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A hypergraph H = (V,E) cousists of a nonempty finite set V of vertices with a
family € of subsets of V', called (hyper)edges. If each edge has size k, we say that
H is a k-uniform hypergraph. A Hamiltonian decomposition of a hypergraph
is a partition of the set of edges into mutually disjoint Hamiltonian cycles. A
(tight) Hamiltonian cycle in a k-uniform hypergraph is a cyclic ordering of its
vertices such that each consecutive k-tuple of vertices is an edge. This definition
was introduced by Katona and Kierstead [4], and we will use this definition of
Hamiltonian cycle for this article. The older definition of a Hamiltonian cycle
was given by Berge [2]. The Hamiltonian decomposition of complete 3-uniform
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hypergraphs was completely investigated in 1994 by Verrall [8] using Berge’s
definition. In 2000s, Bailey and Stevens [1], also Meszka and Rosa [7], Xu
and Wang [10], decomposed complete k-uniform hypergraphs using Katona-
Kierstead’s definition and this decomposition problem is still not completed
and involving the aids of computer programming.

Our motivation comes from the problem of decomposing complete bipartite
3-uniform hypergraphs. This was first introduced by Jirimutu and Wang [3]
and was completed later by Xu and Wang [10]. This leads us to extend “bipar-
tite” to “tripartite” and define a complete tripartite 3-uniform hypergraphs as
follows.

Definition 1. The complete tripartite 3-uniform hypergraph has the vertex set
V partitioned into three subsets Vy, V1 and V2 and the edge set £ such that
E={e:eCV,]e=3and |enV;| <3 foralliec {0,1,2}}, and denoted by
K m when [Vo| = [Vi| = [Va| = m.

For convenience, W, W and W are used to denote the vertices of K,(yi)mm
with

Vo=W=1{0,1,...,m—1},
Vi=W={0,1,...,m — 1},
ngﬁz{ai.. ,m—1}.

Due to Definition 1, we classify edges of K,(S,)mm into two types:

Type 1 edges are of the form {a, b, ¢} where a,b,c € Z,, ; and

Type 2 edges are of the form {x,z’,y} in which x and 2’ are in the same
partite set, and y is in a different partite set. Note that there are six forms
of {z,2',y}: {a,d’,b},{a,a’,C}, {b,b,a},{b,0,c}, {¢ c,a} and {¢, ¢/, b} where
a,a’ b/, c,d € Zp, and a #a’',b£V,c#.

In 2013, Kuhl and Schroeder [5] published their results on Hamiltonian
decompositions of complete k-uniform k-partite hypergraphs and completely
found solutions for k = 3. A complete 3-uniform 3-partite hypergraph defined
in [5] by Kuhl and Schroeder consists of all Type 1 edges but no Type 2 edges,
so their hypergraph is a subhypergraph of our K,(S,)mm given by Definition 1.
In some cases, we can use some of their results, that is h(x,y) in Section 2, to
be a part of our Hamiltonian decompositions of K,(yi)mm.

If K,gf)mm has a Hamiltonian decomposition, then the number of edges of
K. m which is equal to (*) = 3("%") must be divisible by 3m. Thus, the
necessary condition is 3 | . The purpose of this paper is to show that if 3 | m,
then K,(yi)mm has a Hamiltonian decomposition. The proof will be separated
into two cases, m = 0 (mod 6) and m = 3 (mod 6) and a special case m = 3. In
Section 2, we classify four forms of Hamiltonian cycles of Kf(v?,)m,m- These forms
will be combined and the combination becomes a Hamiltonian decomposition
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of K,(yi)mm in Section 3. Finally, conclusion and discussion will be given in
Section 4.

2 Hamiltonian Cycle Constructions

In this section, we provide four forms of a Hamiltonian cycle in K,(ff?mm to be
used through out this article: C(4, j), C'(,7), (Cam (i) and C,(3)) and h(z,y).
First, let us define a useful notation as follows.

