
2x

9
3x

2
4x5 + x3

1x2x
4
3x4x

10
5

+ x3
1x2x

4
3x

10
4 x5 + x3

1x
4
2x3x4x

10
5 + x3

1x
4
2x3x

10
4 x5 + x1x

3
2x

6
3x4x

8
5

+ x1x
3
2x

6
3x

8
4x5 + x3

1x2x
6
3x4x

8
5 + x3

1x2x
6
3x

8
4x5 + x3

1x
4
2x

9
3x4x

2
5

+ x3
1x

4
2x

9
3x

2
4x5 + x1x

3
2x

5
3x

2
4x

8
5 + x1x

3
2x

5
3x

8
4x

2
5 + x3

1x
5
2x3x

2
4x

8
5

+ x3
1x

5
2x3x

8
4x

2
5 + x3

1x
5
2x

2
3x4x

8
5 + x3

1x
5
2x

2
3x

8
4x5 + x3

1x
5
2x

8
3x4x

2
5

+ x3
1x

5
2x

8
3x

2
4x5.

Proof of Proposition 3.1.8. Let f ∈ (P5)19 such that [f ] ∈ QP5(ω)GL5 . Since
[f ] ∈ QP5(ω)Σ5 , using Lemmas 3.1.9 and 3.1.10, we have

f ≡ γ1p(u1) + γ2p(u2) + γ3p(1,ω) + γ4p(2,ω)

+ γ5(p(3,ω) + p(4,ω)) + γ6(p(4,ω) + p(5,ω)) + γ7p(6,ω) + γ8p(7,ω),

with γj ∈ F2. By computing g5(f) + f in terms of the admissible monomials,
we obtain

g5(f) + f ≡ γ1x1x
3
2x

15
3 + γ2x1x

7
2x

11
3 + γ3x1x2x

3
3x

14
4

+ γ4x1x
3
2x

12
3 x3

4 + γ5x1x
14
2 x3x

3
4 + γ6x1x

7
2x3x

10
4

+ γ7x1x
3
2x

3
3x

4
4x

8
5 + γ8x1x

7
2x3x

2
4x

8
5 + otherterms ≡ 0.

This relation implies γj = 0 for 1 � j � 8. The proposition is proved.

Combining the above results, we get (F2⊗AP5)GL5
3.2s−5 = 0. So, Theorem 1.3

is proved for the case r = 3.

3.2 The case r = 4

For r = 4, we have n = 2s+2 − 5. If s > 2, then μ(2s+2 − 5) = 5. Using
Theorem 2.8, we see that the iterated Kameko’s homomorphism

(S̃q
0

∗)
s−2
(5,2s+1−5)

: (F2⊗AP5)2s+2−5 −→ (F2⊗AP5)11

is an isomorphism. So, we need only to prove the theorem for s = 1, 2. For
s = 1, we have n = 3. By a simple computation, we obtain

Proposition 3.2.1. dim(F2⊗AP5)3 = 25 and (F2⊗AP5)GL5
3 = 0.

For s = 2, we have n = 11. Since Kameko’s homomorphism

(S̃q
0

∗)(5,3) : (F2⊗AP5)11 −→ (F2⊗AP5)3
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is a homomorphism of GL5-module and (F2⊗AP5)GL5
3 = 0, we have

(F2⊗AP5)GL5
11 ⊂ Ker(S̃q

0

∗)(5,3).

From the results in [23], we see that

Ker(S̃q
0

∗)(5,3) = QP5(3, 2, 1)
⊕

QP5(3, 4)

and dimQP5(3, 4) = 10. By a direct computation, using the admissible mono-
mial basis of QP5(3, 4), we easily obtain the following.

Proposition 3.2.2. QP5(3, 4)GL5 = 0.

Now, we compute QP5(3, 2, 1)GL5. From the results in [23], we can see that
dimQP5(3, 2, 1) = 280 with the basis

⋃5
i=1[B(ūi)], where

ū1 = x1x
3
2x

7
3, ū2 = x3

1x
3
2x

5
3, ū3 = x1x2x

2
3x

7
4,

ū4 = x1x
2
2x

3
3x

5
4, ū5 = x1x2x

2
3x

3
4x

4
5.

A simple computation, using the results in [23], one gets the following.

Lemma 3.2.3.
i) The subspaces 〈[Σ5(ūi)]〉, 1 � i � 5, are Σ5-submodules of (F2⊗AP5)11.
ii) We have a direct summand decomposition of the Σ5-modules:

QP5(3, 2, 1) =
5⊕

i=1

〈[Σ5(ūi)]〉.

