A SUPERMAGIC LABELING OF FINITE COPIES OF CARTESIAN PRODUCT OF CYCLES

Sirirat Singhun,¹ Ratinan Boonklurb² and Chapkit Charnsamorn^{3,}

¹Department of Mathematics, Faculty of Science Ramkhamhaeng University, Bangkok 10240, THAILAND e-mail: sin_sirirat@ru.ac.th

²Department of Mathematics and Computer Science, Faculty of Science Chulalongkorn University, Bangkok 10330, THAILAND e-mail: ratinan.b@chula.ac.th

³Physics Department, Faculty of Science Mahanakorn Univ. of Technology, Bangkok 10530, Thailand e-mail: chapkit@mut.ac.th

Abstract

A homomorphism of a graph H onto a graph G is defined to be a surjective mapping $\psi : V(H) \to V(G)$ such that whenever u, v are adjacent in $H, \psi(u), \psi(v)$ are adjacent in G, that is the induced mapping $\bar{\psi} : E(H) \to E(G)$ satisfying: if e is an edge of H with end vertices uand v, then $\bar{\psi}(e)$ is an edge of G with end vertices $\psi(u)$ and $\psi(v)$. A homomorphism ψ is harmonious if $\bar{\psi}$ is a bijection. A triplet $[H, \psi, t]$ is called a supermagic frame of G if ψ is a harmonious homomorphism of Honto G and $t : E(H) \to \{1, 2, \ldots, |E(H)|\}$ is an injective mapping such that $\sum_{u \in \psi^{-1}(v)} t^*(u)$ is independent of the vertex $v \in V(G)$. Note that $t^*(u)$ is the sum of t(uw) where w is adjacent to u.

In 2000, Ivančo proved that if there is a supermagic frame of a graph G, then G is supermagic. In this paper, we construct a supermagic frame of $m(\geq 2)$ copies of Cartesian product of cycles and apply the Ivančo's result to show that m copies of Cartesian product of cycles is supermagic.

Key words: supermagic frame; Cartesian product of cycles.

²⁰¹⁰ AMS Mathematics Subject Classification: 05C78

 $^{^{1}}$ Corresponding author

1 Introduction

Let G be a graph with the vertex set V(G) and the edge set E(G) and let |V(G)| and |E(G)| denote the number of vertices and the number of edges in G, respectively. A supermagic labeling of G is an injective f from E(G) into the set of positive integers such that the set of edge labels contains consecutive integers and the *index-mapping* f^* from V(G) into the set of positive integers given by $f^*(v) = \sum_{uv \in E(G)} f(uv)$ is a constant mapping. The graph G is called supermagic

with index λ if there is a supermagic labeling of G such that $f^*(v) = \lambda$ for all $v \in V(G)$.

The concept of supermagic labelings was introduced by Stewart [3]. Several graphs admitted supermagic labelings are shown in [1], [2], [3], [4] and [5].

Let H and G be graphs. A homomorphism of H onto G is a surjective mapping $\psi: V(H) \to V(G)$ such that if u, v are adjacent in H, then $\psi(u), \psi(v)$ are adjacent in G. That is, ψ induces a mapping $\bar{\psi}: E(H) \to E(G)$ such that if e is an edge of H, then $\bar{\psi}(e)$ is an edge of G. A homomorphism ψ is hamonious if $\bar{\psi}$ is a bijection. A triplet $[H, \psi, t]$ is called a supermagic frame of a graph G if ψ is a harmonious homomorphism of H onto G and $t: E(H) \to \{1, 2, \ldots, |E(H)|\}$ is an injective mapping such that $\sum_{u \in \psi^{-1}(v)} t^*(u)$ is independent of the vertex

 $v \in V(G).$

In 2000, Ivančo [1] proved the following results.