Definition 2. For z,y € Zy,, ||z —y|| = min{(z—y)(mod m), (y—z)(mod m)}.
2.1 C(i, )
For m =0 (mod 3), define a Hamiltonian cycle of K,g?mm C(i,7) by

C(i, j) =
(CL()+i,b0—|—j,Co—|—’i—|—j,Cl+’i+j,a1—|—i,b1—|—j,b2—|—j,(32—|—i—|—j,a2+i,

as+1i,b3+j,c3+i+j,cat+i+j,a4+0,bg+ 5,05+ 5,5 +174 7, a5+ 1,

---;am—B+i;bm—3+jacm—3+i+jacm—2+i+jaam—2+i;bm—2+j;

bWL—l +jaCTVL—1 +i+jaa‘m—1+i)a

where 1,] € Zm, {CL(), al, .. .,am_l} = Zm, {b(), b1,..., bm—l} = Zum, and
{CO, Cly.--, Cm—l} = Zm.

Lemma 1. Let m =0 (mod 3). Suppose C(0,0) has properties that ci, — by, =
e — by for all kK € Zp, with k # K, and ||ask—1 — ask|| # |lasg—1 —

azk|]s [|b3ks1 — batal| # [|bar+1 — barrv2l|, |lear — cary1l| # |[cskr — capr 11| for
all k, k" € {0,1,...,% — 1} with k # k'. Then {C(i,j) : i,j € Zn} is a set of

m? disjoint Hamiltonian cycles of K,(yi)mm.

Proof. For edges of the form {a,b,¢}, we will show that if {ar + i,bx + J,
ck+i+i}={ap +i, 0 +j e +7 + 7}, theni =4, j=7 and k= k.

Suppose that {ar + i,bx + j,c +i+ 75} = {ap + ¢, 0 + 7, cr + 7 + j'}
for some ,4, 3,5, k, k' € Zy,. Then

ar+i=ap +1i (mod m),
b, +7=0by+74 (modm),
ck+it+j=cp+i +5  (mod m).

Since ¢, — by, = cxr — bgr, we get ¢ = 4’ and then a, = ag,. Then j = j7’. Hence,
1=4,7=7 and k=F'.
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For edges of the form {a,a’,b}, we will show that if {asr_1 + i,a3x +
i, bsg + ]} = {agkf_l + ' asp + 4, b3k + j/}, theni =14, j=7 and k =Fk'.
Suppose that {asg—1+ i, asg + 4, b3k + j} = {agrr—1 + ', asp + ', bapr + 5’}

for some i,7', j, j' € Zy, and k, k" € {0,1,..., 7% —1}. Then

azg_1+1i=asp_1+1i (modm),
ask +1i = asp +1 (mod m),
bap + 7 =bsrr +7 (mod m),

or
A ./
asg—1+1=azp +47  (mod m),

ask +1i =ask—1 +4  (mod m),

bk +J =bsir +7 (mod m).
Since ||ask—1 — ask|| # ||asg—1 — askr|| for all k # k' but azgp—1 — asp =
ask—1 —ask (mod m) or agi_1—aszg = askr —ask—1 (mod m), we have k = k'.
Then ¢ =4’ and j = j'. _ _

For other edge-forms: {a,a’, ¢}, {b,¥/,¢}, {b,¥',a},{¢ ¢, a},{c c/,b}, we can
prove the same result in a similar manner. Thus, all 3m x m? edges of
{C(i,7) @ i,j € Zpm} are distinct and {C(i,5) : i,j € Zm} is a set of m?
disjoint Hamiltonian cycles of Kﬁ)m,m. O

Lemma 2. Let m =0 (mod 3). Let ¢; = b; = x; and a; = x4 for alli € Zyy,
where

- 3k/2 if k is even,
B + of k 1s odd,
FTV@k+1)/2  ifk s odd
T3py1 = 3k + 1,
" _ ) Im/2] +3k/2 if k is even,
T\ /2] + Bk +1)/2  ifk is odd,

and k € {0,1,...,% —1}. Then C(0,0) has properties as in Lemma 1. More-
over, ||lx — 2'|| =1 or 2 (mod 3) for all Type 2 edges of the form {z,2’,y} in
C(0,0).

