# HAMILTONIAN DECOMPOSITION OF COMPLETE TRIPARTITE 3-UNIFORM HYPERGRAPHS 

Ratinan Boonklurb ${ }^{1}$ Sirirat Singhun ${ }^{2}$<br>and<br>Sansanee Termtanasombat ${ }^{3}$<br>1,3 Department of Mathematics and Computer Science Chulqlongkorn University, Ba甘gkok, Thailand, 10330<br>e-mail: ${ }^{1}$ ratinan.b@chula.ac.th sansanee.term@gmail.com<br>${ }^{2}$ Department of Mathematics,<br>Ramkhamhaeng University, Bangkok, Thailand, 10240<br>e-mail: sin_sirirat@ru.ac.th,


#### Abstract

With our definition for complete tripartite 3-uniform hypergraphs which contain two types of edges, we show that complete tripartite 3uniform hypergraphs with partite sets of equal size $K_{m, m, m}^{(3)}$ is decomposable into (tight) Hamiltonian cycles if and only if $3 \mid \mathrm{m}$.


## 1 Introduction

A hypergraph $\mathcal{H}=(V, \mathcal{E})$ consists of a nonempty finite set $V$ of vertices with a family $\mathcal{E}$ of subsets of $V$, called (hyper)edges. If each edge has size $k$, we say that $\mathcal{H}$ is a $k$-uniform hypergraph. A Hamiltonian decomposition of a hypergraph is a partition of the set of edges into mutually disjoint Hamiltonian cycles. A (tight) Hamiltonian cycle in a $k$-uniform hypergraph is a cyclic ordering of its vertices such that each consecutive $k$-tuple of vertices is an edge. This definition was introduced by Katona and Kierstead [4], and we will use this definition of Hamiltonian cycle for this article. The older definition of a Hamiltonian cycle was given by Berge [2]. The Hamiltonian decomposition of complete 3-uniform

Key words: Hamiltonian decomposition, complete tripartite hypergraph
2010 AMS Mathematics Subject Classification: 05C65
${ }^{3}$ Corresponding author
hypergraphs was completely investigated in 1994 by Verrall [8] using Berge's definition. In 2000s, Bailey and Stevens [1], also Meszka and Rosa [7], Xu and Wang [10], decomposed complete $k$-uniform hypergraphs using KatonaKierstead's definition and this decomposition problem is still not completed and involving the aids of computer programming.

Our motivation comes from the problem of decomposing complete bipartite 3 -uniform hypergraphs. This was first introduced by Jirimutu and Wang [3] and was completed later by Xu and Wang [10]. This leads us to extend "bipartite" to "tripartite" and define a complete tripartite 3-uniform hypergraphs as follows.

Definition 1. The complete tripartite 3-uniform hypergraph has the vertex set $V$ partitioned into three subsets $V_{0}, V_{1}$ and $V_{2}$ and the edge set $\mathcal{E}$ such that $\mathcal{E}=\left\{e: e \subseteq V,|e|=3\right.$ and $\left|e \cap V_{i}\right|<3$ for all $\left.i \in\{0,1,2\}\right\}$, and denoted by $K_{m, m, m}^{(3)}$ when $\left|V_{0}\right|=\left|V_{1}\right|=\left|V_{2}\right|=m$.

For convenience, $W, \bar{W}$ and $\overline{\bar{W}}$ are used to denote the vertices of $K_{m, m, m}^{(3)}$ with

$$
\begin{aligned}
& V_{0}=W=\{0,1, \ldots, m-1\}, \\
& V_{1}=\bar{W}=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\} \\
& V_{2}=\overline{\bar{W}}=\{\overline{\overline{0}}, \overline{\overline{1}}, \ldots, \overline{\overline{m-1}}\} .
\end{aligned}
$$

Due to Definition 1, we classify edges of $K_{m, m, m}^{(3)}$ into two types:
Type 1 edges are of the form $\{a, \bar{b}, \overline{\bar{c}}\}$ where $a, b, c \in \mathbb{Z}_{m}$; and
Type 2 edges are of the form $\left\{x, x^{\prime}, y\right\}$ in which $x$ and $x^{\prime}$ are in the same partite set, and $y$ is in a different partite set. Note that there are six forms of $\left\{x, x^{\prime}, y\right\}:\left\{a, a^{\prime}, \bar{b}\right\},\left\{a, a^{\prime}, \overline{\bar{c}}\right\},\left\{\bar{b}, \overline{b^{\prime}}, a\right\},\left\{\bar{b}, \overline{b^{\prime}}, \overline{\bar{c}}\right\},\left\{\overline{\bar{c}}, \overline{\overline{c^{\prime}}}, a\right\}$ and $\left\{\overline{\bar{c}}, \overline{c^{\prime}}, \bar{b}\right\}$ where $a, a^{\prime}, b, b^{\prime}, c, c^{\prime} \in \mathbb{Z}_{m}$ and $a \neq a^{\prime}, b \neq b^{\prime}, c \neq c^{\prime}$.

In 2013, Kuhl and Schroeder [5] published their results on Hamiltonian decompositions of complete $k$-uniform $k$-partite hypergraphs and completely found solutions for $k=3$. A complete 3-uniform 3-partite hypergraph defined in [5] by Kuhl and Schroeder consists of all Type 1 edges but no Type 2 edges, so their hypergraph is a subhypergraph of our $K_{m, m, m}^{(3)}$ given by Definition 1. In some cases, we can use some of their results, that is $h(x, y)$ in Section 2, to be a part of our Hamiltonian decompositions of $K_{m, m, m}^{(3)}$.

If $K_{m, m, m}^{(3)}$ has a Hamiltonian decomposition, then the number of edges of $K_{m, m, m}^{(3)}$ which is equal to $\binom{3 m}{3}-3\binom{m}{3}$ must be divisible by $3 m$. Thus, the necessary condition is $3 \mid m$. The purpose of this paper is to show that if $3 \mid m$, then $K_{m, m, m}^{(3)}$ has a Hamiltonian decomposition. The proof will be separated into two cases, $m \equiv 0(\bmod 6)$ and $m \equiv 3(\bmod 6)$ and a special case $m=3$. In Section 2, we classify four forms of Hamiltonian cycles of $K_{m, m, m}^{(3)}$. These forms will be combined and the combination becomes a Hamiltonian decomposition
of $K_{m, m, m}^{(3)}$ in Section 3. Finally, conclusion and discussion will be given in Section 4.

## 2 Hamiltonian Cycle Constructions

In this section, we provide four forms of a Hamiltonian cycle in $K_{m, m, m}^{(3)}$ to be used through out this article: $C(i, j), C^{\prime}(i, j),\left(C_{M}(i)\right.$ and $\left.C_{M}^{\prime}(i)\right)$ and $h(x, y)$. First, let us define a useful notation as follows.

Definition 2. For $x, y \in \mathbb{Z}_{m},\|x-y\|=\min \{(x-y)(\bmod m),(y-x)(\bmod m)\}$.

## $2.1 \quad C(i, j)$

For $m \equiv 0(\bmod 3)$, define a Hamiltonian cycle of $K_{m, m, m}^{(3)}, C(i, j)$ by

$$
\begin{aligned}
& C(i, j)= \\
& \quad\left(a_{0}+i, \overline{b_{0}+j}, \overline{\overline{c_{0}+i+j}}, \overline{\overline{c_{1}+i+j}}, a_{1}+i, \overline{b_{1}+j}, \overline{b_{2}+j}, \overline{\overline{c_{2}+i+j}}, a_{2}+i,\right. \\
& \quad a_{3}+i, \overline{b_{3}+j}, \overline{\overline{c_{3}+i+j}}, \overline{\overline{c_{4}+i+j}}, a_{4}+i, \overline{b_{4}+j}, \overline{b_{5}+j}, \overline{\overline{c_{5}+i+j}}, a_{5}+i, \\
& \quad \ldots, a_{m-3}+i, \overline{b_{m-3}+j}, \overline{\overline{c_{m-3}+i+j}}, \overline{\overline{c_{m-2}+i+j}}, a_{m-2}+i, \overline{b_{m-2}+j}, \\
& \left.\quad \overline{b_{m-1}+j}, \overline{\overline{c_{m-1}+i+j}}, a_{m-1}+i\right),
\end{aligned}
$$

where $i, j \in \mathbb{Z}_{m},\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\}=\mathbb{Z}_{m},\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}=\mathbb{Z}_{m}$, and $\left\{c_{0}, c_{1}, \ldots, c_{m-1}\right\}=\mathbb{Z}_{m}$.

