# A SUPERMAGIC LABELING OF FINITE COPIES OF CARTESIAN PRODUCT OF CYCLES 

Sirirat Singhun, ${ }^{1}$ Ratinan Boonklurb ${ }^{2}$<br>and<br>Chapkit Charnsamorn ${ }^{3,}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science Ramkhamhaeng University, Bangkok 10240, THAILAND<br>e-mail: sin_sirirat@ru.ac.th<br>${ }^{2}$ Department of Mathematics and Computer Science, Faculty of Science Chulalongkorn University, Bangkok 10330, THAILAND<br>e-mail: ratinan.b@chula.ac.th<br>${ }^{3}$ Physics Department, Faculty of Science Mahanakorn Univ. of Technology, Bangkok 10530, Thailand e-mail: chapkit@mut.ac.th


#### Abstract

A homomorphism of a graph $H$ onto a graph $G$ is defined to be a surjective mapping $\psi: V(H) \rightarrow V(G)$ such that whenever $u, v$ are adjacent in $H, \psi(u), \psi(v)$ are adjacent in $G$, that is the induced mapping $\bar{\psi}: E(H) \rightarrow E(G)$ satisfying: if $e$ is an edge of $H$ with end vertices $u$ and $v$, then $\bar{\psi}(e)$ is an edge of $G$ with end vertices $\psi(u)$ and $\psi(v)$. A homomorphism $\psi$ is harmonious if $\bar{\psi}$ is a bijection. A triplet $[H, \psi, t]$ is called a supermagic frame of $G$ if $\psi$ is a harmonious homomorphism of $H$ onto $G$ and $t: E(H) \rightarrow\{1,2, \ldots,|E(H)|\}$ is an injective mapping such that $\sum_{u \in \psi^{-1}(v)} t^{*}(u)$ is independent of the vertex $v \in V(G)$. Note that $t^{*}(u)$ is the sum of $t(u w)$ where $w$ is adjacent to $u$.

In 2000, Ivančo proved that if there is a supermagic frame of a graph $G$, then $G$ is supermagic. In this paper, we construct a supermagic frame of $m(\geq 2)$ copies of Cartesian product of cycles and apply the Ivančo's result to show that $m$ copies of Cartesian product of cycles is supermagic.


[^0]
## 1 Introduction

Let $G$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$ and let $|V(G)|$ and $|E(G)|$ denote the number of vertices and the number of edges in $G$, respectively. A supermagic labeling of $G$ is an injective $f$ from $E(G)$ into the set of positive integers such that the set of edge labels contains consecutive integers and the index-mapping $f^{*}$ from $V(G)$ into the set of positive integers given by $f^{*}(v)=\sum_{u v \in E(G)} f(u v)$ is a constant mapping. The graph $G$ is called supermagic with index $\lambda$ if there is a supermagic labeling of $G$ such that $f^{*}(v)=\lambda$ for all $v \in V(G)$.

The concept of supermagic labelings was introduced by Stewart [3]. Several graphs admitted supermagic labelings are shown in [1], [2], [3], [4] and [5].

Let $H$ and $G$ be graphs. A homomorphism of $H$ onto $G$ is a surjective mapping $\psi: V(H) \rightarrow V(G)$ such that if $u, v$ are adjacent in $H$, then $\psi(u), \psi(v)$ are adjacent in $G$. That is, $\psi$ induces a mapping $\bar{\psi}: E(H) \rightarrow E(G)$ such that if $e$ is an edge of $H$, then $\bar{\psi}(e)$ is an edge of $G$. A homomorphism $\psi$ is hamonious if $\bar{\psi}$ is a bijection. A triplet $[H, \psi, t]$ is called a supermagic frame of a graph $G$ if $\psi$ is a harmonious homomorphism of $H$ onto $G$ and $t: E(H) \rightarrow\{1,2, \ldots,|E(H)|\}$ is an injective mapping such that $\sum_{u \in \psi^{-1}(v)} t^{*}(u)$ is independent of the vertex $v \in V(G)$.