Proof. By this setting, we have ¢, — by = 0 = ¢ — by for all k, k' € Z,, with
k#Fk. For ke {0,1,...,% — 1},

la =gl = lls — = = (3k+2)/2 if k is even,
SRt TR TSR TR T (3K 1) /2 if K is odd,
" , =1 i [m/2] — (3k+2)/2 if k is even,
— = ||T — X -
3k+1 — D3k+2 3k+1 — T3k+2 (/2] — (3k +1)/2 if k is odd,
|| = I (3k+2)/2 if k is even,
c3k — C =||T3k — T =
3k — C3k+1 3k T L3k+1 (3k +1)/2 if k is odd.
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Thus, ||azk—1 — ask|| # ||asr—1 — azrr|], [|b3r1 — b3k2|| 7 ||b3kr+1 — bswrt2]l,
||03k _03k+1|| 75 ||(33k’ —Cgkf+1|| for all k, k' e {O, 1,..., % - 1} with k 75 k' and
[l —2']] =1 or 2 (mod 3) for all Type 2 edges of the form {x,z’, y}. O

Example 1. Let m = 6. The cycle C(0,0) in Lemma 2 is

ol
[Nl
il

C(O’O) = (1’6’6’T)3)T)§) )2)4)§) )5)1)5535 O)'

2.2 (C'(1,9)
For odd integer m, define a Hamiltonian cycle of K,(yi)m,m, C'(i,j) by
C'(i, ) =

(ap+j,a1+ j,bo+i+j,b1+i+j,co+ 20+ j,c1 + 2+ j,

as +j,a3+ 7, bo+i4+j,bs+i+j,co+2i+j,c3+2i+ 4, ...,

Am—3+ 7 @Gm-2+ 5, 0m-3+1+7,bm_2+1+7,cm—3+20+ 7, Cm_2 + 20 + 7,
Am—1 +jabm—1+i+j501n—1+2i+j)a

where i,] € Zm, {ao,al,...,am_l} = Zm, {bo,bl,...,bm_l} = Zum, and
{CO, Cly.--, Cm—l} = Zm.

A similar argument as in the proof of Lemma 1 can be used to prove
Lemma 3.

Lemma 3. For odd integer m, suppose C'(0,0) has properties that ag+cm—1 #
Am—1+ cm—2 (mod m) and ||agkt1 — azkl|| # ||azer+1 — azer[|, [[b2kr1 — bar|| #
||b2kf+1—b2kf||, ||02k+1—02k|| 75 ||02kr+1 —CriH fOT allk‘, k‘/ S {0, 1, ey mT_l—l}
with k # k'. Then {C"(i,j) : i,j € Zm} is a set of m? disjoint Hamiltonian
cycles of K,(yi)mm.

Lemma 4. For odd integer m, let a; = b; = x; for all i € Zp,, ¢m—3 = T,
Cm—2 = X1, Cm—1 = Tm—1 and ¢; = Tiya for all i € {0,1,...,m — 4}, where
Tme1 = Lixop = m — k,xok11 = k+2, and k € {0,1,...,mT_1 —1}. Then
C’(0,0) has properties as in Lemma 8. Moreover, by,—1—am—1 = 0,by—1—ag =
1; Cm—1 — bm—l = O; Cm—2 — bm—l =1.

Proof. By this setting, we have ag + ¢;—1 = 1 and ap—1 + ¢—2 = 3.
Fork;E{O,l,...,mT_l—l},
llazk+1 — a2kl|] = ||bakt+1 — bak|| = ||T2r41 — w2k

=min{2k +2,m — (2k +2)}.

For k€ {0,1,..., ™1 — 2},

l[car+1 — cokll = ||T2k+3 — T2r42]|
=min{2k +4,m — (2k+4)}
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and ¢_9 — Cp_3 = T1 — To = 2.

