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Abstract

With our definition for complete tripartite 3-uniform hypergraphs
which contain two types of edges, we show that complete tripartite 3-
uniform hypergraphs with partite sets of equal size K

(3)
m,m,m is decom-

posable into (tight) Hamiltonian cycles if and only if 3 | m.

1 Introduction

A hypergraph H = (V, E) consists of a nonempty finite set V of vertices with a
family E of subsets of V , called (hyper)edges. If each edge has size k, we say that
H is a k-uniform hypergraph. A Hamiltonian decomposition of a hypergraph
is a partition of the set of edges into mutually disjoint Hamiltonian cycles. A
(tight) Hamiltonian cycle in a k-uniform hypergraph is a cyclic ordering of its
vertices such that each consecutive k-tuple of vertices is an edge. This definition
was introduced by Katona and Kierstead [4], and we will use this definition of
Hamiltonian cycle for this article. The older definition of a Hamiltonian cycle
was given by Berge [2]. The Hamiltonian decomposition of complete 3-uniform
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hypergraphs was completely investigated in 1994 by Verrall [8] using Berge’s
definition. In 2000s, Bailey and Stevens [1], also Meszka and Rosa [7], Xu
and Wang [10], decomposed complete k-uniform hypergraphs using Katona-
Kierstead’s definition and this decomposition problem is still not completed
and involving the aids of computer programming.

Our motivation comes from the problem of decomposing complete bipartite
3-uniform hypergraphs. This was first introduced by Jirimutu and Wang [3]
and was completed later by Xu and Wang [10]. This leads us to extend “bipar-
tite” to “tripartite” and define a complete tripartite 3-uniform hypergraphs as
follows.

Definition 1. The complete tripartite 3-uniform hypergraph has the vertex set
V partitioned into three subsets V0, V1 and V2 and the edge set E such that
E = {e : e ⊆ V, |e| = 3 and |e ∩ Vi| < 3 for all i ∈ {0, 1, 2}}, and denoted by
K

(3)
m,m,m when |V0| = |V1| = |V2| = m.

For convenience, W , W and W are used to denote the vertices of K
(3)
m,m,m

with

V0 = W = {0, 1, . . . , m − 1},
V1 = W = {0, 1, . . . , m − 1},
V2 = W = {0, 1, . . . , m − 1}.

Due to Definition 1, we classify edges of K
(3)
m,m,m into two types:

Type 1 edges are of the form {a, b, c} where a, b, c ∈ Zm ; and
Type 2 edges are of the form {x, x′, y} in which x and x′ are in the same

partite set, and y is in a different partite set. Note that there are six forms
of {x, x′, y}: {a, a′, b}, {a, a′, c}, {b, b′, a}, {b, b′, c}, {c, c′, a} and {c, c′, b} where
a, a′, b, b′, c, c′ ∈ Zm and a �= a′, b �= b′, c �= c′.

In 2013, Kuhl and Schroeder [5] published their results on Hamiltonian
decompositions of complete k-uniform k-partite hypergraphs and completely
found solutions for k = 3. A complete 3-uniform 3-partite hypergraph defined
in [5] by Kuhl and Schroeder consists of all Type 1 edges but no Type 2 edges,
so their hypergraph is a subhypergraph of our K

(3)
m,m,m given by Definition 1.

In some cases, we can use some of their results, that is h(x, y) in Section 2, to
be a part of our Hamiltonian decompositions of K

(3)
m,m,m.

If K
(3)
m,m,m has a Hamiltonian decomposition, then the number of edges of

K
(3)
m,m,m which is equal to

(
3m
3

) − 3
(
m
3

)
must be divisible by 3m. Thus, the

necessary condition is 3 | m. The purpose of this paper is to show that if 3 | m,
then K

(3)
m,m,m has a Hamiltonian decomposition. The proof will be separated

into two cases, m ≡ 0 (mod 6) and m ≡ 3 (mod 6) and a special case m = 3. In
Section 2, we classify four forms of Hamiltonian cycles of K

(3)
m,m,m. These forms

will be combined and the combination becomes a Hamiltonian decomposition
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of K
(3)
m,m,m in Section 3. Finally, conclusion and discussion will be given in

Section 4.