In 2000, Ivančo [1] proved the following results.
Proposition 1.1. [1] Let $G$ be a d-regular graph. If $G$ is supermagic, then there exists a supermagic labeling $f$ from $E(G)$ to the set $\left\{1,2, \ldots, \frac{d|V(G)|}{2}\right\}$ with index $\lambda=\frac{d}{2}\left(1+\frac{d|V(G)|}{2}\right)$.
Proposition 1.2. [1] If there is a supermagic frame of a graph $G$, then $G$ is supermagic.

In [3], Stewart proved that $M_{2 k}$ is supermagic when $k \equiv 1(\bmod 2)$. Later, Singhun et al. [5] proved that $n M_{2 k}$, a graph consists of $n$ copies of $M_{2 k}$, is supermagic if and only if $n$ is odd and $3 \leq k \equiv 1(\bmod 2)$. In [1], Ivančo proved that $C_{n} \times C_{n}$ is supermagic, by Proposition 1.2. Motivated by these, we would like to construct a supermagic frame for the finite copies of the graph $C_{n} \times C_{n}$. This construction implies that the finite copies of $C_{n} \times C_{n}$ is supermagic graph.

## 2 Result

Let $n G$, where $n \geq 2$, be a graph consisting of $n$ copies of $G$. In this section, let $m \geq 2$ and $G$ be the graph $m\left(C_{n} \times C_{n}\right)$, where $n \geq 3$. For $k=1,2,3, \ldots, m$, the vertex set of the $k^{t h}$ copy of $G$ is the set $\left\{\left[v_{r}^{k}, v_{s}^{k}\right] \mid r=1,2,3, \ldots, n\right.$ and $s=$ $1,2,3, \ldots, n\}$ and the edge set of the $k^{t h}$ copy of $G$ is the set $\left\{\left[v_{i}^{k}, v_{j}^{k}\right]\left[v_{i}^{k}, v_{j+1}^{k}\right]\right.$,
$\left[v_{i}^{k}, v_{j}^{k}\right]\left[v_{i+1}^{k}, v_{j}^{k}\right] \mid i=1,2,3, \ldots, n$ and $\left.j=1,2,3, \ldots, n\right\}$. Thus, the vertices of the $k^{\text {th }}$ copy of $G$ are the following.

$$
\begin{array}{llll}
{\left[v_{1}^{k}, v_{1}^{k}\right],} & {\left[v_{1}^{k}, v_{2}^{k}\right],} & \ldots, & {\left[v_{1}^{k}, v_{n}^{k}\right]} \\
{\left[v_{2}^{k}, v_{1}^{k}\right],} & {\left[v_{2}^{k}, v_{2}^{k}\right],} & \ldots, & {\left[v_{2}^{k}, v_{n}^{k}\right]} \\
& \vdots & & \vdots \\
{\left[v_{n}^{k}, v_{1}^{k}\right],} & {\left[v_{n}^{k}, v_{2}^{k}\right],} & \ldots, & {\left[v_{n}^{k}, v_{n}^{k}\right]}
\end{array}
$$

Figure 1 shows the $k^{t h}$ copy of $G$ with vertices and edges. Then, $G$ is a 4 -regular graph and it can be seen that $G$ can be decomposed into $2 m n$ copies of cycle of length $n$.


Figure 1: The $k^{\text {th }}$ copy of $C_{n} \times C_{n}$ with vertices and edges.
Let $m \geq 2, n \geq 3$ and $H$ be the graph $2 m n C_{n}$, the $2 m n$ copies of cycle $C_{n}$. We first show that there is a surjective mapping from each cycle of $H$ to each cycle of $G$ in Lemma 2.1. Then, by using the surjective mapping in Lemma 2.1, we show that there is a harmonius homomorphism of $H$ onto $G$ in Lemma 2.2. Later, the mapping $t$ is defined and the values of $t^{*}$ are obtained in Lemma 2.3. By Lemma 2.1-2.3, we conclude in Lemma 2.4 that $[H, \psi, t]$ is a supermagic frame of $H$ onto $G$. Then, by Proposition 1.2, $G$ is supermagic.