Proposition 1.1. [1] Let G be a d-regular graph. If G is supermagic, then there exists a supermagic labeling f from E(G) to the set $\{1, 2, \ldots, \frac{d|V(G)|}{2}\}$ with index $\lambda = \frac{d}{2}(1 + \frac{d|V(G)|}{2})$.

Proposition 1.2. [1] If there is a supermagic frame of a graph G, then G is supermagic.

In [3], Stewart proved that M_{2k} is supermagic when $k \equiv 1 \pmod{2}$. Later, Singhun et al. [5] proved that nM_{2k} , a graph consists of n copies of M_{2k} , is supermagic if and only if n is odd and $3 \leq k \equiv 1 \pmod{2}$. In [1], Ivančo proved that $C_n \times C_n$ is supermagic, by Proposition 1.2. Motivated by these, we would like to construct a supermagic frame for the finite copies of the graph $C_n \times C_n$. This construction implies that the finite copies of $C_n \times C_n$ is supermagic graph.

2 Result

Let nG, where $n \ge 2$, be a graph consisting of n copies of G. In this section, let $m \ge 2$ and G be the graph $m(C_n \times C_n)$, where $n \ge 3$. For $k = 1, 2, 3, \ldots, m$, the vertex set of the k^{th} copy of G is the set $\{[v_r^k, v_s^k] | r = 1, 2, 3, \ldots, n \text{ and } s = 1, 2, 3, \ldots, n\}$ and the edge set of the k^{th} copy of G is the set $\{[v_i^k, v_j^k] | r(v_i^k, v_j^k)]$.

 $[v_i^k, v_j^k][v_{i+1}^k, v_j^k] \mid i = 1, 2, 3, ..., n \text{ and } j = 1, 2, 3, ..., n\}$. Thus, the vertices of the k^{th} copy of G are the following.

Figure 1 shows the k^{th} copy of G with vertices and edges. Then, G is a 4-regular graph and it can be seen that G can be decomposed into 2mn copies of cycle of length n.

Figure 1: The k^{th} copy of $C_n \times C_n$ with vertices and edges.

Let $m \ge 2$, $n \ge 3$ and H be the graph $2mnC_n$, the 2mn copies of cycle C_n . We first show that there is a surjective mapping from each cycle of H to each cycle of G in Lemma 2.1. Then, by using the surjective mapping in Lemma 2.1, we show that there is a harmonius homomorphism of H onto G in Lemma 2.2. Later, the mapping t is defined and the values of t^* are obtained in Lemma 2.3. By Lemma 2.1-2.3, we conclude in Lemma 2.4 that $[H, \psi, t]$ is a supermagic frame of H onto G. Then, by Proposition 1.2, G is supermagic.

Lemma 2.1. Let $m \ge 2, n \ge 3$ and G denote the graph $m(C_n \times C_n)$ for $k = 1, 2, \ldots, m$ and $i = 1, 2, \ldots, n$. Let G_t , where t = 2(k-1)n+i, be a subgraph of G induced by $\{[v_i^k, v_j^k] | j = 1, 2, \ldots, n\}$ and G_t where t = (2k-1)n+i, be a subgraph of G induced by $\{[v_i^k, v_i^k] | j = 1, 2, \ldots, n\}$. For $i = 1, 2, \ldots, 2mn$,

let H_i be a cycle with the vertex set $\{u_0^i, u_1^i, u_2^i, \ldots, u_{n-1}^i\}$ and the edge set $\{u_i^i u_{i+1}^i | j = 0, 1, \dots, n-1\},$ where the subscripts are taken under modulo n. Let $\psi_i : V(H_i) \to V(G_i)$ be given by for i = 1, 2, ..., mn and j = 0, 1, ..., n - 1, $\begin{aligned} \psi_i(u_j^i) &= [v_l^k, v_{l+j}^k] \text{ when } k = \left\lceil \frac{i}{n} \right\rceil \text{ and } l \equiv i (mod \ n), \\ \text{for } i &= mn+1, mn+2, \dots, 2mn \text{ and } j = 0, 1, \dots, n-1, \\ \psi_i(u_j^i) &= [v_{l+j}^k, v_l^k] \text{ when } k = \left\lceil \frac{1+2mn-i}{n} \right\rceil \text{ and } \end{aligned}$ $l \equiv 2mn + 1 - i(mod \ n).$

(Note that for the subscript l under modulo n, we use n instead of 0.) Then, ψ_i is surjective for $i = 1, 2, \ldots, 2mn$.