2 Hamiltonian Cycle Constructions

In this section, we provide four forms of a Hamiltonian cycle in K
(3)
m,m,m to be

used through out this article: C(i, j), C ′(i, j), (CM(i) and C ′
M(i)) and h(x, y).

First, let us define a useful notation as follows.

Definition 2. For x, y ∈ Zm, ||x−y|| = min{(x−y)(mod m), (y−x)(mod m)}.

2.1 C(i, j)

For m ≡ 0 (mod 3), define a Hamiltonian cycle of K
(3)
m,m,m, C(i, j) by

C(i, j) =

(a0 + i, b0 + j, c0 + i + j, c1 + i + j, a1 + i, b1 + j, b2 + j, c2 + i + j, a2 + i,

a3 + i, b3 + j, c3 + i + j, c4 + i + j, a4 + i, b4 + j, b5 + j, c5 + i + j, a5 + i,

. . . , am−3 + i, bm−3 + j, cm−3 + i + j, cm−2 + i + j, am−2 + i, bm−2 + j,

bm−1 + j, cm−1 + i + j, am−1 + i),

where i, j ∈ Zm, {a0, a1, . . . , am−1} = Zm, {b0, b1, . . . , bm−1} = Zm, and
{c0, c1, . . . , cm−1} = Zm.

Lemma 1. Let m ≡ 0 (mod 3). Suppose C(0, 0) has properties that ck − bk =
ck′ − bk′ for all k, k′ ∈ Zm with k �= k′, and ||a3k−1 − a3k|| �= ||a3k′−1 −
a3k′||, ||b3k+1− b3k+2|| �= ||b3k′+1 − b3k′+2||, ||c3k− c3k+1|| �= ||c3k′ − c3k′+1|| for
all k, k′ ∈ {0, 1, . . . , m

3
− 1} with k �= k′. Then {C(i, j) : i, j ∈ Zm} is a set of

m2 disjoint Hamiltonian cycles of K
(3)
m,m,m.

Proof. For edges of the form {a, b, c}, we will show that if {ak + i, bk + j,

ck + i + j} = {ak′ + i′, bk′ + j′, ck′ + i′ + j′}, then i = i′, j = j′ and k = k′.
Suppose that {ak + i, bk + j, ck + i + j} = {ak′ + i′, bk′ + j′, ck′ + i′ + j′}

for some i, i′, j, j′, k, k′ ∈ Zm. Then

ak + i ≡ ak′ + i′ (mod m),
bk + j ≡ bk′ + j′ (mod m),

ck + i + j ≡ ck′ + i′ + j′ (mod m).

Since ck − bk = ck′ − bk′ , we get i = i′ and then ak = ak′ . Then j = j′. Hence,
i = i′, j = j′ and k = k′.
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For edges of the form {a, a′, b}, we will show that if {a3k−1 + i, a3k +
i, b3k + j} = {a3k′−1 + i′, a3k′ + i′, b3k′ + j′}, then i = i′, j = j′ and k = k′.

Suppose that {a3k−1 + i, a3k + i, b3k + j} = {a3k′−1 + i′, a3k′ + i′, b3k′ + j′}
for some i, i′, j, j′ ∈ Zm and k, k′ ∈ {0, 1, . . . , m

3 − 1}. Then

a3k−1 + i ≡ a3k′−1 + i′ (mod m),
a3k + i ≡ a3k′ + i′ (mod m),
b3k + j ≡ b3k′ + j′ (mod m),

or
a3k−1 + i ≡ a3k′ + i′ (mod m),

a3k + i ≡ a3k′−1 + i′ (mod m),
b3k + j ≡ b3k′ + j′ (mod m).