Lemma 2.1. Let $m \geq 2, n \geq 3$ and $G$ denote the graph $m\left(C_{n} \times C_{n}\right)$ for $k=1,2, \ldots, m$ and $i=1,2, \ldots, n$. Let $G_{t}$, where $t=2(k-1) n+i$, be a subgraph of $G$ induced by $\left\{\left[v_{i}^{k}, v_{j}^{k}\right] \mid j=1,2, \ldots, n\right\}$ and $G_{t}$ where $t=(2 k-1) n+i$, be a subgraph of $G$ induced by $\left\{\left[v_{j}^{k}, v_{i}^{k}\right] \mid j=1,2, \ldots, n\right\}$. For $i=1,2, \ldots, 2 m n$,
let $H_{i}$ be a cycle with the vertex set $\left\{u_{0}^{i}, u_{1}^{i}, u_{2}^{i}, \ldots, u_{n-1}^{i}\right\}$ and the edge set $\left\{u_{j}^{i} u_{j+1}^{i} \mid j=0,1, \ldots, n-1\right\}$, where the subscripts are taken under modulo $n$. Let $\psi_{i}: V\left(H_{i}\right) \rightarrow V\left(G_{i}\right)$ be given by
for $i=1,2, \ldots, m n$ and $j=0,1, \ldots, n-1$,

$$
\psi_{i}\left(u_{j}^{i}\right)=\left[v_{l}^{k}, v_{l+j}^{k}\right] \text { when } k=\left\lceil\frac{i}{n}\right\rceil \text { and } l \equiv i(\bmod n) \text {, }
$$

for $i=m n+1, m n+2, \ldots, 2 m n$ and $j=0,1, \ldots, n-1$,

$$
\psi_{i}\left(u_{j}^{i}\right)=\left[v_{l+j}^{k}, v_{l}^{k}\right] \text { when } k=\left\lceil\frac{1+2 m n-i}{n}\right\rceil \text { and }
$$

$$
l \equiv 2 m n+1-i(\bmod n)
$$

(Note that for the subscript $l$ under modulo $n$, we use $n$ instead of 0 .) Then, $\psi_{i}$ is surjective for $i=1,2, \ldots, 2 m n$.

Proof We claim that $\psi_{i}$ is surjective. Let $i \in\{1,2, \ldots, 2 m n\}$ and $v$ be a vertex of $G_{i}$. Then, $v=\left[v_{r}^{k}, v_{s}^{k}\right]$ for some $k \in\{1,2, \ldots, m\}$ and $r, s \in\{1,2, \ldots, n\}$.

If $r \leq s$, then $s=r+j$ for some $j \in\{0,1, \ldots, n-1\}$. Choose $i \in\{1,2, \ldots$ , $m n\}$ such that $k=\left\lceil\frac{i}{n}\right\rceil$ and $i \equiv r(\bmod n)$. Then $\psi_{i}\left(u_{j}^{i}\right)=\left[v_{r}^{k}, v_{r+j}^{k}\right]=\left[v_{r}^{k}, v_{s}^{k}\right]$.

If $r>s$, then $r=s+j$ for some $j \in\{0,1,2, \ldots, n-1\}$. Choose $i \in\{m n+1$, $m n+2, \ldots, 2 m n\}$ such that $k=\left\lceil\frac{1+2 m n-i}{n}\right\rceil$ and $s \equiv 2 m n+1-i(\bmod n)$. Then, $\psi_{i}\left(u_{j}^{i}\right)=\left[v_{s+j}^{k}, v_{s}^{k}\right]=\left[v_{r}^{k}, v_{s}^{k}\right]$.

Therefore, $\psi_{i}$ is surjective.
Lemma 2.2. Let $G$ denote the graph $m\left(C_{n} \times C_{n}\right)$ and $H_{i}$ be the graph defined as in Lemma 2.1. Let $H=\bigcup_{i=1}^{2 m n} H_{i}$. Then, there is a harmonius homomorphism of $H$ and $G$.