Lemma 1. Let $m \equiv 0(\bmod 3)$. Suppose $C(0,0)$ has properties that $c_{k}-b_{k}=$ $c_{k^{\prime}}-b_{k^{\prime}}$ for all $k, k^{\prime} \in \mathbb{Z}_{m}$ with $k \neq k^{\prime}$, and $\left\|a_{3 k-1}-a_{3 k}\right\| \neq \| a_{3 k^{\prime}-1}-$ $a_{3 k^{\prime}}\|,\| b_{3 k+1}-b_{3 k+2}\|\neq\| b_{3 k^{\prime}+1}-b_{3 k^{\prime}+2}\|,\| c_{3 k}-c_{3 k+1}\|\neq\| c_{3 k^{\prime}}-c_{3 k^{\prime}+1} \|$ for all $k, k^{\prime} \in\left\{0,1, \ldots, \frac{m}{3}-1\right\}$ with $k \neq k^{\prime}$. Then $\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\}$ is a set of $m^{2}$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

Proof. For edges of the form $\{a, \bar{b}, \overline{\bar{c}}\}$, we will show that if $\left\{a_{k}+i, \overline{b_{k}+j}\right.$, $\left.\overline{\overline{c_{k}+i+j}}\right\}=\left\{a_{k^{\prime}}+i^{\prime}, \overline{b_{k^{\prime}}+j^{\prime}}, \overline{\overline{c_{k^{\prime}}+i^{\prime}+j^{\prime}}}\right\}$, then $i=i^{\prime}, j=j^{\prime}$ and $k=k^{\prime}$.

Suppose that $\left\{a_{k}+i, \overline{b_{k}+j}, \overline{\overline{c_{k}+i+j}}\right\}=\left\{a_{k^{\prime}}+i^{\prime}, \overline{b_{k^{\prime}}+j^{\prime}}, \overline{\overline{c_{k^{\prime}}+i^{\prime}+j^{\prime}}}\right\}$ for some $i, i^{\prime}, j, j^{\prime}, k, k^{\prime} \in \mathbb{Z}_{m}$. Then

$$
\begin{aligned}
a_{k}+i & \equiv a_{k^{\prime}}+i^{\prime} \quad(\bmod m), \\
b_{k}+j & \equiv b_{k^{\prime}}+j^{\prime} \quad(\bmod m), \\
c_{k}+i+j & \equiv c_{k^{\prime}}+i^{\prime}+j^{\prime} \quad(\bmod m)
\end{aligned}
$$

Since $c_{k}-b_{k}=c_{k^{\prime}}-b_{k^{\prime}}$, we get $i=i^{\prime}$ and then $a_{k}=a_{k^{\prime}}$. Then $j=j^{\prime}$. Hence, $i=i^{\prime}, j=j^{\prime}$ and $k=k^{\prime}$.

For edges of the form $\left\{a, a^{\prime}, \bar{b}\right\}$, we will show that if $\left\{a_{3 k-1}+i, a_{3 k}+\right.$ $\left.i, \overline{b_{3 k}+j}\right\}=\left\{a_{3 k^{\prime}-1}+i^{\prime}, a_{3 k^{\prime}}+i^{\prime}, \overline{b_{3 k^{\prime}}+j^{\prime}}\right\}$, then $i=i^{\prime}, j=j^{\prime}$ and $k=k^{\prime}$.

Suppose that $\left\{a_{3 k-1}+i, a_{3 k}+i, \overline{b_{3 k}+j}\right\}=\left\{a_{3 k^{\prime}-1}+i^{\prime}, a_{3 k^{\prime}}+i^{\prime}, \overline{b_{3 k^{\prime}}+j^{\prime}}\right\}$ for some $i, i^{\prime}, j, j^{\prime} \in \mathbb{Z}_{m}$ and $k, k^{\prime} \in\left\{0,1, \ldots, \frac{m}{3}-1\right\}$. Then

$$
\begin{aligned}
a_{3 k-1}+i & \equiv a_{3 k^{\prime}-1}+i^{\prime} \quad(\bmod m) \\
a_{3 k}+i & \equiv a_{3 k^{\prime}}+i^{\prime} \quad(\bmod m) \\
b_{3 k}+j & \equiv b_{3 k^{\prime}}+j^{\prime} \quad(\bmod m)
\end{aligned}
$$

or

$$
\begin{aligned}
a_{3 k-1}+i & \equiv a_{3 k^{\prime}}+i^{\prime} \quad(\bmod m) \\
a_{3 k}+i & \equiv a_{3 k^{\prime}-1}+i^{\prime} \quad(\bmod m) \\
b_{3 k}+j & \equiv b_{3 k^{\prime}}+j^{\prime} \quad(\bmod m)
\end{aligned}
$$

Since $\left\|a_{3 k-1}-a_{3 k}\right\| \neq\left\|a_{3 k^{\prime}-1}-a_{3 k^{\prime}}\right\|$ for all $k \neq k^{\prime}$ but $a_{3 k-1}-a_{3 k} \equiv$ $a_{3 k^{\prime}-1}-a_{3 k^{\prime}}(\bmod m)$ or $a_{3 k-1}-a_{3 k} \equiv a_{3 k^{\prime}}-a_{3 k^{\prime}-1}(\bmod m)$, we have $k=k^{\prime}$. Then $i=i^{\prime}$ and $j=j^{\prime}$.

For other edge-forms: $\left\{a, a^{\prime}, \overline{\bar{c}}\right\},\left\{\bar{b}, \overline{b^{\prime}}, \overline{\bar{c}}\right\},\left\{\bar{b}, \overline{b^{\prime}}, a\right\},\left\{\overline{\bar{c}}, \overline{\overline{c^{\prime}}}, a\right\},\left\{\overline{\bar{c}}, \overline{\overline{c^{\prime}}}, \bar{b}\right\}$, we can prove the same result in a similar manner. Thus, all $3 m \times m^{2}$ edges of $\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\}$ are distinct and $\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\}$ is a set of $m^{2}$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

Lemma 2. Let $m \equiv 0(\bmod 3)$. Let $c_{i}=b_{i}=x_{i}$ and $a_{i}=x_{i+1}$ for all $i \in \mathbb{Z}_{m}$, where

$$
\begin{aligned}
x_{3 k} & = \begin{cases}3 k / 2 & \text { if } k \text { is even }, \\
(3 k+1) / 2 & \text { if } k \text { is odd },\end{cases} \\
x_{3 k+1} & =3 k+1, \\
x_{3 k+2} & = \begin{cases}\lceil m / 2\rceil+3 k / 2 & \text { if } k \text { is even }, \\
\lceil m / 2\rceil+(3 k+1) / 2 & \text { if } k \text { is odd },\end{cases}
\end{aligned}
$$

and $k \in\left\{0,1, \ldots, \frac{m}{3}-1\right\}$. Then $C(0,0)$ has properties as in Lemma 1. Moreover, $\left\|x-x^{\prime}\right\| \equiv 1$ or $2(\bmod 3)$ for all Type 2 edges of the form $\left\{x, x^{\prime}, y\right\}$ in $C(0,0)$.
Proof. By this setting, we have $c_{k}-b_{k}=0=c_{k^{\prime}}-b_{k^{\prime}}$ for all $k, k^{\prime} \in \mathbb{Z}_{m}$ with $k \neq k^{\prime}$. For $k \in\left\{0,1, \ldots, \frac{m}{3}-1\right\}$,

$$
\begin{aligned}
\left\|a_{3 k-1}-a_{3 k}\right\|=\left\|x_{3 k}-x_{3 k+1}\right\| & = \begin{cases}(3 k+2) / 2 & \text { if } k \text { is even, } \\
(3 k+1) / 2 & \text { if } k \text { is odd, }\end{cases} \\
\left\|b_{3 k+1}-b_{3 k+2}\right\|=\left\|x_{3 k+1}-x_{3 k+2}\right\| & = \begin{cases}\lceil m / 2\rceil-(3 k+2) / 2 & \text { if } k \text { is even, } \\
\lceil m / 2\rceil-(3 k+1) / 2 & \text { if } k \text { is odd, }\end{cases} \\
\left\|c_{3 k}-c_{3 k+1}\right\|=\left\|x_{3 k}-x_{3 k+1}\right\| & = \begin{cases}(3 k+2) / 2 & \text { if } k \text { is even, } \\
(3 k+1) / 2 & \text { if } k \text { is odd }\end{cases}
\end{aligned}
$$