Proof We claim that ψ_i is surjective. Let $i \in \{1, 2, \dots, 2mn\}$ and v be a vertex of G_i . Then, $v = [v_r^k, v_s^k]$ for some $k \in \{1, 2, ..., m\}$ and $r, s \in \{1, 2, ..., n\}$.

If $r \leq s$, then s = r + j for some $j \in \{0, 1, \dots, n-1\}$. Choose $i \in \{1, 2, \dots, n-1\}$. , mn} such that $k = \left\lceil \frac{i}{n} \right\rceil$ and $i \equiv r \pmod{n}$. Then $\psi_i(u_j^i) = [v_r^k, v_{r+j}^k] = [v_r^k, v_s^k]$.

If r > s, then r = s+j for some $j \in \{0, 1, 2, \dots, n-1\}$. Choose $i \in \{mn+1, mn+2, \dots, 2mn\}$ such that $k = \lceil \frac{1+2mn-i}{n} \rceil$ and $s \equiv 2mn+1-i \pmod{n}$. Then, $\psi_i(u_j^i) = [v_{s+j}^k, v_s^k] = [v_r^k, v_s^k]$.

Therefore, ψ_i is surjective.

Lemma 2.2. Let G denote the graph $m(C_n \times C_n)$ and H_i be the graph defined as in Lemma 2.1. Let $H = \bigcup_{i=1}^{2mn} H_i$. Then, there is a harmonius homomorphism of H and G.

Proof Let G denote the graph $m(C_n \times C_n)$, and ψ_i be defined as in Lemma in 2.1. Define $\psi: V(H) \to V(G)$ by

$$\psi(u_j^i) = \psi_i(u_j^i) \text{ for } u_j^i \in V(H_i) \subseteq V(H)$$

where $i \in \{1, 2, \dots, 2mn\}$ and $j \in \{0, 1, \dots, n-1\}$. First, we claim that ψ is surjective.

Let v be a vertex of G. Then, $v \in G_i$ for some $i \in \{1, 2, ..., 2mn\}$. Since ψ_i is surjective, there is a vertex u_i^i for some $j \in \{0, 1, \ldots, n-1\}$ for H_i such that $\psi_i(u_i^i) = v$. Then,

$$\psi(u_j^i) = \psi_i(u_j^i) = v.$$

This shows that ψ is surjective.

Next, we claim that if uv is an edge of H, then $\psi(u)\psi(v)$ is an edge of G.

Let $u_b^a u_d^c$ be an edge of H where $a, c \in \{1, 2, \ldots, 2mn\}$ and $b, d \in \{0, 1, \ldots, 2mn\}$

..., n-1. Then, a = c and d = b+1.

If $a \in \{1, 2, ..., mn\}$, then

$$\psi(u_b^a)\psi(u_d^c) = \psi_a(u_b^a)\psi_c(u_d^c) = [v_l^k, v_{l+b}^k][v_l^k, v_{l+b+1}^k],$$

S. SINGHUN, R. BOONKLURB AND C. CHARNSAMORN

where $k = \left\lceil \frac{a}{n} \right\rceil$ and $l \equiv a \pmod{n}$. Since $[v_l^k, v_{l+b}^k][v_l^k, v_{l+b+1}^k]$ is an edge of G in the k^{th} copy, $\psi(u_b^a)\psi(u_d^c)$ is an edge of G.