Proof Let $G$ denote the graph $m\left(C_{n} \times C_{n}\right)$, and $\psi_{i}$ be defined as in Lemma in 2.1. Define $\psi: V(H) \rightarrow V(G)$ by

$$
\psi\left(u_{j}^{i}\right)=\psi_{i}\left(u_{j}^{i}\right) \text { for } u_{j}^{i} \in V\left(H_{i}\right) \subseteq V(H)
$$

where $i \in\{1,2, \ldots, 2 m n\}$ and $j \in\{0,1, \ldots, n-1\}$.
First, we claim that $\psi$ is surjective.
Let $v$ be a vertex of $G$. Then, $v \in G_{i}$ for some $i \in\{1,2, \ldots, 2 m n\}$. Since $\psi_{i}$ is surjective, there is a vertex $u_{j}^{i}$ for some $j \in\{0,1, \ldots, n-1\}$ for $H_{i}$ such that $\psi_{i}\left(u_{j}^{i}\right)=v$. Then,

$$
\psi\left(u_{j}^{i}\right)=\psi_{i}\left(u_{j}^{i}\right)=v
$$

This shows that $\psi$ is surjective.
Next, we claim that if $u v$ is an edge of $H$, then $\psi(u) \psi(v)$ is an edge of $G$.
Let $u_{b}^{a} u_{d}^{c}$ be an edge of $H$ where $a, c \in\{1,2, \ldots, 2 m n\}$ and $b, d \in\{0,1$, $\ldots, n-1\}$. Then, $a=c$ and $d=b+1$.

If $a \in\{1,2, \ldots, m n\}$, then

$$
\psi\left(u_{b}^{a}\right) \psi\left(u_{d}^{c}\right)=\psi_{a}\left(u_{b}^{a}\right) \psi_{c}\left(u_{d}^{c}\right)=\left[v_{l}^{k}, v_{l+b}^{k}\right]\left[v_{l}^{k}, v_{l+b+1}^{k}\right]
$$

where $k=\left\lceil\frac{a}{n}\right\rceil$ and $l \equiv a(\bmod n)$.
Since $\left[v_{l}^{k}, v_{l+b}^{k}\right]\left[v_{l}^{k}, v_{l+b+1}^{k}\right]$ is an edge of $G$ in the $k^{t h}$ copy, $\psi\left(u_{b}^{a}\right) \psi\left(u_{d}^{c}\right)$ is an edge of $G$.

If $a \in\{m n+1, m n+2, \ldots, 2 m n\}$, then

$$
\psi\left(u_{b}^{a}\right) \psi\left(u_{d}^{c}\right)=\psi_{a}\left(u_{b}^{a}\right) \psi_{c}\left(u_{d}^{c}\right)=\left[v_{l+b}^{k}, v_{l}^{k}\right]\left[v_{l+b+1}^{k}, v_{l}^{k}\right]
$$

where $k=\left\lceil\frac{1+2 m n-a}{n}\right\rceil$ and $l \equiv 2 m n+1-a(\bmod n)$.
Since $\left[v_{l+b}^{k}, v_{l}^{k}\right]\left[v_{l+b+1}^{k}, v_{l}^{k}\right]$ is an edge of $G$ in the $k^{t h}$ copy, $\psi\left(u_{b}^{a}\right) \psi\left(u_{d}^{c}\right)$ is an edge of $G$.
Finally, we claim that the induced mapping $\bar{\psi}$ is bijective.
Let $u_{b}^{a} u_{d}^{c}$ and $u_{y}^{x} u_{s}^{r}$ be edges of $H$ such that

$$
\bar{\psi}\left(u_{b}^{a} u_{d}^{c}\right)=\bar{\psi}\left(u_{y}^{x} u_{s}^{r}\right)
$$

Then, $a=c, x=r, d=b+1, s=y+1$ and $a, x$ are both in $\{1,2, \ldots, m n\}$ or $\{m n+1, m n+2, \ldots, 2 m n\}$.