Lemma 3.2.4. We have

i) 〈[Σ5(ū1)]〉Σ5 = 〈[p(ū1)]〉, 〈[Σ5(ūi)]〉Σ5 = 0 for i = 2, 3, 5.
ii) 〈[Σ5(ū4)]〉Σ5 = 〈[p̄]〉, where

p̄ =
∑

1�i<j,t,u�5

(
xixjx

3
tx

6
u + x3

i xjx
3
t x

4
u

)
.

Proof. We prove that 〈[Σ5(ū2)]〉Σ5 = 0. The others can be proved by a similar
computation.

From the result in [23], 〈[Σ5(ū2)]〉 is an F2-vector space of dimension 20
with a basis consisting of all the classes represented by the following admissible
monomials:

a1 = x3
3x

3
4x

5
5 a2 = x3

3x
5
4x

3
5 a3 = x3

2x
3
4x

5
5 a4 = x3

2x
5
4x

3
5

a5 = x3
2x

3
3x

5
5 a6 = x3

2x
3
3x

5
4 a7 = x3

2x
5
3x

3
5 a8 = x3

2x
5
3x

3
4

a9 = x3
1x

3
4x

5
5 a10 = x3

1x
5
4x

3
5 a11 = x3

1x
3
3x

5
5 a12 = x3

1x
3
3x

5
4

a13 = x3
1x

5
3x

3
5 a14 = x3

1x
5
3x

3
4 a15 = x3

1x
3
2x

5
5 a16 = x3

1x
3
2x

5
4

a17 = x3
1x

3
2x

5
3 a18 = x3

1x
5
2x

3
5 a19 = x3

1x
5
2x

3
4 a20 = x3

1x
5
2x

3
3.
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Suppose that p is a polynomial such that [p] ∈ 〈[Σ5(ū2)]〉Σ5 and

p ≡
∑

1�i�20

γiai,

where γi ∈ F2, 1 � i � 20. By a direct computation, we obtain

g1(p) + p ≡ (γ3 + γ9)a3 + (γ4 + γ10)a4 + (γ5 + γ11)a5 + (γ6 + γ12)a6

+ (γ7 + γ13)a7 + (γ8 + γ14)a8 + (γ3 + γ9)a9 + (γ4 + γ10)a10

+ (γ5 + γ11)a11 + (γ6 + γ12)a12 + (γ7 + γ13)a13

+ (γ8 + γ14)a14 + γ18a15 + γ19a16 + γ20a17 ≡ 0,

g2(p) + p ≡ (γ1 + γ3)a1 + (γ2 + γ4)a2 + (γ1 + γ3)a3 + (γ2 + γ4)a4

+ γ7a5 + γ8a6 + (γ11 + γ15)a11 + (γ12 + γ16)a12

+ (γ13 + γ18)a13 + (γ14 + γ19)a14 + (γ11 + γ15)a15

+ (γ12 + γ16)a16 + (γ17 + γ20)a17 + (γ13 + γ18)a18

+ (γ14 + γ19)a19 + (γ17 + γ20)a20 ≡ 0.

These relations imply γi = 0 for i = 7, 8, 13, 14, 17, 18, 19, 20. From this we
get

g3(p) + p ≡ γ2a1 + (γ3 + γ5)a3 + γ4a4 + (γ3 + γ5)a5 + γ6a6

+ γ4a7 + γ6a8 + (γ9 + γ11)a9 + γ10a10 + (γ9 + γ11)a11

+ γ12a12 + γ10a13 + γ12a14 + γ16a16 + γ16a17 ≡ 0,

g4(p) + p ≡ (γ1 + γ2)a1 + (γ1 + γ2)a2 + (γ3 + γ4)a3 + (γ3 + γ4)a4

+ (γ5 + γ6)a5 + (γ5 + γ6)a6 + (γ9 + γ10)a9

+ (γ9 + γ10)a10 + (γ11 + γ12)a11 + (γ11 + γ12)a12

+ (γ15 + γ16)a15 + (γ15 + γ16)a16 ≡ 0.

Combining the above equalities gives γi = 0 for i = 1, 2, . . . , 20.

Proposition 3.2.5. QP5(3, 2, 1)GL5 = 0.

Proof. Let h ∈ (P5)11 such that [h] ∈ QP5(3, 2, 1)GL5. Since [h] ∈ QP5(3, 2, 1)Σ5,
using Lemmas 3.2.3 and 3.2.4, we have

h ≡ γ1p(ū1) + γ2p̄,

with γ1, γ2 ∈ F2. Computing g5(h) + h in terms of the admissible monomials,
we obtain

g5(h) + h ≡ γ1x1x
3
2x

7
3 + γ2x1x2x

2
3x

2
4x

5
5 + otherterms ≡ 0.

This relation implies γ1 = γ2 = 0, hence h = 0. The proposition is proved.
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From Propositions 3.2.1, 3.2.2 and 3.2.5, we get (F2⊗AP5)GL5
2s+2−5

= 0 for all
s � 1. Theorem 1.3 is completely proved.
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