Thus, $\left\|a_{3 k-1}-a_{3 k}\right\| \neq\left\|a_{3 k^{\prime}-1}-a_{3 k^{\prime}}\right\|,\left\|b_{3 k+1}-b_{3 k+2}\right\| \neq\left\|b_{3 k^{\prime}+1}-b_{3 k^{\prime}+2}\right\|$, $\left\|c_{3 k}-c_{3 k+1}\right\| \neq\left\|c_{3 k^{\prime}}-c_{3 k^{\prime}+1}\right\|$ for all $k, k^{\prime} \in\left\{0,1, \ldots, \frac{m}{3}-1\right\}$ with $k \neq k^{\prime}$ and $\left\|x-x^{\prime}\right\| \equiv 1$ or $2(\bmod 3)$ for all Type 2 edges of the form $\left\{x, x^{\prime}, y\right\}$.

Example 1. Let $m=6$. The cycle $C(0,0)$ in Lemma 2 is

$$
C(0,0)=(1, \overline{0}, \overline{\overline{0}}, \overline{\overline{1}}, 3, \overline{1}, \overline{3}, \overline{\overline{3}}, 2,4, \overline{2}, \overline{\overline{2}}, \overline{\overline{4}}, 5, \overline{4}, \overline{5}, \overline{\overline{5}}, 0)
$$

## $2.2 \quad C^{\prime}(i, j)$

For odd integer $m$, define a Hamiltonian cycle of $K_{m, m, m}^{(3)}, C^{\prime}(i, j)$ by
$C^{\prime}(i, j)=$
$\left(a_{0}+j, a_{1}+j, \overline{b_{0}+i+j}, \overline{b_{1}+i+j}, \overline{\overline{c_{0}+2 i+j}}, \overline{\overline{c_{1}+2 i+j}}\right.$,
$a_{2}+j, a_{3}+j, \overline{b_{2}+i+j}, \overline{b_{3}+i+j}, \overline{\overline{c_{2}+2 i+j}}, \overline{\overline{c_{3}+2 i+j}}, \ldots$,
$a_{m-3}+j, a_{m-2}+j, \overline{b_{m-3}+i+j}, \overline{b_{m-2}+i+j}, \overline{c_{m-3}+2 i+j}, \overline{\overline{c_{m-2}+2 i+j}}$,
$\left.a_{m-1}+j, \overline{b_{m-1}+i+j}, \overline{\overline{c_{m-1}+2 i+j}}\right)$,
where $i, j \in \mathbb{Z}_{m},\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\}=\mathbb{Z}_{m},\left\{b_{0}, b_{1}, \ldots, b_{m-1}\right\}=\mathbb{Z}_{m}$, and $\left\{c_{0}, c_{1}, \ldots, c_{m-1}\right\}=\mathbb{Z}_{m}$.

A similar argument as in the proof of Lemma 1 can be used to prove Lemma 3.

Lemma 3. For odd integer $m$, suppose $C^{\prime}(0,0)$ has properties that $a_{0}+c_{m-1} \neq$ $a_{m-1}+c_{m-2}(\bmod m)$ and $\left\|a_{2 k+1}-a_{2 k}\right\| \neq\left\|a_{2 k^{\prime}+1}-a_{2 k^{\prime}}\right\|,\left\|b_{2 k+1}-b_{2 k}\right\| \neq$ $\left\|b_{2 k^{\prime}+1}-b_{2 k^{\prime}}\right\|,\left\|c_{2 k+1}-c_{2 k}\right\| \neq\left\|c_{2 k^{\prime}+1}-c_{2 k^{\prime}}\right\|$ for all $k, k^{\prime} \in\left\{0,1, \ldots, \frac{m-1}{2}-1\right\}$ with $k \neq k^{\prime}$. Then $\left\{C^{\prime}(i, j): i, j \in \mathbb{Z}_{m}\right\}$ is a set of $m^{2}$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

Lemma 4. For odd integer $m$, let $a_{i}=b_{i}=x_{i}$ for all $i \in \mathbb{Z}_{m}, c_{m-3}=x_{0}$, $c_{m-2}=x_{1}, c_{m-1}=x_{m-1}$ and $c_{i}=x_{i+2}$ for all $i \in\{0,1, \ldots, m-4\}$, where $x_{m-1}=1, x_{2 k}=m-k, x_{2 k+1}=k+2$, and $k \in\left\{0,1, \ldots, \frac{m-1}{2}-1\right\}$. Then $C^{\prime}(0,0)$ has properties as in Lemma 3. Moreover, $b_{m-1}-a_{m-1}=0, b_{m-1}-a_{0}=$ $1, c_{m-1}-b_{m-1}=0, c_{m-2}-b_{m-1}=1$.
Proof. By this setting, we have $a_{0}+c_{m-1}=1$ and $a_{m-1}+c_{m-2}=3$. For $k \in\left\{0,1, \ldots, \frac{m-1}{2}-1\right\}$,

$$
\begin{aligned}
\left\|a_{2 k+1}-a_{2 k}\right\|=\left\|b_{2 k+1}-b_{2 k}\right\| & =\left\|x_{2 k+1}-x_{2 k}\right\| \\
& =\min \{2 k+2, m-(2 k+2)\} .
\end{aligned}
$$

For $k \in\left\{0,1, \ldots, \frac{m-1}{2}-2\right\}$,

$$
\begin{aligned}
\left\|c_{2 k+1}-c_{2 k}\right\| & =\left\|x_{2 k+3}-x_{2 k+2}\right\| \\
& =\min \{2 k+4, m-(2 k+4)\}
\end{aligned}
$$

and $c_{m-2}-c_{m-3}=x_{1}-x_{0}=2$.
Since $m$ is odd, $\left\{\left\|x_{2 k+1}-x_{2 k}\right\|: k \in\left\{0,1, \ldots, \frac{m-1}{2}-1\right\}\right\}=\left\{1,2, \ldots, \frac{m-1}{2}\right\}$. Thus, $a_{0}+c_{m-1} \neq a_{m-1}+c_{m-2}(\bmod m)$ and $\left\|a_{2 k+1}-a_{2 k}\right\| \neq \| a_{2 k^{\prime}+1}-$ $a_{2 k^{\prime}}\|,\| b_{2 k+1}-b_{2 k}\|\neq\| b_{2 k^{\prime}+1}-b_{2 k^{\prime}}\|,\| c_{2 k+1}-c_{2 k}\|\neq\| c_{2 k^{\prime}+1}-c_{2 k^{\prime}} \|$ for all $k, k^{\prime} \in\left\{0,1, \ldots, \frac{m-1}{2}-1\right\}$ with $k \neq k^{\prime}$.

Example 2. Let $m=9$. The cycle $C^{\prime}(0,0)$ in Lemma 4 is

$$
C^{\prime}(0,0)=(0,2, \overline{0}, \overline{2}, \overline{\overline{8}}, \overline{\overline{3}}, 8,3, \overline{8}, \overline{3}, \overline{7}, \overline{\overline{4}}, 7,4, \overline{7}, \overline{4}, \overline{\overline{6}}, \overline{\overline{5}}, 6,5, \overline{6}, \overline{5}, \overline{\overline{0}}, \overline{2}, 1, \overline{1}, \overline{\overline{1}})
$$

## $2.3 C_{M}(i)$ and $C_{M}^{\prime}(i)$

First, consider the case where $m$ is even. We introduce a technique different from those of 2.1 and 2.2 to construct a family of Hamiltonian cycles which contain no edges of the form $\{a, \bar{b}, \bar{c}\}$. This technique requires the knowledge of 1 -factors and orthogonal quasigroups.