Since ||a3k−1 − a3k|| �= ||a3k′−1 − a3k′|| for all k �= k′ but a3k−1 − a3k ≡
a3k′−1−a3k′ (mod m) or a3k−1−a3k ≡ a3k′−a3k′−1 (mod m), we have k = k′.
Then i = i′ and j = j′.

For other edge-forms: {a, a′, c}, {b, b′, c}, {b, b′, a}, {c, c′, a}, {c, c′, b}, we can
prove the same result in a similar manner. Thus, all 3m × m2 edges of
{C(i, j) : i, j ∈ Zm} are distinct and {C(i, j) : i, j ∈ Zm} is a set of m2

disjoint Hamiltonian cycles of K
(3)
m,m,m .

Lemma 2. Let m ≡ 0 (mod 3). Let ci = bi = xi and ai = xi+1 for all i ∈ Zm,
where

x3k =

{
3k/2 if k is even,

(3k + 1)/2 if k is odd,

x3k+1 = 3k + 1,

x3k+2 =

{
�m/2� + 3k/2 if k is even,

�m/2� + (3k + 1)/2 if k is odd,

and k ∈ {0, 1, . . . , m
3 − 1}. Then C(0, 0) has properties as in Lemma 1. More-

over, ||x − x′|| ≡ 1 or 2 (mod 3) for all Type 2 edges of the form {x, x′, y} in
C(0, 0).

Proof. By this setting, we have ck − bk = 0 = ck′ − bk′ for all k, k′ ∈ Zm with
k �= k′. For k ∈ {0, 1, . . . , m

3 − 1},

||a3k−1 − a3k|| = ||x3k − x3k+1|| =

{
(3k + 2)/2 if k is even,

(3k + 1)/2 if k is odd,

||b3k+1 − b3k+2|| = ||x3k+1 − x3k+2|| =

{
�m/2� − (3k + 2)/2 if k is even,

�m/2� − (3k + 1)/2 if k is odd,

||c3k − c3k+1|| = ||x3k − x3k+1|| =

{
(3k + 2)/2 if k is even,

(3k + 1)/2 if k is odd.
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Thus, ||a3k−1 − a3k|| �= ||a3k′−1 − a3k′||, ||b3k+1 − b3k+2|| �= ||b3k′+1 − b3k′+2||,
||c3k− c3k+1|| �= ||c3k′ − c3k′+1|| for all k, k′ ∈ {0, 1, . . . , m

3 −1} with k �= k′ and
||x− x′|| ≡ 1 or 2 (mod 3) for all Type 2 edges of the form {x, x′, y}.
Example 1. Let m = 6. The cycle C(0, 0) in Lemma 2 is

C(0, 0) = (1, 0, 0, 1, 3, 1, 3, 3, 2, 4, 2, 2, 4, 5, 4, 5, 5, 0).

2.2 C ′(i, j)

For odd integer m, define a Hamiltonian cycle of K
(3)
m,m,m , C ′(i, j) by

C ′(i, j) =

(a0 + j, a1 + j, b0 + i + j, b1 + i + j, c0 + 2i + j, c1 + 2i + j,

a2 + j, a3 + j, b2 + i + j, b3 + i + j, c2 + 2i + j, c3 + 2i + j, . . . ,

am−3 + j, am−2 + j, bm−3 + i + j, bm−2 + i + j, cm−3 + 2i + j, cm−2 + 2i + j,

am−1 + j, bm−1 + i + j, cm−1 + 2i + j),

where i, j ∈ Zm, {a0, a1, . . . , am−1} = Zm, {b0, b1, . . . , bm−1} = Zm, and
{c0, c1, . . . , cm−1} = Zm.

A similar argument as in the proof of Lemma 1 can be used to prove
Lemma 3.