If $a \in \{mn + 1, mn + 2, \dots, 2mn\}$, then

$$\psi(u_b^a)\psi(u_d^c) = \psi_a(u_b^a)\psi_c(u_d^c) = [v_{l+b}^k, v_l^k][v_{l+b+1}^k, v_l^k],$$

where $k = \left\lceil \frac{1+2mn-a}{n} \right\rceil$ and $l \equiv 2mn + 1 - a \pmod{n}$. Since $[v_{l+b}^k, v_l^k][v_{l+b+1}^k, v_l^k]$ is an edge of G in the k^{th} copy, $\psi(u_b^a)\psi(u_d^c)$ is an edge of G.

Finally, we claim that the induced mapping ψ is bijective.

Let $u_b^a u_d^c$ and $u_u^x u_s^r$ be edges of H such that

$$\bar{\psi}(u_b^a u_d^c) = \bar{\psi}(u_u^x u_s^r).$$

Then, a = c, x = r, d = b + 1, s = y + 1 and a, x are both in $\{1, 2, ..., mn\}$ or $\{mn+1, mn+2, ..., 2mn\}$.

Suppose that a, x are both in the set $\{1, 2, \ldots, mn\}$. Then,

$$[v_{l_1}^{k_1}, v_{l_1+b}^{k_1}][v_{l_1}^{k_1}, v_{l_1+b+1}^{k_1}] = [v_{l_2}^{k_2}, v_{l_2+y}^{k_2}][v_{l_2}^{k_2}, v_{l_2+y+1}^{k_2}]$$

where $k_1 = \left\lceil \frac{a}{n} \right\rceil$, $l_1 \equiv a \pmod{n}$, $k_2 = \left\lceil \frac{x}{n} \right\rceil$ and $l_2 \equiv x \pmod{n}$. Since $\bar{\psi}(u_b^a u_d^c)$ and $\bar{\psi}(u_u^x u_s^r)$ are edges of $G, k_1 = k_2$.

$$\begin{split} &\text{If } [v_{l_1}^{k_1}, v_{l_1+b}^{k_1}] = [v_{l_2}^{k_2}, v_{l_2+y+1}^{k_2}] \text{ and } [v_{l_1}^{k_1}, v_{l_1+b+1}^{k_1}] = [v_{l_2}^{k_2}, v_{l_2+y}^{k_2}], \text{ then } l_1 = l_2 \\ &\text{and } b = y+1 \text{ and } b+1 = y, \text{ which is a contradiction.} \\ &\text{Therefore, } [v_{l_1}^{k_1}, v_{l_1+b}^{k_1}] = [v_{l_2}^{k_2}, v_{l_2+y}^{k_2}] \text{ and } [v_{l_1}^{k_1}, v_{l_1+b+1}^{k_1}] = [v_{l_2}^{k_2}, v_{l_2+y+1}^{k_2}]. \text{ That} \\ &\text{is, } l_1 = l_2, b = y \text{ and } d = s. \text{ Then, } u_b^a u_d^c = u_y^a u_s^r. \end{split}$$

Suppose that a, x are both in the set $\{mn + 1, mn + 2, \dots, 2mn\}$. Then,

$$[v_{l_1+b}^{k_1}, v_{l_1}^{k_1}][v_{l_1+b+1}^{k_1}, v_{l_1}^{k_1}] = [v_{l_2+y}^{k_2}, v_{l_2}^{k_2}][v_{l_2+y+1}^{k_2}, v_{l_2}^{k_2}]$$

where $k_1 = \left\lceil \frac{1+2mn-a}{n} \right\rceil$, $l_1 \equiv 1 + 2mn - a \pmod{n}$, $k_2 = \left\lceil \frac{1+2mn-x}{n} \right\rceil$ and $l_2 \equiv 1 + 2mn - x \pmod{n}$.

Since $\bar{\psi}(u_b^a u_d^c)$ and $\bar{\psi}(u_u^x u_s^r)$ are edges of G, $k_1 = k_2$.