Definition 3. Let $G$ be a graph. A 1-factor of $G$ is a subgraph of $G$ in which every vertex has degree 1. A 1-factorization of $G$ is a partition of an edge set of $G$ into 1-factors.

Definition 4. $\left(\mathbb{Z}_{n}, \circ\right)$ is a quasigroup if
(1) $i \circ j \in \mathbb{Z}_{n}$ for all $i, j \in \mathbb{Z}_{n}$, and
(2) $i \circ j \neq i \circ j^{\prime}$ and $i \circ j \neq i^{\prime} \circ j$ for all $i, j \in \mathbb{Z}_{n}$ with $i \neq i^{\prime}, j \neq j^{\prime}$.

Note that the multiplication table of $\left(\mathbb{Z}_{n}, \circ\right)$ is a Latin square.
Definition 5. $\left(\mathbb{Z}_{n}, \circ_{1}\right)$ and $\left(\mathbb{Z}_{n}, \circ_{2}\right)$ are orthogonal if for $(i, j) \neq\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}_{n}^{2}$, $i \circ_{1} j=i^{\prime} \circ_{1} j^{\prime}$ implies $i \circ_{2} j \neq i^{\prime} \circ_{2} j^{\prime}$.
Lemma 5 ([6]). There exists a pair of mutually orthogonal Latin squares of order $n$ for every $n \neq 2$ or 6 .

For even integer $m$, let $M=\left\{x_{0} x_{1}, x_{2} x_{3}, x_{4} x_{5}, \ldots, x_{m-2} x_{m-1}\right\}$ be a 1 factor of a graph with $\mathbb{Z}_{m}$ as a vertex set. By Lemma 5 , there exists a pair of orthogonal quasigroups, $\left(\mathbb{Z}_{m / 2}, \circ_{1}\right)$ and $\left(\mathbb{Z}_{m / 2}, \circ_{2}\right)$ for $m \neq 4$ or 12. For $i \in \mathbb{Z}_{m / 2}$, define Hamiltonian cycles of $K_{m, m, m}^{(3)}, C_{M}(i)$ and $C_{M}^{\prime}(i)$, by

$$
\begin{aligned}
C_{M}(i)= & \left(x_{0}, x_{1}, \overline{x_{2\left(i \circ_{1} 0\right)}}, \overline{x_{2\left(i \circ_{1} 0\right)+1}}, \overline{\overline{x_{2\left(i \circ_{2} 0\right)}}}, \overline{\overline{x_{2\left(i \circ_{2} 0\right)+1}}},\right. \\
& x_{2}, x_{3}, \overline{x_{2\left(i \circ_{1} 1\right)}}, \overline{x_{2\left(i \circ_{1} 1\right)+1}}, \overline{\overline{x_{2\left(i \circ_{2} 1\right)}}} \overline{\overline{x_{2\left(i \circ_{2} 1\right)+1}}, \ldots,} \\
& \left.x_{m-2}, x_{m-1}, \overline{x_{2\left(i \circ_{1} \frac{m-2}{2}\right)}}, \overline{x_{2\left(i \circ_{1} \frac{m-2}{2}\right)+1}, \overline{\left.\overline{x_{2\left(i \circ_{2} \frac{m-2}{2}\right)}}, \overline{x_{2\left(i \circ_{2} \frac{m-2}{2}\right)+1}}\right)}} \begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C_{M}^{\prime}(i)= & \left(x_{1}, x_{0}, \overline{x_{2\left(i \circ_{1} 0\right)+1}}, \overline{x_{2\left(i \circ_{1} 0\right)}}, \overline{\overline{x_{2\left(i \circ_{2} 0\right)+1}}}, \overline{\overline{x_{2\left(i \circ_{2} 0\right)}}},\right. \\
& x_{3}, x_{2}, \overline{x_{2\left(i \circ_{1} 1\right)+1}}, \overline{x_{2\left(i \circ_{1} 1\right)}}, \overline{\overline{x_{2\left(i \circ_{2} 1\right)+1}}}, \overline{\overline{x_{2\left(i \circ_{2} 1\right)}}, \ldots,} \\
& x_{m-1}, x_{m-2}, \overline{x_{2\left(i \circ_{1} \frac{m-2}{2}\right)+1}}, \overline{x_{2\left(i \circ_{1} \frac{m-2}{2}\right)}, \overline{\bar{x}_{2\left(i \circ_{2} \frac{m-2}{2}\right)+1}}, \overline{\bar{x}_{2\left(i \circ_{2} \frac{m-2}{2}\right)}} .} .
\end{aligned}
$$

54 Hamiltonian decomposition of complete tripartite 3-uniform hypergraphs

Example 3. Let $m=6$. The multiplication tables of orthogonal quasigroups $\left(\mathbb{Z}_{3}, \circ_{1}\right)$ and $\left(\mathbb{Z}_{3}, \circ_{2}\right)$ are as follows.

| $\circ_{1}$ | 0 | 1 | 2 |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | $\circ_{2}$ | 0 | 1 | 2 |
| 1 | 1 | 2 | 0 |  |  | 0 | 1 |

Let $M=\left\{x_{0} x_{1}, x_{2} x_{3}, x_{4} x_{5}\right\}=\{03,14,25\}$. Then

$$
\begin{aligned}
& C_{M}(0)=(0,3, \overline{0}, \overline{3}, \overline{\overline{0}}, \overline{\overline{3}}, 1,4, \overline{1}, \overline{4}, \overline{\overline{1}}, \overline{\overline{4}}, 2,5, \overline{2}, \overline{5}, \overline{\overline{2}}, \overline{5}), \\
& C_{M}(1)=(0,3, \overline{1}, \overline{4}, \overline{\overline{2}}, \overline{5}, 1,4, \overline{2}, \overline{5}, \overline{\overline{0}}, \overline{\overline{3}}, 2,5, \overline{0}, \overline{3}, \overline{\overline{1}}, \overline{\overline{4}}) \text {, } \\
& C_{M}(2)=(0,3, \overline{2}, \overline{5}, \overline{\overline{1}}, \overline{\overline{4}}, 1,4, \overline{0}, \overline{3}, \overline{\overline{2}}, \overline{\overline{5}}, 2,5, \overline{1}, \overline{4}, \overline{\overline{0}}, \overline{\overline{3}}) \text {, } \\
& C_{M}^{\prime}(0)=(3,0, \overline{3}, \overline{0}, \overline{\overline{3}}, \overline{\overline{0}}, 4,1, \overline{4}, \overline{1}, \overline{\overline{4}}, \overline{\overline{1}}, 5,2, \overline{5}, \overline{2}, \overline{\overline{5}}, \overline{\overline{2}}), \\
& C_{M}^{\prime}(1)=(3,0, \overline{4}, \overline{1}, \overline{\overline{5}}, \overline{\overline{2}}, 4,1, \overline{5}, \overline{2}, \overline{\overline{3}}, \overline{\overline{0}}, 5,2, \overline{3}, \overline{0}, \overline{\overline{4}}, \overline{\overline{1}}), \\
& C_{M}^{\prime}(2)=(3,0, \overline{5}, \overline{2}, \overline{\overline{4}}, \overline{\overline{1}}, 4,1, \overline{3}, \overline{0}, \overline{\overline{5}}, \overline{\overline{2}}, 5,2, \overline{4}, \overline{1}, \overline{\overline{3}}, \overline{\overline{0}}) .
\end{aligned}
$$

For $m=4$ and 12 , there are no orthogonal quasigroups $\left(\mathbb{Z}_{m / 2}, \circ_{1}\right)$ and ( $\mathbb{Z}_{m / 2}, \mathrm{o}_{2}$ ), therefore, $C_{M}(i)$ and $C_{M}^{\prime}(i)$ will be constructed by the following way.