Lemma 3. For odd integer m, suppose C ′(0, 0) has properties that a0+cm−1 �=
am−1 + cm−2 (mod m) and ||a2k+1 − a2k|| �= ||a2k′+1 − a2k′ ||, ||b2k+1 − b2k|| �=
||b2k′+1−b2k′||, ||c2k+1−c2k|| �= ||c2k′+1−c2k′|| for all k, k′ ∈ {0, 1, . . . , m−1

2 −1}
with k �= k′. Then {C ′(i, j) : i, j ∈ Zm} is a set of m2 disjoint Hamiltonian
cycles of K

(3)
m,m,m.

Lemma 4. For odd integer m, let ai = bi = xi for all i ∈ Zm, cm−3 = x0,
cm−2 = x1, cm−1 = xm−1 and ci = xi+2 for all i ∈ {0, 1, . . . , m − 4}, where
xm−1 = 1, x2k = m − k, x2k+1 = k + 2, and k ∈ {0, 1, . . . , m−1

2 − 1}. Then
C ′(0, 0) has properties as in Lemma 3. Moreover, bm−1−am−1 = 0, bm−1−a0 =
1, cm−1 − bm−1 = 0, cm−2 − bm−1 = 1.

Proof. By this setting, we have a0 + cm−1 = 1 and am−1 + cm−2 = 3.
For k ∈ {0, 1, . . . , m−1

2 − 1},
||a2k+1 − a2k|| = ||b2k+1 − b2k|| = ||x2k+1 − x2k||

= min{2k + 2, m− (2k + 2)}.
For k ∈ {0, 1, . . . , m−1

2 − 2},
||c2k+1 − c2k|| = ||x2k+3 − x2k+2||

= min{2k + 4, m− (2k + 4)}
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and cm−2 − cm−3 = x1 − x0 = 2.
Since m is odd, {||x2k+1−x2k|| : k ∈ {0, 1, . . . , m−1

2 −1}} = {1, 2, . . . , m−1
2 }.

Thus, a0 + cm−1 �= am−1 + cm−2 (mod m) and ||a2k+1 − a2k|| �= ||a2k′+1 −
a2k′||, ||b2k+1 − b2k|| �= ||b2k′+1 − b2k′||, ||c2k+1 − c2k|| �= ||c2k′+1 − c2k′|| for all
k, k′ ∈ {0, 1, . . . , m−1

2
− 1} with k �= k′.

Example 2. Let m = 9. The cycle C ′(0, 0) in Lemma 4 is

C ′(0, 0) = (0, 2, 0, 2, 8, 3, 8, 3, 8, 3, 7, 4, 7, 4, 7, 4, 6, 5, 6, 5, 6, 5, 0, 2, 1, 1, 1).

2.3 CM (i) and C ′
M(i)

First, consider the case where m is even. We introduce a technique different
from those of 2.1 and 2.2 to construct a family of Hamiltonian cycles which
contain no edges of the form {a, b, c}. This technique requires the knowledge
of 1-factors and orthogonal quasigroups.

Definition 3. Let G be a graph. A 1-factor of G is a subgraph of G in which
every vertex has degree 1. A 1-factorization of G is a partition of an edge set
of G into 1-factors.

Definition 4. (Zn, ◦) is a quasigroup if
(1) i ◦ j ∈ Zn for all i, j ∈ Zn, and
(2) i ◦ j �= i ◦ j′ and i ◦ j �= i′ ◦ j for all i, j ∈ Zn with i �= i′, j �= j′.

Note that the multiplication table of (Zn, ◦) is a Latin square.

Definition 5. (Zn, ◦1) and (Zn, ◦2) are orthogonal if for (i, j) �= (i′, j′) ∈ Z2
n,

i ◦1 j = i′ ◦1 j′ implies i ◦2 j �= i′ ◦2 j′.

Lemma 5 ([6]). There exists a pair of mutually orthogonal Latin squares of
order n for every n �= 2 or 6.