Suppose that $a, x$ are both in the set $\{1,2, \ldots, m n\}$. Then,

$$
\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b}^{k_{1}}\right]\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b+1}^{k_{1}}\right]=\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y}^{k_{2}}\right]\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y+1}^{k_{2}}\right]
$$

where $k_{1}=\left\lceil\frac{a}{n}\right\rceil, l_{1} \equiv a(\bmod n), k_{2}=\left\lceil\frac{x}{n}\right\rceil$ and $l_{2} \equiv x(\bmod n)$.
Since $\bar{\psi}\left(u_{b}^{a} u_{d}^{c}\right)$ and $\bar{\psi}\left(u_{y}^{x} u_{s}^{r}\right)$ are edges of $G, k_{1}=k_{2}$.
If $\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b}^{k_{1}}\right]=\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y+1}^{k_{2}}\right]$ and $\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b+1}^{k_{1}}\right]=\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y}^{k_{2}}\right]$, then $l_{1}=l_{2}$ and $b=y+1$ and $b+1=y$, which is a contradiction.

Therefore, $\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b}^{k_{1}}\right]=\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y}^{k_{2}}\right]$ and $\left[v_{l_{1}}^{k_{1}}, v_{l_{1}+b+1}^{k_{1}}\right]=\left[v_{l_{2}}^{k_{2}}, v_{l_{2}+y+1}^{k_{2}}\right]$. That is, $l_{1}=l_{2}, b=y$ and $d=s$. Then, $u_{b}^{a} u_{d}^{c}=u_{y}^{x} u_{s}^{r}$.

Suppose that $a, x$ are both in the set $\{m n+1, m n+2, \ldots, 2 m n\}$. Then,

$$
\left[v_{l_{1}+b}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]\left[v_{l_{1}+b+1}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]=\left[v_{l_{2}+y}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]\left[v_{l_{2}+y+1}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]
$$

where $k_{1}=\left\lceil\frac{1+2 m n-a}{n}\right\rceil, l_{1} \equiv 1+2 m n-a(\bmod n), k_{2}=\left\lceil\frac{1+2 m n-x}{n}\right\rceil$ and $l_{2} \equiv 1+2 m n-x(\bmod n)$.

Since $\bar{\psi}\left(u_{b}^{a} u_{d}^{c}\right)$ and $\bar{\psi}\left(u_{y}^{x} u_{s}^{r}\right)$ are edges of $G, k_{1}=k_{2}$.
If $\left[v_{l_{1}+b}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]=\left[v_{l_{2}+y+1}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]$ and $\left[v_{l_{1}+b+1}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]=\left[v_{l_{2}+y}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]$, then $l_{1}=l_{2}$ and $b=y+1$ and $y=b+1$, which is a contradiction.

Therefore, $\left[v_{l_{1}+b}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]=\left[v_{l_{2}+y}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]$ and $\left[v_{l_{1}+b+1}^{k_{1}}, v_{l_{1}}^{k_{1}}\right]=\left[v_{l_{2}+y+1}^{k_{2}}, v_{l_{2}}^{k_{2}}\right]$. That is, $l_{1}=l_{2}, b=y$, and $d=s$. Then, $u_{b}^{a} u_{d}^{c}=u_{y}^{x} u_{s}^{r}$.

Since $|E(H)|=|E(G)|, \bar{\psi}$ is surjective. Hence, $\bar{\psi}$ is bijective.
Therefore, $\psi$ is harmonious homomorphism of $H$ onto $G$.
Lemma 2.3. Let $H$ be the graph defined as in Lemma 2.2 and $t: E(H) \rightarrow$ $\left\{1,2, \ldots, 2 m n^{2}\right\}$ be defined by

$$
t\left(u_{j}^{i} u_{j+1}^{i}\right)= \begin{cases}2 j m n+i & \text { if } j \equiv 0(\bmod 2) \\ 1+2(j+1) m n-i & \text { if } j \equiv 1(\bmod 2)\end{cases}
$$

for $i=1,2, \ldots, 2 m n$ and $j=0,1, \ldots, n-1$.
Then, $t$ is injective. Moreover, the index-mapping $t^{*}$ of $t$ satisfies the following equation.