For $m=4$, let $M=\left\{x_{0} x_{1}, x_{2} x_{3}\right\}$. Then

$$
\begin{aligned}
& C_{M}(0)=\left(x_{0}, x_{1}, \overline{x_{0}}, \overline{x_{1}}, \overline{\overline{x_{0}}}, \overline{\overline{x_{1}}}, x_{2}, x_{3}, \overline{x_{2}}, \overline{x_{3}}, \overline{\overline{x_{2}}}, \overline{\overline{x_{3}}}\right) \text {, } \\
& C_{M}(1)=\left(x_{0}, x_{1}, \overline{x_{3}}, \overline{x_{2}}, \overline{\overline{x_{3}}}, \overline{\overline{x_{2}}}, x_{2}, x_{3}, \overline{x_{1}}, \overline{x_{0}}, \overline{\overline{x_{1}}}, \overline{x_{0}}\right) \text {, } \\
& C_{M}^{\prime}(0)=\left(x_{1}, x_{0}, \overline{x_{1}}, \overline{x_{0}}, \overline{\overline{x_{2}}}, \overline{\overline{x_{3}}}, x_{3}, x_{2}, \overline{x_{3}}, \overline{x_{2}}, \overline{\overline{x_{0}}}, \overline{\overline{x_{1}}}\right) \text {, } \\
& C_{M}^{\prime}(1)=\left(x_{1}, x_{0}, \overline{x_{2}}, \overline{x_{3}}, \overline{\overline{x_{1}}}, \overline{\overline{x_{0}}}, x_{3}, x_{2}, \overline{x_{0}}, \overline{x_{1}}, \overline{\overline{x_{3}}}, \overline{\overline{x_{2}}}\right) .
\end{aligned}
$$

For $m=12$, let $\left(\mathbb{Z}_{m / 4}, \circ_{3}\right)$ and $\left(\mathbb{Z}_{m / 4}, \circ_{4}\right)$ be orthogonal quasigroups. For $i \in \mathbb{Z}_{m / 2}$, define $C_{M}(i)$ and $C_{M}^{\prime}(i)$ by

$$
\left.\begin{array}{rl}
C_{M}(i)= & \left(x_{0}, x_{1}, \overline{b_{0}(i)}, \overline{b_{1}(i)}, \overline{\overline{c_{0}(i)}}, \overline{\overline{c_{1}(i)}}\right. \\
& \quad x_{2}, x_{3}, \overline{b_{2}(i)}, \overline{b_{3}(i)}, \overline{c_{2}(i)}, \overline{c_{3}(i)}
\end{array}, \ldots, \overline{\overline{c_{2-2}}} \overline{\overline{b_{m-2}}} \overline{\overline{b_{m-1}(i)},}, \overline{\overline{c_{m-1}(i)}}\right)
$$

and

$$
\begin{aligned}
C_{M}^{\prime}(i)= & \left(x_{1}, x_{0}, \overline{b_{0}^{\prime}(i)}, \overline{b_{1}^{\prime}(i)}, \overline{\overline{c_{0}^{\prime}(i)}}, \overline{\overline{c_{1}^{\prime}(i)}},\right. \\
& x_{3}, x_{2}, \overline{b_{2}^{\prime}(i)}, \overline{b_{3}^{\prime}(i)}, \overline{\overline{c_{2}^{\prime}(i)}}, \overline{\overline{c_{3}^{\prime}(i)}}, \ldots \\
& \left.x_{m-1}, x_{m-2}, \overline{b_{m-2}^{\prime}(i)}, \overline{b_{m-1}^{\prime}(i)}, \overline{c_{m-2}^{\prime}(i)}, \overline{c_{m-1}^{\prime}(i)}\right)
\end{aligned}
$$

where for $j, k \in\left\{0,1, \ldots, \frac{m}{4}-1\right\}$,

$$
\begin{aligned}
& b_{2 k}(j)=b_{\frac{m}{2}+2 k+1}\left(j+\frac{m}{4}\right)=b_{2 k+1}^{\prime}(j)=b_{\frac{m}{2}+2 k}^{\prime}\left(j+\frac{m}{4}\right)=x_{2\left(j \circ_{3} k\right)}, \\
& c_{2 k}(j)=c_{\frac{m}{2}+2 k+1}\left(j+\frac{m}{4}\right)=c_{2 k+1}^{\prime}\left(j+\frac{m}{4}\right)=c_{\frac{m}{2}+2 k}^{\prime}(j)=x_{2\left(j \circ_{4} k\right),}, \\
& b_{2 k+1}(j)=b_{\frac{m}{2}+2 k}\left(j+\frac{m}{4}\right)=b_{2 k}^{\prime}(j)=b_{\frac{m}{2}+2 k+1}^{\prime}\left(j+\frac{m}{4}\right)=x_{2\left(j \circ_{3} k\right)+1}, \\
& c_{2 k+1}(j)=c_{\frac{m}{2}+2 k}\left(j+\frac{m}{4}\right)=c_{2 k}^{\prime}\left(j+\frac{m}{4}\right)=c_{\frac{m}{2}+2 k+1}^{\prime}(j)=x_{2\left(j \circ_{4} k\right)+1}, \\
& b_{2 k+1}\left(j+\frac{m}{4}\right)=b_{\frac{m}{2}+2 k}(j)=b_{2 k}^{\prime}\left(j+\frac{m}{4}\right)=b_{\frac{m}{2}+2 k+1}^{\prime}(j)=x_{\frac{m}{2}+2\left(j 0_{3} k\right),}, \\
& c_{2 k+1}\left(j+\frac{m}{4}\right)=c_{\frac{m}{2}+2 k}(j)=c_{2 k}^{\prime}(j)=c_{\frac{m}{2}+2 k+1}^{\prime}\left(j+\frac{m}{4}\right)=x_{\frac{m}{2}+2\left(j 0_{4} k\right),}, \\
& b_{2 k}\left(j+\frac{m}{4}\right)=b_{\frac{m}{2}+2 k+1}(j)=b_{2 k+1}^{\prime}\left(j+\frac{m}{4}\right)=b_{\frac{m}{2}+2 k}^{\prime}(j)=x_{\frac{m}{2}+2\left(j 0_{3} k\right)+1}, \\
& c_{2 k}\left(j+\frac{m}{4}\right)=c_{\frac{m}{2}+2 k+1}(j)=c_{2 k+1}^{\prime}(j)=c_{\frac{m}{2}+2 k}^{\prime}\left(j+\frac{m}{4}\right)=x_{\frac{m}{2}+2\left(j 0_{4} k\right)+1}^{\prime} .
\end{aligned}
$$

Lemma 6. For even integer $m$, given a 1-factor $M$ of a graph with $\mathbb{Z}_{m}$ as a vertex set, $\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}\right\}$ is a set of $m$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.
Proof. Let $M=\left\{x_{0} x_{1}, x_{2} x_{3}, \ldots, x_{m-2} x_{m-1}\right\}$. Consider the case where $m \notin$ $\{4,12\}$. For edges of the form $\left\{a, a^{\prime}, \bar{b}\right\}$, we will show that if $\left\{x_{2 k}, x_{2 k+1}\right.$,


Suppose that $\left\{x_{2 k}, x_{2 k+1}, \overline{x_{2\left(i o_{1} k\right)+j}}\right\}=\left\{x_{2 k^{\prime}}, x_{2 k^{\prime}+1}, \overline{x_{2\left(i^{\prime} 0_{1} k^{\prime}\right)+j^{\prime}}}\right\}$ for some $i, i^{\prime}, k, k^{\prime} \in \mathbb{Z}_{m / 2}$ and $j, j^{\prime} \in\{0,1\}$. Then

$$
\begin{aligned}
2 k & =2 k^{\prime}, \\
2\left(i \circ_{1} k\right)+j & =2\left(i^{\prime} \circ_{1} k^{\prime}\right)+j^{\prime} .
\end{aligned}
$$

That is $k=k^{\prime}, j=j^{\prime}$ and $i \circ_{1} k=i^{\prime} \circ_{1} k$. Since $\left(\mathbb{Z}_{m / 2}, \circ_{1}\right)$ is a quasigroup, $i=i^{\prime}$.