If $[v_{l_1+b}^{k_1}, v_{l_1}^{k_1}] = [v_{l_2+y+1}^{k_2}, v_{l_2}^{k_2}]$ and $[v_{l_1+b+1}^{k_1}, v_{l_1}^{k_1}] = [v_{l_2+y}^{k_2}, v_{l_2}^{k_2}]$, then $l_1 = l_2$ and b = y + 1 and y = b + 1, which is a contradiction. Therefore, $[v_{l_1+b}^{k_1}, v_{l_1}^{k_1}] = [v_{l_2+y}^{k_2}, v_{l_2}^{k_2}]$ and $[v_{l_1+b+1}^{k_1}, v_{l_1}^{k_1}] = [v_{l_2+y+1}^{k_2}, v_{l_2}^{k_2}]$. That is, $l_1 = l_2$, b = y, and d = s. Then, $u_b^a u_d^c = u_y^x u_s^r$.

Since |E(H)| = |E(G)|, $\bar{\psi}$ is surjective. Hence, $\bar{\psi}$ is bijective.

Therefore, ψ is harmonious homomorphism of H onto G.

Lemma 2.3. Let H be the graph defined as in Lemma 2.2 and $t: E(H) \rightarrow E(H)$ $\{1, 2, \ldots, 2mn^2\}$ be defined by

$$t(u_{j}^{i}u_{j+1}^{i}) = \begin{cases} 2jmn+i & \text{if } j \equiv 0 \pmod{2}, \\ 1+2(j+1)mn-i & \text{if } j \equiv 1 \pmod{2}, \end{cases}$$

66 A Supermagic Labeling of Finite Copies of Cartesian Product of Cycles

for i = 1, 2, ..., 2mn and j = 0, 1, ..., n - 1. Then, t is injective. Moreover, the index-mapping t^* of t satisfies the following equation.

$$t^*(u_j^i) = \begin{cases} 4jmn+1 & \text{if } j \neq 0 \text{ and } n \equiv 0,1 \pmod{2}, \\ 1+2mn^2 & \text{if } j = 0 \text{ and } n \equiv 0 \pmod{2}, \\ 2mn(n-1)+2i & \text{if } j = 0 \text{ and } n \equiv 1 \pmod{2}. \end{cases}$$

Proof We claim that t is injective. Let $u_b^a u_d^c$ and $u_u^x u_s^r$ be edges of H such that

$$t(u_b^a u_d^c) = t(u_u^x u_s^r).$$

Then, a = c, x = r, d = b + 1 and s = y + 1. If $b \equiv 0 \pmod{2}$ and $y \equiv 1 \pmod{2}$, then

$$2bmn + a = 1 + 2(y+1)mn - x.$$

Hence, 2b = 2(y+1) and 1 - x = a. Then, b = y + 1 and x = 1 - a. Since $a \in \{1, 2, \dots, 2mn\}, x$ is not a positive integer, which is a contradiction. If $b \equiv 1 \pmod{2}$ and $y \equiv 0 \pmod{2}$, then

$$1 + 2(b+1)mn - a = 2ymn - x.$$

Hence, 2(b+1) = 2y and 1 - x = a. Then, b = y - 1 and x = 1 - a. Since $a \in \{1, 2, \dots, 2mn\}, x$ is not a positive integer, which is a contradiction.

Therefore, $b, y \equiv 0 \pmod{2}$ or $b, y \equiv 1 \pmod{2}$.

Suppose that $b, y \equiv 0 \pmod{2}$. Then, 2bmn + a = 2ymn + x, that is, y = band a = x. Hence, d = s. Then, $u_b^a u_d^c = u_y^x u_s^r$.

Suppose that $b, y \equiv 1 \pmod{2}$. Then, 1 + 2(b+1)mn - a = 1 + 2(y+1)mn - x, that is, y = b and a = x. Hence, d = s. Then, $u_b^a u_d^c = u_u^x u_s^r$.