Since m is odd, {||zopt1—22k|| 1 k € {0,1,..., 22 —1}} = {1,2,..., -1}
Thus, ag + ¢m-1 # @m-1 + ¢m—2 (mod m) and ||asg+1 — aok|| # ||ask+1 —
azp ], |[bar+1 — barl| # [|baw1 — bawr||, |[eznr1 — conl| # [|earr41 — corr|| for all
kK € {0,1,.. ., =L 1} with k £ K. -

Example 2. Let m = 9. The cycle C’(0,0) in Lemma 4 is

C/(O’ O) = (O’ 2)6) 5) §) §) 8) 3)§) g) ?) Z) 7) 4)7) 1) E) g) 6) 5)6) 5) 6) 55 1’T’ T)'

2.3 Cyn(i) and C}, (1)

First, consider the case where m is even. We introduce a technique different
from those of 2.1 and 2.2 to construct a family of Hamiltonian cycles which
contain no edges of the form {a,b,¢}. This technique requires the knowledge
of 1-factors and orthogonal quasigroups.

Definition 3. Let G be a graph. A I-factor of G is a subgraph of G in which
every vertex has degree 1. A I-factorization of G is a partition of an edge set
of GG into 1-factors.

Definition 4. (Z,, o) is a quasigroup if
(1)ioj €Z, foralli,j € Z,, and
(2)ioj#ioj andioj#4 ojforalli,j€Z, withi £, j#j.
Note that the multiplication table of (Z,, o) is a Latin square.
Definition 5. (Z,,01) and (Z,, 02) are orthogonal if for (i,5) # (i’,j') € Z2,
101§ =1 014 impliesiogj # i og 7.
Lemma 5 ([6]). There exists a pair of mutually orthogonal Latin squares of

order n for every n # 2 or 6.

For even integer m, let M = {zox1, 23, T4T5,. .., Tm—2Tm—1} be a 1-
factor of a graph with Z,, as a vertex set. By Lemma 5, there exists a pair
of orthogonal quasigroups, (Zy,/2,01) and (Z,,/s,02) for m # 4 or 12. For

i@ € Ly, /2, define Hamiltonian cycles of K,(yi)mm, C (i) and C),(3), by

Ch (i) = (zo, 21, T2(i010)s L2(i010)+15 L2(i020) 7 L2(3020)+1>

T2, T3, T2(i011)s T2(i011)+15 L2(i021)s L2(i0al)+1s - - -5

Tm—2,Lm—1, xQ(iol m2—2), xQ(iol 'm,2—2 Y1 xQ(iOQ m2—2), xQ(iOQ 'm,2—2 )+1)

and

! .
Crn (i) = (21, zo, T2(i010)+15 L2(i010)5 L2(i020)+15 L2(i020)s

L3, T2, L2(i011)4+15 L2(i011)s L2(i021)+15 L2(i021)5 « - -

Tm—1yLm—2, xQ(iol m2—2 Y1 xQ(iol m2—2), xQ(iOQ 'm,2—2 Y1 xQ(iOQ 'm,2—2 ))
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Example 3. Let m = 6. The multiplication tables of orthogonal quasigroups
(Z3,01) and (Zg, 02) are as follows.

o1 [0 1 2 o]0 1 2

0j]0 1 2 00 1 2

1(1 2 0 112 0 1

212 01 211 2 0

Let M = {zox1, xows, v4x5} = {03,14,25}. Then

CJ\/I(O):(O’B’G,E,ﬁ,g,1,4,T,Z,T,Z,2,555555553),
CJ\/I(l):(O’B’T,Z,E,g,1,45555,65552,5,6,§,T,Z),
CJ\/I(2):(0’3’555,T,Z,1,4,6,§,§,g,2,5,T,Z,6,§),
CJ/\/I(O):(3,0,§,6,§,6,4,1,1,T,Z,T,5,2,5,§,g,§),
CJ/\/I(l):(S’O’Z,T,g,§,4,1,5555556,5,2,§,6,Z,T),
CJ/\/I(2):(3’0’5’§,Z,T,4,1,§,6535555,2,Z,T,§,6)'

For m = 4 and 12, there are no orthogonal quasigroups (Z,,/2,01) and
(Zinj2,02), therefore, Cpr(i) and €, (i) will be constructed by the following
way.