The proof for edges of the form $\left\{a, a^{\prime}, \overline{\bar{c}}\right\}$ can be done in the same way.
For edges of the form $\left\{\bar{b}, \overline{b^{\prime}}, \bar{c}\right\}$, we will show that if $\left\{\overline{x_{2\left(i o_{1} k\right)},} \overline{x_{2\left(i 0_{1} k\right)+1}}\right.$,
 $k=k^{\prime}$.

Suppose that $\left\{\overline{x_{2\left(i o_{1} k\right)}}, \overline{x_{2\left(i o_{1} k\right)+1}}, \overline{\overline{x_{2\left(i o_{2} k\right)+j}}}\right\}=\left\{\overline{x_{2\left(i^{\prime} \circ_{1} k^{\prime}\right)}, \overline{x_{2\left(i^{\prime}{ }_{1} k^{\prime}\right)+1}},}\right.$ $\left.\overline{\left.\overline{x_{2\left(i^{\prime} \circ 2 k^{\prime}\right)+j^{\prime}}}\right\}}\right\}$ for some $i, i^{\prime}, k, k^{\prime} \in \mathbb{Z}_{m / 2}$ and $j, j^{\prime} \in\{0,1\}$. Then

$$
\begin{aligned}
i \circ_{1} k & =i^{\prime} \circ_{1} k^{\prime}, \\
i \circ_{2} k & =i^{\prime} \circ_{2} k^{\prime}, \\
j & =j^{\prime} .
\end{aligned}
$$

Since $\left(\mathbb{Z}_{m / 2}, \circ_{1}\right)$ and $\left(\mathbb{Z}_{m / 2}, \mathrm{o}_{2}\right)$ are orthogonal quasigroups, we have $i=i^{\prime}$ and $k=k^{\prime}$.

The proof for edges of the forms $\left\{\bar{b}, \overline{b^{\prime}}, a\right\},\left\{\overline{\bar{c}}, \overline{c^{\prime}}, a\right\}$ and $\left\{\overline{\bar{c}}, \overline{c^{\prime}}, \bar{b}\right\}$ can also be done in the same way. Thus, all $3 m \times m$ edges of $\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}\right\}$
are distinct and $\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}\right\}$ is a set of $m$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

For $m=4$, it is easy to see that $C_{M}(0), C_{M}(1), C_{M}^{\prime}(0)$ and $C_{M}^{\prime}(1)$ are mutually disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

For $m=12$, consider edges of the form $\left\{a, a^{\prime}, \bar{b}\right\}: e_{1}=\left\{x_{2 k}, x_{2 k+1}, \overline{x_{i}}\right\}$ and $e_{2}=\left\{x_{\frac{m}{2}+2 k}, x_{\frac{m}{2}+2 k+1}, \overline{x_{i}}\right\}$, where $k \in \mathbb{Z}_{m / 4}$ and $i \in \mathbb{Z}_{m}$. Note that $\left\{2\left(j \circ_{3} k\right), 2\left(j \circ_{3} k\right)+1, \frac{m}{2}+2\left(j \circ_{3} k\right), \frac{m}{2}+2\left(j \circ_{3} k\right)+1: j, k \in \mathbb{Z}_{m / 4}\right\}=\mathbb{Z}_{m}$ by means of a quasigroup.

If $i=2\left(j \circ_{3} k\right)$, then $e_{1} \in C_{M}(j)$ and $e_{2} \in C_{M}^{\prime}\left(j+\frac{m}{4}\right)$.
If $i=2\left(j \circ_{3} k\right)+1$, then $e_{1} \in C_{M}^{\prime}(j)$ and $e_{2} \in C_{M}\left(j+\frac{m}{4}\right)$.
If $i=\frac{m}{2}+2\left(j \circ_{3} k\right)$, then $e_{1} \in C_{M}^{\prime}\left(j+\frac{m}{4}\right)$ and $e_{2} \in C_{M}(j)$.
If $i=\frac{m}{2}+2\left(j \circ_{3} k\right)+1$, then $e_{1} \in C_{M}\left(j+\frac{m}{4}\right)$ and $e_{2} \in C_{M}^{\prime}(j)$.
Thus, each edge of the form $\left\{a, a^{\prime}, \bar{b}\right\}$ is in a unique Hamiltonian cycle. Also use this way to show the same result for edges of the form $\left\{a, a^{\prime}, \overline{\bar{c}}\right\}$.

For edges of the form $\left\{\bar{b}, \overline{b^{\prime}}, \overline{\bar{c}}\right\}:\left\{\overline{x_{2\left(j \circ_{3} k\right)}}, \overline{x_{2\left(j \circ_{3} k\right)+1}}, \overline{x_{i}}\right\}$ (or $\left\{\overline{x_{\frac{m}{2}+2\left(j \circ_{3} k\right)}}\right.$, $\left.\overline{\overline{x_{2}+2\left(j \circ_{3} k\right)+1}}, \overline{\overline{x_{i}}}\right\}$, we will show that if $\left\{\overline{x_{2\left(j \circ_{3} k\right)}}, \overline{x_{2\left(j \circ_{3} k\right)+1}}, \overline{\overline{x_{i}}}\right\}=\left\{\overline{x_{2\left(j^{\prime} \circ_{3} k^{\prime}\right)}}\right.$, $\left.\overline{x_{2\left(j^{\prime} \circ_{3} k^{\prime}\right)+1}}, \overline{\overline{x_{i^{\prime}}}}\right\}$, then $i=i^{\prime}, j=j^{\prime}$ and $k=k^{\prime}$.

Suppose that $\left\{\overline{x_{2\left(j \circ_{3} k\right)}}, \overline{x_{2\left(j \circ_{3} k\right)+1}}, \overline{\overline{x_{i}}}\right\}=\left\{\overline{x_{2\left(j^{\prime} \circ_{3} k^{\prime}\right)}}, \overline{x_{2\left(j^{\prime} \circ_{3} k^{\prime}\right)+1}}, \overline{\overline{x_{i^{\prime}}}}\right\}$ for some $j, j^{\prime}, k, k^{\prime} \in \mathbb{Z}_{m / 4}$ and $i \in \mathbb{Z}_{m}$. Then

$$
\begin{aligned}
j \circ_{3} k & =j^{\prime} \circ_{3} k^{\prime} \\
i & =i^{\prime}
\end{aligned}
$$

There are four possibilities for $i$ : $2\left(j \circ_{4} k\right), 2\left(j \circ_{4} k\right)+1, \frac{m}{2}+2\left(j \circ_{4} k\right)$ or $\frac{m}{2}+2\left(j \circ_{4} k\right)+1$ (also for $i^{\prime}: 2\left(j^{\prime} \circ_{4} k^{\prime}\right), 2\left(j^{\prime} \circ_{4} k^{\prime}\right)+1, \frac{m}{2}+2\left(j^{\prime} \circ_{4} k^{\prime}\right)$ or $\left.\frac{m}{2}+2\left(j^{\prime} \circ_{4} k^{\prime}\right)+1\right)$. Since $i=i^{\prime}$, in any cases, we have $j \circ_{4} k=j^{\prime} \circ_{4} k^{\prime}$. The orthogonality of $\left(\mathbb{Z}_{m / 4}, \circ_{3}\right)$ and $\left(\mathbb{Z}_{m / 4}, \circ_{4}\right)$ implies $j=j^{\prime}$ and $k=k^{\prime}$.

Edges of the forms $\left\{\bar{b}, \overline{b^{\prime}}, a\right\},\left\{\overline{\bar{c}}, \overline{\overline{c^{\prime}}}, a\right\}$ and $\left\{\overline{\bar{c}}, \overline{\overline{c^{\prime}}}, \bar{b}\right\}$ can be showed in a similar manner. This completes the proof.