For even integer m, let M = {x0x1, x2x3, x4x5, . . . , xm−2xm−1} be a 1-
factor of a graph with Zm as a vertex set. By Lemma 5, there exists a pair
of orthogonal quasigroups, (Zm/2, ◦1) and (Zm/2, ◦2) for m �= 4 or 12. For
i ∈ Zm/2, define Hamiltonian cycles of K

(3)
m,m,m, CM (i) and C ′

M (i), by

CM (i) = (x0, x1, x2(i◦10), x2(i◦10)+1, x2(i◦20), x2(i◦20)+1,

x2, x3, x2(i◦11), x2(i◦11)+1, x2(i◦21), x2(i◦21)+1, . . . ,

xm−2, xm−1, x2(i◦1
m−2

2 ), x2(i◦1
m−2

2 )+1, x2(i◦2
m−2

2 ), x2(i◦2
m−2

2 )+1)

and

C ′
M(i) = (x1, x0, x2(i◦10)+1, x2(i◦10), x2(i◦20)+1, x2(i◦20),

x3, x2, x2(i◦11)+1, x2(i◦11), x2(i◦21)+1, x2(i◦21), . . . ,

xm−1, xm−2, x2(i◦1
m−2

2 )+1, x2(i◦1
m−2

2 ), x2(i◦2
m−2

2 )+1, x2(i◦2
m−2

2 )).
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Example 3. Let m = 6. The multiplication tables of orthogonal quasigroups
(Z3, ◦1) and (Z3, ◦2) are as follows.

◦1 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

◦2 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Let M = {x0x1, x2x3, x4x5} = {03, 14, 25}. Then

CM (0) = (0, 3, 0, 3, 0, 3, 1, 4, 1, 4, 1, 4, 2, 5, 2, 5, 2, 5),

CM (1) = (0, 3, 1, 4, 2, 5, 1, 4, 2, 5, 0, 3, 2, 5, 0, 3, 1, 4),

CM (2) = (0, 3, 2, 5, 1, 4, 1, 4, 0, 3, 2, 5, 2, 5, 1, 4, 0, 3),

C ′
M (0) = (3, 0, 3, 0, 3, 0, 4, 1, 4, 1, 4, 1, 5, 2, 5, 2, 5, 2),

C ′
M (1) = (3, 0, 4, 1, 5, 2, 4, 1, 5, 2, 3, 0, 5, 2, 3, 0, 4, 1),

C ′
M (2) = (3, 0, 5, 2, 4, 1, 4, 1, 3, 0, 5, 2, 5, 2, 4, 1, 3, 0).

For m = 4 and 12, there are no orthogonal quasigroups (Zm/2, ◦1) and
(Zm/2, ◦2), therefore, CM(i) and C ′

M (i) will be constructed by the following
way.

For m = 4, let M = {x0x1, x2x3}. Then

CM (0) = (x0, x1, x0, x1, x0, x1, x2, x3, x2, x3, x2, x3),
CM (1) = (x0, x1, x3, x2, x3, x2, x2, x3, x1, x0, x1, x0),
C ′

M (0) = (x1, x0, x1, x0, x2, x3, x3, x2, x3, x2, x0, x1),
C ′

M (1) = (x1, x0, x2, x3, x1, x0, x3, x2, x0, x1, x3, x2).

For m = 12, let (Zm/4, ◦3) and (Zm/4, ◦4) be orthogonal quasigroups. For
i ∈ Zm/2, define CM(i) and C ′