For m =4, let M = {xoz1,z2235}. Then

CJ\/I(O) = (xO;xL%; x_la %a x_la .132,333,.’13_2, .’13_3, x_an:l})a
CJ\/I(l) - (xO)xljx_B) x_2) x_gj x_2) x2)x3)x_1) %) x_lj %))
/ [ — [ —
CM(O) = (xlaxo,$1,$0,$2,$3,$3,$2,$3,$2,xo,xl),
/ [ — [ —
CM(l) = (xlaxo,$2,$3,$1,$0,$3,$2,$0,$1,$3,$2)-

For m = 12, let (Zy,/4,03) and (Zy, 4, 04) be orthogonal quasigroups. For
i@ € L2, define C(i) and C) (i) by

Cm(i) = (0, 71, bo(7), b1(i), co(i), c1(4),
T2, T3, bQ(i), bg(i), CQ(i), Cg(i), ceey

Tm—2s LTm—1, bm—Q(i); bm—l(i); Cm—Q(i); Cm—l(i))

and

Ch (@) = (21, w0, by (8), b1 (4), cg(i), €1 (3),
x3, T2, b/Q(Z)a bé(z)a C/Q(Z)a C{}(Z)a )

Tm—1; Lm—2, b;n—Q(i)a b;n—l(i)a C;’I’L—Q(i)) C;n—l(i))a
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where for j, k€ {0,1,..., % — 1},
bar(j) = b yor1(J + F) = 0o g1 (§) = Vim0 (G + F) = Zagjogn).
car(f) = ez ranr1(f + F) = opp1 (U + F) = iz y0i(F) = 22(j0.8),
bar+1(5) = bz oG + F) = boi(4) = /%+2k+1(] 1) = T2(josk)+1,
cok+1(f) = czion(f+ F) = o + F) = 2141 (F) = Tagiour)+1,
bakt1(J + F) = byor(§) = 0o + ) = bz o511 () = Tz 2ok
cor+1(d + ) = C%+2k(j) = chr(j) = Cpjopr (G + T)= Tm42(josk)s
bor(J + ) = bmyok11(j) = g1 (J + F) = U 0x (4) = Tz 12005k 415
co(f + ) = cziont1()) = i1 (4) = im0+ F) = Tz s2(joak)+1-

Lemma 6. For even integer m, given a I1-factor M of a graph with Z,, as a
vertex set, {Car(i), Cyy (i) 20 € Zy,j2} is a set of m disjoint Hamiltonian cycles
of Km,m.-

Proof. Let M = {zozx1, 223,. .., Tm—2Tm—1}. Consider the case where m ¢
{4,12}. For edges of the form {a,a’,b}, we will show that if {zok, Toxt1,
Ta(ioik) 45} = \%2ks Tak/41, Ta(iror k)14 ) then ¢ =i, j = j" and k = k',

Suppose that {Zok, Tokt1, Ta(iork) 15} = 1L2k" T2k'+1, T2(i'0y k') 14/} fOT some
i1k, k" € L2 and j,j" € {0,1}. Then

2% = 2k,
2(’L o1 k‘) +] = 2(i/ o1 k'/) —|—j/.

That is k = k', j = j" and i o1 k = i’ o1 k. Since (Z,,/2,01) is a quasigroup,
=1

The proof for edges of the form {a,a’, ¢} can be done in the same way.

For edges of the form {b,¥,¢}, we will show that if {xg(wlk),xg(wlk)ﬂ,
x2(102k)+3} {xQ(’L fo1k)s L2(i'0o1 k)15 L2(i’0xk’)+5’ } then i =4’ ] = ] and
k=K.