## $2.4 \quad h(x, y)$

For $(x, y) \in \mathbb{Z}_{m}^{2}$, define a Hamiltonian cycle of $K_{m, m, m}^{(3)}, h(x, y)$ by
$h(x, y)=(0, \bar{x}, \overline{\overline{x+y}}, m-1, \overline{m-1+x}, \overline{\overline{m-1+x+y}}, \ldots, 1, \overline{1+x}, \overline{\overline{1+x+y}})$.
Kuhl and Schroeder [5] define a difference type of each edge of the form $\{a, \bar{b}, \overline{\bar{c}}\}$ to be $(b-a, c-b)$ in modulo $m$. There are $m$ edges with a specific difference type. $h(x, y)$ has $3 m$ edges and contains all edges of difference types $(x, y),(x+1, y)$ and $(x, y+1)$.

Note that all $m^{3}$ edges in $K_{m, m, m}^{(3)}$ are classified into $m^{2}$ distinct difference types.

Lemma $7([5])$. Let $m \equiv 0(\bmod 3)$ and $\mathcal{A}_{0}=\left\{(x, y) \in \mathbb{Z}_{m}^{2}: x-y \equiv 0\right.$ $(\bmod 3)\}$. Then $\left\{h(x, y):(x, y) \in \mathcal{A}_{0}\right\}$ is a set of $m^{2} / 3$ disjoint Hamiltonian cycles of $K_{m, m, m}^{(3)}$.

## 3 Main Results

Let $H$ be a subhypergraph of $K_{m, m, m}^{(3)}$. Let $n_{1}(H)$ and $n_{2}(H)$ denote the number of Type 1 and Type 2 edges in $H$, respectively. Each Hamiltonian cycle in Section $2, C(i, j), C^{\prime}(i, j),\left(C_{M}(i)\right.$ and $\left.C_{M}^{\prime}(i)\right)$ and $h(x, y)$ can be regarded as a subhypergraph of $K_{m, m, m}^{(3)}$. We count the number of Type 1 edges and Type 2 edges for each of the four forms of Hamiltonian cycle in Section 2 and overall edges in $K_{m, m, m}^{(3)}$ as shown in the following table.

| $H$ | $n_{1}(H)$ | $n_{2}(H)$ | condition |
| :---: | :---: | :---: | :---: |
| $K_{m, m, m}^{(3)}$ | $m^{3}$ | $3 m^{3}-3 m^{2}$ | - |
| $C(i, j)$ | $m$ | $2 m$ | $m \equiv 0(\bmod 3)$ |
| $C^{\prime}(i, j)$ | 3 | $3 m-3$ | $m$ is odd |
| $C_{M}(i), C_{M}^{\prime}(i)$ | 0 | $3 m$ | $m$ is even |
| $h(x, y)$ | $3 m$ | 0 | - |

Let $C(0,0)$ be a Hamiltonian cycle in Lemma 2 and $C^{\prime}(0,0)$ be a Hamiltonian cycle in Lemma 4. We obtain several results as follows.

## $3.1 \quad m=3$

For $m=3, n_{1}\left(K_{3,3,3}^{(3)}\right)=27$ and $n_{2}\left(K_{3,3,3}^{(3)}\right)=54$. The sets of Hamiltonian cycles $\mathcal{C}_{1}=\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\}$ and $\mathcal{C}_{2}=\left\{C^{\prime}(i, j): i, j \in \mathbb{Z}_{m}\right\}$ both have $m^{2}$ Hamiltonian cycles. We calculate the number of edges in $\mathcal{C}_{1}$, $\sum_{H \in \mathcal{C}_{1}} n_{1}(H)=m^{3}=27$ and $\sum_{H \in \mathcal{C}_{1}} n_{2}(H)=2 m^{3}=54$, and the number of edges in $\mathcal{C}_{2}, \sum_{H \in \mathcal{C}_{2}} n_{1}(H)=3 m^{2}=27$ and $\sum_{H \in \mathcal{C}_{2}} n_{2}(H)=3 m^{3}-3 m^{2}=54$. By Lemma 1 and Lemma 3, we can conclude that $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ are both Hamiltonian decompositions of $K_{3,3,3}^{(3)}$.

Example 4. Let $C(0,0)=(0, \overline{0}, \overline{\overline{0}}, \overline{\overline{1}}, 1, \overline{1}, \overline{2}, \overline{\overline{2}}, 2)$. Then the Hamiltonian decomposition $\mathcal{C}_{1}$ of $K_{3,3,3}^{(3)}$ obtained from Section 2.1 is shown below.

$$
\begin{aligned}
& C(0,0)=(0, \overline{0}, \overline{\overline{0}}, \overline{\overline{1}}, 1, \overline{1}, \overline{2}, \overline{\overline{2}}, 2) \\
& C(0,1)=(0, \overline{1}, \overline{\overline{1}}, \overline{\overline{2}}, 1, \overline{2}, \overline{0}, \overline{\overline{0}}, 2) \\
& C(0,2)=(0, \overline{2}, \overline{\overline{2}}, \overline{\overline{0}}, 1, \overline{0}, \overline{1}, \overline{\overline{1}}, 2)
\end{aligned}
$$

$$
\begin{aligned}
& C(1,0)=(1, \overline{0}, \overline{\overline{1}}, \overline{\overline{2}}, 2, \overline{1}, \overline{2}, \overline{\overline{0}}, 0) \\
& C(1,1)=(1, \overline{\overline{1}}, \overline{\overline{2}}, \overline{\overline{0}}, 2, \overline{2}, \overline{0}, \overline{\overline{1}}, 0) \\
& C(1,2)=(1, \overline{2}, \overline{\overline{0}}, \overline{\overline{1}}, 2, \overline{0}, \overline{1}, \overline{\overline{2}}, 0) \\
& C(2,0)=(2, \overline{0}, \overline{\overline{2}}, \overline{\overline{0}}, 0, \overline{1}, \overline{2}, \overline{\overline{1}}, 1) \\
& C(2,1)=(2, \overline{\overline{1}}, \overline{\overline{0}}, \overline{\overline{1}}, 0, \overline{2}, \overline{0}, \overline{\overline{2}}, 1) \\
& C(2,2)=(2, \overline{2}, \overline{\overline{1}}, \overline{\overline{2}}, 0, \overline{0}, \overline{1}, \overline{\overline{0}}, 1)
\end{aligned}
$$

## $3.2 \quad m \equiv 0(\bmod 6)$

For $m \equiv 0(\bmod 6)$, we have two families $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ of Hamiltonian cycles forming two Hamiltonian decompositions of $K_{m, m, m}^{(3)}$. First,

$$
\mathcal{H}_{1}=\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\} \cup\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}, M \in \mathcal{F}_{1}\right\}
$$

where $\mathcal{F}_{1}$ is a 1-factorization of a graph $G$ with $V(G)=\mathbb{Z}_{m}=[\overline{0}] \cup[\overline{1}] \cup[\overline{2}]$ and $E(G)=\left\{u v: u, v \in \mathbb{Z}_{m},\|u-v\| \equiv 0(\bmod 3)\right\} . G$ is isomorphic to $3 K_{m / 3}$, three copies of $K_{m / 3}$. Each component consists of vertices in the same class of modulo 3. Next,

$$
\mathcal{H}_{2}=\left\{h(x, y):(x, y) \in \mathcal{A}_{0}\right\} \cup\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}, M \in \mathcal{F}_{2}\right\}
$$

where $\mathcal{F}_{2}$ is a 1-factorization of $K_{m}$ with $\mathbb{Z}_{m}$ as a vertex set and $\mathcal{A}_{0}=\{(x, y) \in$ $\left.\mathbb{Z}_{m}^{2}: x-y \equiv 0(\bmod 3)\right\}$.