$$
t^{*}\left(u_{j}^{i}\right)= \begin{cases}4 j m n+1 & \text { if } j \neq 0 \text { and } n \equiv 0,1(\bmod 2) \\ 1+2 m n^{2} & \text { if } j=0 \text { and } n \equiv 0(\bmod 2) \\ 2 m n(n-1)+2 i & \text { if } j=0 \text { and } n \equiv 1(\bmod 2)\end{cases}
$$

Proof We claim that $t$ is injective. Let $u_{b}^{a} u_{d}^{c}$ and $u_{y}^{x} u_{s}^{r}$ be edges of $H$ such that

$$
t\left(u_{b}^{a} u_{d}^{c}\right)=t\left(u_{y}^{x} u_{s}^{r}\right)
$$

Then, $a=c, x=r, d=b+1$ and $s=y+1$.
If $b \equiv 0(\bmod 2)$ and $y \equiv 1(\bmod 2)$, then

$$
2 b m n+a=1+2(y+1) m n-x
$$

Hence, $2 b=2(y+1)$ and $1-x=a$. Then, $b=y+1$ and $x=1-a$. Since $a \in\{1,2, \ldots, 2 m n\}, x$ is not a positive integer, which is a contradiction.

If $b \equiv 1(\bmod 2)$ and $y \equiv 0(\bmod 2)$, then

$$
1+2(b+1) m n-a=2 y m n-x
$$

Hence, $2(b+1)=2 y$ and $1-x=a$. Then, $b=y-1$ and $x=1-a$. Since $a \in\{1,2, \ldots, 2 m n\}, x$ is not a positive integer, which is a contradiction.

Therefore, $b, y \equiv 0(\bmod 2)$ or $b, y \equiv 1(\bmod 2)$.
Suppose that $b, y \equiv 0(\bmod 2)$. Then, $2 b m n+a=2 y m n+x$, that is, $y=b$ and $a=x$. Hence, $d=s$. Then, $u_{b}^{a} u_{d}^{c}=u_{y}^{x} u_{s}^{r}$.

Suppose that $b, y \equiv 1(\bmod 2)$. Then, $1+2(b+1) m n-a=1+2(y+1) m n-x$, that is, $y=b$ and $a=x$. Hence, $d=s$. Then, $u_{b}^{a} u_{d}^{c}=u_{y}^{x} u_{s}^{r}$.

Next, we will show that

$$
t^{*}\left(u_{j}^{i}\right)= \begin{cases}4 j m n+1 & \text { if } j \neq 0 \text { and } n \equiv 0,1(\bmod 2) \\ 1+2 m n^{2} & \text { if } j=0 \text { and } n \equiv 0(\bmod 2) \\ 2 m n(n-1)+2 i & \text { if } j=0 \text { and } n \equiv 1(\bmod 2)\end{cases}
$$

For $j \neq 0, t^{*}\left(u_{j}^{i}\right)=t\left(u_{j}^{i} u_{j+1}^{i}\right)+t\left(u_{j-1}^{i} u_{j}^{i}\right)$.
If $n \equiv 0(\bmod 2)$, then

$$
\begin{aligned}
t^{*}\left(u_{j}^{i}\right) & =2 j(m n)+i+1+2(j-1+1) m n-i \\
& =4 j(m n)+1
\end{aligned}
$$

If $n \equiv 1(\bmod 2)$, then

$$
\begin{aligned}
t^{*}\left(u_{j}^{i}\right) & =1+2(j+1) m n-i+2(j-1) m n+i \\
& =4 j(m n)+1
\end{aligned}
$$