Suppose that {xQ(iolk); T2(io1k)+1> $2(102k)+j} = {552(1'/011«), T2(i’o1 k') 415
To(i0ak/) 4yt for some 4,7, k, k" € Zy, /o and j, j' € {0,1}. Then

iolk}:i/ol k'/,
iOQk:i/OQk/,
i=7.
Since (Zy,/2,01) and (Zy, 2, 02) are orthogonal quasigroups, we have i = i’ and
k=Fk. _ _
The proof for edges of the forms {b,¥',a}, {Z, ¢, a} and {¢,’,b} can also be
done in the same way. Thus, all 3m x m edges of {Cas(i),Cy; (i) : @ € Zpy)2}
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are distinct and {Car (i), C;(7) : @ € Zp, 2} is a set of m disjoint Hamiltonian
cycles of K,(yi)mm.

For m = 4, it is easy to see that Cps(0), Cp(1), C},(0) and C},(1) are
mutually disjoint Hamiltonian cycles of K,(yi)mm.

For m = 12, consider edges of the form {a, a’,E}: er = {%ok, Tok+1, Ti}
and ey = {x%+2k, x%+2k+1,x_¢}, where k € Zy,/4 and i@ € Z,,. Note that
{2(josk),2(jos k) + 1,5 +2(jozk), T +2(jozk)+1:5,k € ZLpss} = Zm by
means of a quasigroup.

If i = 2(j o3 k), then ey € Cp(j) and ez € C), (5 + 5).

If i = 2(j o3 k) + 1, then e; € C',(j) and ez € Crnr(j + G).

If i = B +2(j o3 k), then e; € C}(j + §) and ez € Cpr(j).

If i =% 4+2(jozk) +1, then e; € Coy(j + 5) and ez € Cy,(j).

Thus, each edge of the form {a,a’,b} is in a unique Hamiltonian cycle. Also
use this way to show the same result for edges of the form {a,da’,c}.

For edges of the form {b,V',2}: {Ta(josk)s T2(josk) 11> Ti} (OF {Tm 12(j05h)
T 12(josk) 115 Ti}), we will show that if {T2(o,x), Ta(jesk)41s Ti} = {T2( 705k
Ta(joah )11 Tir}, then i = 7/, j = j/ and k = k.

Suppose that {xg(josk), T2(jozk)+1, .73:1} = {xg(j/osk/), T2(j'03k")+15 .73:1/} for some
3,7 k. k' € Ly and i € Zyy,. Then

josk=j o3k,
i=1.
There are four possibilities for i: 2(j o4 k), 2(j o4 k) +1, B + 2(j o4 k) or
B+ 2(jog k) + 1 (also for i': 2(j' og k'), 2(j" oa k') + 1, B 4+ 2(j' 04 k) or

B +2(j' o4 k') + 1). Since i =7, in any cases, we have j oy k = j' o4 k’. The
orthogonality of (Zy,/4,03) and (Z, /4, 04) implies j = j" and k = k'.

Edges of the forms {b, ¥/, a}, {¢, ¢, a} and {¢, ¢/, b} can be showed in a similar
manner. This completes the proof. |

2.4 h(z,y)

For (z,y) € Z2,, define a Hamiltonian cycle of K\ m.m, h(z,y) by

hz,y) =0, Z,z+ym—1,m—-1+z,m—-1+x+y,....,L,1+2,1+x+y).

Kuhl and Schroeder [5] define a difference type of each edge of the form
{a,b,¢} to be (b — a,c —b) in modulo m. There are m edges with a specific
difference type. h(x,y) has 3m edges and contains all edges of difference types
(z,y), (x + 1,y) and (z,y+ 1).

Note that all m? edges in K\ m are classified into m?2 distinct difference
types.
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Lemma 7 ([5]). Let m = 0 (mod 3) and Ay = {(z,y) € Z2, : x —y = 0
(mod 3)}. Then {h(z,y) : (x,y) € Ao} is a set of m?/3 disjoint Hamiltonian
cycles of Kw§7m7m.