+i

Next, we will show that

$$t^*(u_j^i) = \begin{cases} 4jmn+1 & \text{if } j \neq 0 \text{ and } n \equiv 0, 1 \pmod{2}, \\ 1+2mn^2 & \text{if } j = 0 \text{ and } n \equiv 0 \pmod{2}, \\ 2mn(n-1)+2i & \text{if } j = 0 \text{ and } n \equiv 1 \pmod{2}. \end{cases}$$

For $j \neq 0, t^*(u_j^i) = t(u_j^i u_{j+1}^i) + t(u_{j-1}^i u_j^i).$ If $n \equiv 0 \pmod{2}$, then $\begin{array}{rcl} t^{*}(u_{j}^{i}) & = & 2j(mn)+i & + & 1+2(j-1+1)mn-i \\ & = & 4j(mn)+1. \end{array}$

If
$$n \equiv 1 \pmod{2}$$
, then
 $t^*(u_j^i) = 1 + 2(j+1)mn - i + 2(j-1)mn$
 $= 4j(mn) + 1.$

S. SINGHUN, R. BOONKLURB AND C. CHARNSAMORN

 $\begin{array}{l} \text{For } j=0 \text{ and } n\equiv 0 \;(\text{mod }2), \\ t^*(u^i_j)=t^*(u^i_0){=}t(u^i_0u^i_1){+}t(u^i_{n-1}u^i_0) \\ =(0+i)\;+\;(1+2(n-1+1))mn-i \\ =1+2nm^2. \end{array}$

For
$$j = 0$$
 and $n \equiv 1 \pmod{2}$,
 $t^*(u_j^i) = t^*(u_0^i) = t(u_0^i u_1^i) + t(u_{n-1}^i u_0^i)$
 $= (0+i) + (2(n-1)(mn)) + i$
 $= 2(mn)(n-1) + 2i$.

This completes the proof.

Lemma 2.4. Let G denote the graph $m(C_n \times C_n)$, ψ and t be mappings defined as in Lemma 2.2 and Lemma 2.3, respectively. Let $\psi^{-1}(v)$ be the inverse image of v under ψ . Then, for each $v \in V(G)$,

$$\sum_{u \in \psi^{-1}(v)} t^*(u) = 2 + 4mn^2.$$

Proof Let $v \in V(G)$.

Case (i) : v is the vertex on the main diagonal. That is, v is in the form $[v_r^k, v_r^k]$ for some $k \in \{1, 2, ..., m\}$ and $r \in \{1, 2, ..., n\}$. Then,

$$\psi^{-1}([v_r^k, v_r^k]) = \{u_0^{(k-1)n+r}, u_0^{2mn-(k-1)n-(r-1)}\}.$$

If
$$n \equiv 0 \pmod{2}$$
, then

$$\sum_{u \in \psi^{-1}(v)} t^*(u) = t^*(u_0^{(k-1)n+r}) + t^*(u_0^{2mn-(k-1)n-(r-1)})$$

$$= (1 + 2mn^2) + (1 + 2mn^2)$$

$$= 2 + 4mn^2.$$
If $n \equiv 1 \pmod{2}$, then

$$\sum_{u \in \psi^{-1}(v)} t^*(u) = t^*(u_0^{(k-1)n+r}) + t^*(u_0^{2mn-(k-1)n-(r-1)})$$

$$= 2(mn)(n-1) + 2((k-1)n+r) + 2(mn)(n-1) + 2(2mn-(k-1)n-(r-1))$$

$$= 2 + 4mn^2.$$

Case (ii): v is the vertex above the main diagonal. That is, v is in the form $[v_r^k, v_{r+s}^k]$ for some $k \in \{1, 2, ..., m\}$ and $r, s \in \{1, 2, ..., n\}$. Then, $\psi^{-1}([v_r^k, v_{r+s}^k]) = \{u_s^{(k-1)n+r}, u_{n-s}^{2mn-(k-1)n-(r-1)-s}\}$ and $\sum_{u \in \psi^{-1}(v)} t^*(u) = t^*(u_s^{(k-1)n+r}) + t^*(u_{n-s}^{2mn-(k-1)n-(r-1)-s})$ = (4smn+1) + (4(n-s)(mn)+1)

$$2 + 4mn^2$$
.