M (i) by

CM(i) = (x0, x1, b0(i), b1(i), c0(i), c1(i),

x2, x3, b2(i), b3(i), c2(i), c3(i), . . . ,

xm−2, xm−1, bm−2(i), bm−1(i), cm−2(i), cm−1(i))

and

C ′
M (i) = (x1, x0, b′0(i), b′1(i), c′0(i), c′1(i),

x3, x2, b′2(i), b′3(i), c′2(i), c′3(i), . . . ,

xm−1, xm−2, b
′
m−2(i), b

′
m−1(i), c

′
m−2(i), c

′
m−1(i)),
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where for j, k ∈ {0, 1, . . . , m
4
− 1},

b2k(j) = b m
2 +2k+1(j + m

4 ) = b′2k+1(j) = b′m
2 +2k(j + m

4 ) = x2(j◦3k),

c2k(j) = cm
2 +2k+1(j + m

4 ) = c′2k+1(j + m
4 ) = c′m

2 +2k(j) = x2(j◦4k),

b2k+1(j) = b m
2 +2k(j + m

4 ) = b′2k(j) = b′m
2 +2k+1(j + m

4 ) = x2(j◦3k)+1,

c2k+1(j) = cm
2 +2k(j + m

4
) = c′2k(j + m

4
) = c′m

2 +2k+1(j) = x2(j◦4k)+1,

b2k+1(j + m
4 ) = b m

2 +2k(j) = b′2k(j + m
4 ) = b′m

2 +2k+1(j) = x m
2 +2(j◦3k),

c2k+1(j + m
4 ) = cm

2 +2k(j) = c′2k(j) = c′m
2 +2k+1(j + m

4 ) = x m
2 +2(j◦4k),

b2k(j + m
4 ) = b m

2 +2k+1(j) = b′2k+1(j + m
4 ) = b′m

2 +2k(j) = x m
2 +2(j◦3k)+1,

c2k(j + m
4

) = cm
2 +2k+1(j) = c′2k+1(j) = c′m

2 +2k(j + m
4

) = x m
2 +2(j◦4k)+1.

Lemma 6. For even integer m, given a 1-factor M of a graph with Zm as a
vertex set, {CM(i), C ′

M (i) : i ∈ Zm/2} is a set of m disjoint Hamiltonian cycles
of K

(3)
m,m,m.

Proof. Let M = {x0x1, x2x3, . . . , xm−2xm−1}. Consider the case where m /∈
{4, 12}. For edges of the form {a, a′, b}, we will show that if {x2k, x2k+1,
x2(i◦1k)+j} = {x2k′, x2k′+1, x2(i′◦1k′)+j′}, then i = i′, j = j′ and k = k′.

Suppose that {x2k, x2k+1, x2(i◦1k)+j} = {x2k′, x2k′+1, x2(i′◦1k′)+j′} for some
i, i′, k, k′ ∈ Zm/2 and j, j′ ∈ {0, 1}. Then

2k = 2k′,
2(i ◦1 k) + j = 2(i′ ◦1 k′) + j′.

That is k = k′, j = j′ and i ◦1 k = i′ ◦1 k. Since (Zm/2, ◦1) is a quasigroup,
i = i′.

The proof for edges of the form {a, a′, c} can be done in the same way.
For edges of the form {b, b′, c}, we will show that if {x2(i◦1k), x2(i◦1k)+1,

x2(i◦2k)+j} = {x2(i′◦1k′), x2(i′◦1k′)+1, x2(i′◦2k′)+j′}, then i = i′, j = j′ and
k = k′.

Suppose that {x2(i◦1k), x2(i◦1k)+1, x2(i◦2k)+j} = {x2(i′◦1k′), x2(i′◦1k′)+1,
x2(i′◦2k′)+j′} for some i, i′, k, k′ ∈ Zm/2 and j, j′ ∈ {0, 1}. Then

i ◦1 k = i′ ◦1 k′,

i ◦2 k = i′ ◦2 k′,
j = j′.

Since (Zm/2, ◦1) and (Zm/2, ◦2) are orthogonal quasigroups, we have i = i′ and
k = k′.

The proof for edges of the forms {b, b′, a}, {c, c′, a} and {c, c′, b} can also be
done in the same way. Thus, all 3m × m edges of {CM(i), C ′

M (i) : i ∈ Zm/2}
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are distinct and {CM(i), C ′
M (i) : i ∈ Zm/2} is a set of m disjoint Hamiltonian

cycles of K
(3)
m,m,m.