3 Main Results

Let H be a subhypergraph of K,(yi)mm. Let ny(H) and no(H) denote the
number of Type 1 and Type 2 edges in H, respectively. Each Hamiltonian cycle
in Section 2, C(3,7), C'(i,7), (Cam(3) and C4, (7)) and h(z,y) can be regarded
as a subhypergraph of K,gf?mm We count the number of Type 1 edges and
Type 2 edges for each of the four forms of Hamiltonian cycle in Section 2 and
overall edges in K,(ff?mm as shown in the following table.

H ny(H) no(H) condition
K,(y??mm m3 | 3m3 — 3m? -
C(i,7) m 2m m =0 (mod 3)
C'(i,9) 3 3m —3 m is odd
Cn(3), Chy(3) 0 3m m is even
h(z,y) 3m 0 -

Let C(0,0) be a Hamiltonian cycle in Lemma 2 and C’(0,0) be a Hamilto-
nian cycle in Lemma 4. We obtain several results as follows.

3.1 m=3

For m = 3, ni(K{);) = 27 and na(KS3 ;) = 54. The sets of Hamilto-
nian cycles C; = {C(i,j) : 4,j € Zw} and Co = {C'(:,7) : i,j € Zm}
both have m? Hamiltonian cycles. We calculate the number of edges in Cy,
Yhee, M(H) =m? = 2T and Y ;o na(H) = 2m® = 54, and the number of
edges in Ca, Y yee, ni(H) = 3m? =27 and ) 0. n2(H) = 3m?® — 3m? = 54.
By Lemma 1 and Lemma 3, we can conclude that C; and Cy are both Hamil-
tonian decompositions of Kéggg

Example 4. Let C(0,0) = (0,0,0,1,1,T,2,2,2). Then the Hamiltonian de-
composition C; of K§3§3 obtained from Section 2.1 is shown below.

€(0,0) = (0,0,0,1,1,1,2,2,2),
c(0,1) = (0,1,1,2,1,2,0,0,2),
C(0,2) = (0,2,2,0,1,0,1,1,2),
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C(1,0) = (1,0,1,2,2,1,2,0,0),
Cc(1,1)=(1,1,2,0,2,2,0,1,0),
C(1,2) = (1,2,0,1,2,0,1,2,0),
C(2,0)=(2,0,2,0,0,1,2,1,1),
Cc(2,1)=(2,1,0,1,0,2,0,2,1),
C(2,2) = (2,2,1,2,0,0,1,0,1).

3.2 m=0 (mod 6)

For m = 0 (mod 6), we have two families H; and Hy of Hamiltonian cycles
forming two Hamiltonian decompositions of K,(yi)mm. First,

H1={C(i,) :4,) € Zim} U{Cn (i), Cy(i) 1 i € Zypj2, M € F},

where F is a 1-factorization of a graph G with V(G) = Z,, = [0]U[1]U[2] and
E(G) = {uv : u,v € Zp,|lu—v|| =0 (mod 3)}. G is isomorphic to 3K, /3,
three copies of K,, /3. Each component consists of vertices in the same class of
modulo 3. Next,

Ho = {h(x,y) : (x,y) S Ao} U {C]V[(i), CJ/V[(’L) 11 € Zm/g, M € .7:2},

where F; is a 1-factorization of K, with Z,, as a vertex set and Ag = {(z,y) €
Z2, :x—y=0 (mod 3)}.

Since Kay, is factorizable into 2n—1 1-factors [9], we have |F1| = m/3—1 and
| F2| = m — 1. Then we calculate the number of edges in H1, > ycqy, n1(H) =
m? xm =m? and Y yopy n2(H) = m?® x 2m + m(m/3 — 1) x 3m = 3m® —
3m? and the number of edges in Ha, Y- yepy, m1(H) = m?/3 x 3m = m* and
e, M2(H) = m(m — 1) x 3m = 3m* — 3m?>.