For $j=0$ and $n \equiv 0(\bmod 2)$,

$$
\begin{aligned}
t^{*}\left(u_{j}^{i}\right)=t^{*}\left(u_{0}^{i}\right) & =t\left(u_{0}^{i} u_{1}^{i}\right)+t\left(u_{n-1}^{i} u_{0}^{i}\right) \\
& =(0+i)+(1+2(n-1+1)) m n-i \\
& =1+2 n m^{2}
\end{aligned}
$$

For $j=0$ and $n \equiv 1(\bmod 2)$,

$$
\begin{aligned}
t^{*}\left(u_{j}^{i}\right)=t^{*}\left(u_{0}^{i}\right) & =t\left(u_{0}^{i} u_{1}^{i}\right)+t\left(u_{n-1}^{i} u_{0}^{i}\right) \\
& =(0+i)+(2(n-1)(m n))+i \\
& =2(m n)(n-1)+2 i
\end{aligned}
$$

This completes the proof.
Lemma 2.4. Let $G$ denote the graph $m\left(C_{n} \times C_{n}\right), \psi$ and $t$ be mappings defined as in Lemma 2.2 and Lemma 2.3, respectively. Let $\psi^{-1}(v)$ be the inverse image of $v$ under $\psi$. Then, for each $v \in V(G)$,

$$
\sum_{u \in \psi^{-1}(v)} t^{*}(u)=2+4 m n^{2} .
$$

Proof Let $v \in V(G)$.
Case (i) : $v$ is the vertex on the main diagonal. That is, $v$ is in the form $\left[v_{r}^{k}, v_{r}^{k}\right]$ for some $k \in\{1,2, \ldots, m\}$ and $r \in\{1,2, \ldots, n\}$. Then,

$$
\psi^{-1}\left(\left[v_{r}^{k}, v_{r}^{k}\right]\right)=\left\{u_{0}^{(k-1) n+r}, u_{0}^{2 m n-(k-1) n-(r-1)}\right\}
$$

If $n \equiv 0(\bmod 2)$, then

$$
\begin{aligned}
\sum_{u \in \psi^{-1}(v)} t^{*}(u) & =t^{*}\left(u_{0}^{(k-1) n+r}\right)+t^{*}\left(u_{0}^{2 m n-(k-1) n-(r-1)}\right) \\
& =\left(1+2 m n^{2}\right)+\left(1+2 m n^{2}\right) \\
& =2+4 m n^{2}
\end{aligned}
$$

If $n \equiv 1(\bmod 2)$, then

$$
\begin{aligned}
\sum_{u \in \psi^{-1}(v)} t^{*}(u)= & t^{*}\left(u_{0}^{(k-1) n+r}\right)+t^{*}\left(u_{0}^{2 m n-(k-1) n-(r-1)}\right) \\
= & 2(m n)(n-1)+2((k-1) n+r)+ \\
& 2(m n)(n-1)+2(2 m n-(k-1) n-(r-1)) \\
= & 2+4 m n^{2}
\end{aligned}
$$

Case (ii) : $v$ is the vertex above the main diagonal. That is, $v$ is in the form $\left[v_{r}^{k}, v_{r+s}^{k}\right]$ for some $k \in\{1,2, \ldots, m\}$ and $r, s \in\{1,2, \ldots, n\}$. Then,
$\psi^{-1}\left(\left[v_{r}^{k}, v_{r+s}^{k}\right]\right)=\left\{u_{s}^{(k-1) n+r}, u_{n-s}^{2 m n-(k-1) n-(r-1)-s}\right\}$

$$
\begin{aligned}
\sum_{u \in \psi^{-1}(v)} t^{*}(u) & =t^{*}\left(u_{s}^{(k-1) n+r}\right)+t^{*}\left(u_{n-s}^{2 m n-(k-1) n-(r-1)-s}\right) \\
& =(4 s m n+1)+(4(n-s)(m n)+1) \\
& =2+4 m n^{2}
\end{aligned}
$$