Since $K_{2 n}$ is factorizable into $2 n-1$-factors [9], we have $\left|\mathcal{F}_{1}\right|=m / 3-1$ and $\left|\mathcal{F}_{2}\right|=m-1$. Then we calculate the number of edges in $\mathcal{H}_{1}, \sum_{H \in \mathcal{H}_{1}} n_{1}(H)=$ $m^{2} \times m=m^{3}$ and $\sum_{H \in \mathcal{H}_{1}} n_{2}(H)=m^{2} \times 2 m+m(m / 3-1) \times 3 m=3 m^{3}-$ $3 m^{2}$ and the number of edges in $\mathcal{H}_{2}, \sum_{H \in \mathcal{H}_{2}} n_{1}(H)=m^{2} / 3 \times 3 m=m^{3}$ and $\sum_{H \in \mathcal{H}_{2}} n_{2}(H)=m(m-1) \times 3 m=3 m^{3}-3 m^{2}$.

We make some observations.

1. For any two 1-factors $M$ and $M^{\prime}$ in $K_{m}$, we see that if $M$ and $M^{\prime}$ are disjoint, then $C_{M}(i)$ and $C_{M^{\prime}}(i)$ are also disjoint for all $i \in \mathbb{Z}_{m / 2}$.
2. For all Type 2 edges $\left\{x, x^{\prime}, y\right\}$ in $\left\{C(i, j): i, j \in \mathbb{Z}_{m}\right\},\left\|x-x^{\prime}\right\| \equiv 1$ or 2 $(\bmod 3)$.
3. For all Type 2 edges $\left\{x, x^{\prime}, y\right\}$ in $\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}, M \in \mathcal{F}_{1}\right\}$, $\left\|x-x^{\prime}\right\| \equiv 0(\bmod 3)$.
4. $\left\{h(x, y):(x, y) \in \mathcal{A}_{0}\right\}$ contains only Type 1 edges.
5. $\left\{C_{M}(i), C_{M}^{\prime}(i): i \in \mathbb{Z}_{m / 2}, M \in \mathcal{F}_{2}\right\}$ contains only Type 2 edges.

By these observations, Lemma 1, Lemma 6 and Lemma 7, we see that $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ are both Hamiltonian decompositions of $K_{m, m, m}^{(3)}$, where $m \equiv 0(\bmod 6)$.

Example 5. For $m=6$, the Hamiltonian decomposition $\mathcal{H}_{1}$ consists of $C(i, j)$, where $i, j \in \mathbb{Z}_{6}$ with $C(0,0)$ in Example 1 and $C_{M}(i), C_{M}^{\prime}(i)$ where $i \in \mathbb{Z}_{3}$ and $M=\{03,14,25\}$ in Example 3. The Hamiltonian decomposition $\mathcal{H}_{2}$ consists of $\left\{h(x, y):(x, y) \in \mathcal{A}_{0}\right\}$ and $C_{M}(i), C_{M}^{\prime}(i)$ where $i \in \mathbb{Z}_{3}$ and $M \in\{\{01,25,34\},\{02,31,45\},\{03,42,51\},\{04,53,12\},\{05,14,23\}\}$.

## $3.3 \quad m \equiv 3(\bmod 6)$

For $m \equiv 3(\bmod 6)$, let

$$
\mathcal{H}_{3}=\left\{C^{\prime}(i, j): i, j \in \mathbb{Z}_{m}\right\} \cup\left\{h(x, y):(x, y) \in \mathcal{A}_{0}, x \neq y\right\}
$$

where $\mathcal{A}_{0}=\left\{(x, y) \in \mathbb{Z}_{m}^{2}: x-y \equiv 0(\bmod 3)\right\}$. We calculate the number of edges in $\mathcal{H}_{3}, \sum_{H \in \mathcal{H}_{3}} n_{1}(H)=m^{2} \times 3+\left(m^{2} / 3-m\right) \times 3 m=m^{3}$ and $\sum_{H \in \mathcal{H}_{3}} n_{2}(H)=m^{2} \times(3 m-3)=3 m^{3}-3 m^{2}$.

To show that $\mathcal{H}_{3}$ is a Hamiltonian decomposition of $K_{m, m, m}^{(3)}$, we must show that $\left\{C^{\prime}(i, j): i, j \in \mathbb{Z}_{m}\right\}$ contains all edges of difference types $(x, y),(x+1, y)$, and $(x, y+1)$ for all $x, y \in \mathbb{Z}_{m}$ with $x=y$.

Three edges of the form $\{a, \bar{b}, \overline{\bar{c}}\}$ in $C^{\prime}(i, j)$ for each $i, j \in \mathbb{Z}_{m}$ have difference types

$$
\begin{aligned}
& \left(b_{m-1}-a_{m-1}+i, c_{m-2}-b_{m-1}+i\right)=(i, i+1) \\
& \text { for the edge }\left\{a_{m-1}+j, \overline{b_{m-1}+i+j}, \overline{\overline{c_{m-2}+2 i+j}}\right\} \text {, } \\
& \left(b_{m-1}-a_{m-1}+i, c_{m-1}-b_{m-1}+i\right)=(i, i) \\
& \text { for the edge }\left\{a_{m-1}+j, \overline{b_{m-1}+i+j}, \overline{\overline{c_{m-1}++2 i+j}}\right\} \text {, } \\
& \left(b_{m-1}-a_{0}+i, c_{m-1}-b_{m-1}+i\right)=(i+1, i) \\
& \text { for the edge }\left\{a_{0}+j, \overline{b_{m-1}+i+j}, \overline{\overline{c_{m-1}+2 i+j}}\right\} \text {. }
\end{aligned}
$$

Since each $i, j$ corresponds to $m$ different values of $\mathbb{Z}_{m},\left\{C^{\prime}(i, j): i, j \in \mathbb{Z}_{m}\right\}$ contains all edges of difference type $(i, i),(i+1, i)$ and $(i, i+1)$ as desired.

Thus, $\mathcal{H}_{3}$ is a Hamiltonian decompositions of $K_{m, m, m}^{(3)}$, where $m \equiv 3(\bmod 6)$. The following theorem concludes all the results.
Theorem 1. $K_{m, m, m}^{(3)}$ is decomposable into Hamiltonian cycles if and only if $3 \mid m$.

## 4 Discussion

If $3 \nmid m$, it is reasonable to consider a Hamiltonian decomposition of $K_{m, m, m}^{(3)}-$ $I$ where $I$ is a 1 -factor of $K_{m, m, m}^{(3)}$. When $m$ is even, $m \neq 4$ and $3 \nmid m$, $K_{m, m, m}^{(3)}-I$ has a Hamiltonian decomposition by a combination of Hamiltonian cycles $h(x, y)$ retrieved from [5] and $C_{M}(i), C_{M}^{\prime}(i)$. Thus, the case of $m$ is
odd with $3 \nmid m$ and the case of $m=4$ are still open for investigating the existence of Hamiltonian decomposition of $K_{m, m, m}^{(3)}-I$ where $K_{m, m, m}^{(3)}$ is given by Definition 1.

## Acknowledgement

This research is supported by Science Achievement Scholarship of Thailand (SAST). The authors would like to thank Professor Chis Rodger for his suggestion in the case of $m \equiv 3(\bmod 6)$ during CIMPA research school on Graphs, Codes, and Designs at Ramkhumhaeng University, Bangkok, Thailand.

## References

[1] R.F. Bailey and B. Stevens, Hamiltonian decompositions of complete $k$-uniform hypergraphs, Discrete Math. 310 (2010), 3088-3095.
[2] C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1970.
[3] Jirimutu and J. Wang, Hamiltonian decomposition of complete bipartite $r$-hypergraphs, Acta Math. Appl. Sin. 17 (2001), 563-566.
[4] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory. 30 (1999), 205-212.
[5] J. Kuhl and M.W. Schroeder, Hamilton cycle decompositions of $k$-uniform $k$-partite hypergraphs, Australas. J. Combin. 56 (2013), 23-37.
[6] C.C. Lindner and C.A. Rodger, Design Theory, CRC Press, Boca Raton, 1997.
[7] M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin. 45 (2009), 291-302.
[8] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333-348.
[9] W.D. Wallis, Introduction to Combinatorial Designs, 2nd edition, Chapman \& Hall/CRC, 2007.
[10] B. Xu and J. Wang, On the Hamiltonian cycle decompositions of complete 3-uniform hypergraphs, Electron. Notes Discrete Math. 11 (2002), 722-733.