We make some observations.

1. For any two 1-factors M and M’ in K,,, we see that if M and M’ are
disjoint, then Ci(i) and Ciy (i) are also disjoint for all i € Zy, o.

2. For all Type 2 edges {z,2,y} in {C(:,7) : 4, € Zm}, ||z —2'|| =1 or 2
(mod 3).

3. For all Type 2 edges {z,2',y} in {Ca(2),CY; (i) : @ € Zpyyo, M € Fi1},
[lx —2|]| =0 (mod 3).

4. {h(z,y) : (x,y) € Ap} contains only Type 1 edges.
5. {Cn (1), Cy (@) 2 i € Zy,j2, M € F2} contains only Type 2 edges.

By these observations, Lemma 1, Lemma 6 and Lemma 7, we see that H; and
Ho are both Hamiltonian decompositions of K,g?mm where m =0 (mod 6).



R. BOONKLURB, S. SINGHUN AND S. TERMTANASOMBAT 59

Example 5. For m = 6, the Hamiltonian decomposition H; consists of C(%, j),
where 4, j € Zg with C(0,0) in Example 1 and Cp(7), C), (i) where i € Zs
and M = {03,14,25} in Example 3. The Hamiltonian decomposition Ho
consists of {h(z,y) : (z,y) € Ao} and Cup (i), Cy, (i) where i € Zs and
M € {{01,25,34},{02, 31,45}, {03,42, 51}, {04, 53, 12}, {05, 14,23} }..

3.3 m =3 (mod 6)
For m = 3 (mod 6), let

Hs = {C"(i,5) 4,5 € Zm} U{h(z,y) : (z,y) € Ao, # y}

where Ag = {(z,y) € Z2, : x —y = 0 (mod 3)}. We calculate the num-
ber of edges in Ha, Y-y, ni(H) = m? x 34 (m?/3 —m) x 3m = m® and
e, n2(H) =m? x (3m — 3) = 3m® — 3m?.

To show that H3 is a Hamiltonian decomposition of K,(yi)mm, we must show
that {C'(4,J) : i,j € Z,} contains all edges of difference types (z,y), (x+1,y),
and (z,y + 1) for all z,y € Z,, with z = y.

Three edges of the form {a, b, ¢} in C'(4, ) for each i, j € Z,, have difference
types

(bm—l —Qm—1+ i; Cm—2 — bm—l + Z) - ('L; 1+ 1)

for the edge {am—1+ J,bm—-1+1+J,cm—2+ 20+ j},

(bm—l — Qm—1 + i; Cm—1 — bm—l + Z) = (Za Z)

for the edge {am—1 + j,bm—1+ i+ j,cm—1 ++2i + j},
(bm—l —ap+ i; Cm—1 — bm—l + Z) = (Z + 1) Z)

for the edge {ao + j,bm—1 +7 +j,cm—1 + 20 + j}.

Since each i,j corresponds to m different values of Z,, {C'(i,5) : i,j € Zm}
contains all edges of difference type (4,%), (i + 1,¢) and (4,7 4+ 1) as desired.

Thus, H3 is a Hamiltonian decompositions of K,g?mm where m = 3 (mod 6).
The following theorem concludes all the results.

Theorem 1. K,(y??mm is decomposable into Hamiltonian cycles if and only if
3| m.

4 Discussion

If 3 4 m, it is reasonable to consider a Hamiltonian decomposition of K,(yi)mm —
I where I is a 1-factor of K,(yi)mm. When m is even, m # 4 and 3 { m,

K,(yi)mm — I has a Hamiltonian decomposition by a combination of Hamiltonian
cycles h(z,y) retrieved from [5] and Cps (i), C),(i). Thus, the case of m is
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odd with 3 + m and the case of m = 4 are still open for investigating the

existence of Hamiltonian decomposition of K,gf)mm — I where K,gf)mm is given
by Definition 1.
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