Case (iii) : $v$ is the vertex under the main diagonal. That is, $v$ is in the form $\left[v_{r+s}^{k}, v_{r}^{k}\right]$ for some $k \in\{1,2, \ldots, m\}$ and $r, s \in\{1,2, \ldots, n\}$. Then,

$$
\begin{aligned}
& \psi^{-1}\left(\left[v_{r+s}^{k}, v_{s}^{k}\right]\right)=\left\{u_{n-s}^{(k-1) n+r}, u_{s}^{2 m n-(k-1) n-(r-1)+s}\right\} \\
& \text { and } \\
& \sum_{u \in \psi^{-1}(v)} t^{*}(u)=t^{*}\left(u_{n-s}^{(k-1) n+r}\right)+t^{*}\left(u_{s}^{2 m n-(k-1) n-(r-1)+s}\right) \\
&=(4(n-s)(m n)+1)+4(s)(m n)+1 \\
&=2+4 m n^{2} .
\end{aligned}
$$

This completes the proof.
Theorem 2.5. The graph $m\left(C_{n} \times C_{n}\right)$ is supermagic for any integer $n \geq 3$ and $m \geq 2$.

Proof Let $G$ denote the graph $m\left(C_{n} \times C_{n}\right)$ and $G_{1}, G_{2}, \ldots, G_{2 m n}$ be subgraphs of $G$ defined as in Lemma 2.1. Then, we can see that $G_{1}, G_{2}, \ldots, G_{m n}$ are horizontal cycles of $G$ and $G_{m n+1}, G_{m n+2}, \ldots, G_{2 m n}$ are vertical cycles of $G$ and $G_{1}, G_{2}, \ldots, G_{2 m n}$ form a decomposition of $G$ into pairwise edge-disjoint cycles. For $i=1,2, \ldots, 2 m n$, let $H_{i}$ be a graph, and $\psi_{i}$ be a mapping defined as in Lemma 2.1. Let $H$ be a graph defined as in Lemma 2.2. Then, by Lemma 2.3, there is a harmonious homomorphism $\psi$ (defined as in the proof of Lemma 2.2) of $H$ onto $G$. Let $t: E(H) \rightarrow\left\{1,2, \ldots, 2 m n^{2}\right\}$ be a mapping as in Lemma 2.3. By Lemma 2.3, $t$ is injective and the index mapping $t^{*}$ satisfies

$$
t^{*}\left(u_{j}^{i}\right)= \begin{cases}4 j m n+1 & \text { if } j \neq 0 \text { and } n \equiv 0,1(\bmod 2) \\ 1+2 m n^{2} & \text { if } j=0 \text { and } n \equiv 0(\bmod 2) \\ 2 m n(n-1)+2 i & \text { if } j=0 \text { and } n \equiv 1(\bmod 2)\end{cases}
$$

By Lemma 2.4, $\sum_{u \in \psi^{-1}(v)} t^{*}(u)=2+4 m n^{2}$ for each $v \in V(G)$. Then, $[H, \psi, t]$ is a supermagic frame of $G$. By Proposition $1.2, G$ is supermagic.
Example 2.6. Figure 2 shows supermagic labeling of $2\left(C_{3} \times C_{3}\right)$.


Figure 2: The supermagic labeling of $2\left(C_{3} \times C_{3}\right)$ with $\lambda=74$.

## References

[1] J. Ivančo, On supermagic regular graphs, Mathematica Bohemica, 125 (2000), 99-114.
[2] J. Sedláček, On magic graphs, Math. Solovaca, 26 (1976), 329-335.
[3] B.M. Stewart, Magic graphs, Canad. J. Math., 18 (1966), 1031-1059.
[4] B.M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967), 427-438.
[5] S. Singhun, R. Boonklurb and C. Charnsamorn, Supermagic Labelings of the $n$ Copies of the Möbius Ladders, The Proceedings of $19^{t h}$ Annual Meeting in Mathematics (AMM2014), 284-292.


[^0]:    Key words: supermagic frame; Cartesian product of cycles. 2010 AMS Mathematics Subject Classification: 05C78
    ${ }^{1}$ Corresponding author