Case (iii) : v is the vertex under the main diagonal. That is, v is in the form $[v_{r+s}^k, v_r^k]$ for some $k \in \{1, 2, \dots, m\}$ and $r, s \in \{1, 2, \dots, n\}$. Then,

$$\psi^{-1}([v_{r+s}^k, v_s^k]) = \{u_{n-s}^{(k-1)n+r}, u_s^{2mn-(k-1)n-(r-1)+s}\}$$

and
$$\sum_{u \in \psi^{-1}(v)} t^*(u) = t^*(u_{n-s}^{(k-1)n+r}) + t^*(u_s^{2mn-(k-1)n-(r-1)+s})$$

$$= (4(n-s)(mn) + 1) + 4(s)(mn) + 1$$

$$= 2 + 4mn^2.$$

This completes the proof.

This completes the proof.

Theorem 2.5. The graph $m(C_n \times C_n)$ is supermagic for any integer $n \geq 3$ and $m \geq 2$.

Proof Let G denote the graph $m(C_n \times C_n)$ and $G_1, G_2, \ldots, G_{2mn}$ be subgraphs of G defined as in Lemma 2.1. Then, we can see that G_1, G_2, \ldots, G_{mn} are horizontal cycles of G and $G_{mn+1}, G_{mn+2}, \ldots, G_{2mn}$ are vertical cycles of Gand $G_1, G_2, \ldots, G_{2mn}$ form a decomposition of G into pairwise edge-disjoint cycles. For i = 1, 2, ..., 2mn, let H_i be a graph, and ψ_i be a mapping defined as in Lemma 2.1. Let H be a graph defined as in Lemma 2.2. Then, by Lemma 2.3, there is a harmonious homomorphism ψ (defined as in the proof of Lemma 2.2) of H onto G. Let $t: E(H) \to \{1, 2, \dots, 2mn^2\}$ be a mapping as in Lemma 2.3. By Lemma 2.3, t is injective and the index mapping t^* satisfies

$$t^*(u_j^i) = \begin{cases} 4jmn+1 & \text{if } j \neq 0 \text{ and } n \equiv 0, 1 \pmod{2}, \\ 1+2mn^2 & \text{if } j = 0 \text{ and } n \equiv 0 \pmod{2}, \\ 2mn(n-1)+2i & \text{if } j = 0 \text{ and } n \equiv 1 \pmod{2}. \end{cases}$$

By Lemma 2.4, $\sum_{u \in \psi^{-1}(v)} t^*(u) = 2 + 4mn^2$ for each $v \in V(G)$. Then, $[H, \psi, t]$ is a supermagic frame of G. By Proposition 1.2, G is supermagic. **Example 2.6.** Figure 2 shows supermagic labeling of $2(C_3 \times C_3)$.

Figure 2: The supermagic labeling of $2(C_3 \times C_3)$ with $\lambda = 74$.

References

- [1] J. Ivančo, On supermagic regular graphs, Mathematica Bohemica, 125 (2000), 99–114.
- [2] J. Sedláček, On magic graphs, Math. Solovaca, 26 (1976), 329–335.
- [3] B.M. Stewart, *Magic graphs*, Canad. J. Math., 18 (1966), 1031–1059.
- [4] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967), 427–438.
- [5] S. Singhun, R. Boonklurb and C. Charnsamorn, Supermagic Labelings of the n Copies of the Möbius Ladders, The Proceedings of 19th Annual Meeting in Mathematics (AMM2014), 284-292.