For m = 4, it is easy to see that CM (0), CM (1), C ′
M (0) and C ′

M (1) are
mutually disjoint Hamiltonian cycles of K

(3)
m,m,m.

For m = 12, consider edges of the form {a, a′, b}: e1 = {x2k, x2k+1, xi}
and e2 = {x m

2 +2k, x m
2 +2k+1, xi}, where k ∈ Zm/4 and i ∈ Zm. Note that

{2(j ◦3 k), 2(j ◦3 k) + 1, m
2 + 2(j ◦3 k), m

2 + 2(j ◦3 k) + 1 : j, k ∈ Zm/4} = Zm by
means of a quasigroup.

If i = 2(j ◦3 k), then e1 ∈ CM(j) and e2 ∈ C ′
M (j + m

4
).

If i = 2(j ◦3 k) + 1, then e1 ∈ C ′
M (j) and e2 ∈ CM(j + m

4 ).
If i = m

2 + 2(j ◦3 k), then e1 ∈ C ′
M (j + m

4 ) and e2 ∈ CM(j).
If i = m

2 + 2(j ◦3 k) + 1, then e1 ∈ CM (j + m
4 ) and e2 ∈ C ′

M (j).
Thus, each edge of the form {a, a′, b} is in a unique Hamiltonian cycle. Also
use this way to show the same result for edges of the form {a, a′, c}.

For edges of the form {b, b′, c}: {x2(j◦3k), x2(j◦3k)+1, xi} (or {x m
2 +2(j◦3k),

x m
2 +2(j◦3k)+1, xi}), we will show that if {x2(j◦3k), x2(j◦3k)+1, xi} = {x2(j′◦3k′),

x2(j′◦3k′)+1, xi′}, then i = i′, j = j′ and k = k′.
Suppose that {x2(j◦3k), x2(j◦3k)+1, xi} = {x2(j′◦3k′), x2(j′◦3k′)+1, xi′} for some

j, j′, k, k′ ∈ Zm/4 and i ∈ Zm. Then

j ◦3 k = j′ ◦3 k′,
i = i′.

There are four possibilities for i: 2(j ◦4 k), 2(j ◦4 k) + 1, m
2 + 2(j ◦4 k) or

m
2 + 2(j ◦4 k) + 1 (also for i′: 2(j′ ◦4 k′), 2(j′ ◦4 k′) + 1, m

2 + 2(j′ ◦4 k′) or
m
2 + 2(j′ ◦4 k′) + 1). Since i = i′, in any cases, we have j ◦4 k = j′ ◦4 k′. The
orthogonality of (Zm/4, ◦3) and (Zm/4, ◦4) implies j = j′ and k = k′.

Edges of the forms {b, b′, a}, {c, c′, a} and {c, c′, b} can be showed in a similar
manner. This completes the proof.

2.4 h(x, y)

For (x, y) ∈ Z2
m, define a Hamiltonian cycle of K

(3)
m,m,m, h(x, y) by

h(x, y) = (0, x, x + y, m− 1, m− 1 + x, m− 1 + x + y, . . . , 1, 1 + x, 1 + x + y).

Kuhl and Schroeder [5] define a difference type of each edge of the form
{a, b, c} to be (b − a, c − b) in modulo m. There are m edges with a specific
difference type. h(x, y) has 3m edges and contains all edges of difference types
(x, y), (x + 1, y) and (x, y + 1).

Note that all m3 edges in K
(3)
m,m,m are classified into m2 distinct difference

types.
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Lemma 7 ([5]). Let m ≡ 0 (mod 3) and A0 = {(x, y) ∈ Z2
m : x − y ≡ 0

(mod 3)}. Then {h(x, y) : (x, y) ∈ A0} is a set of m2/3 disjoint Hamiltonian
cycles of K

(3)
m,m,m.

3 Main Results

Let H be a subhypergraph of K
(3)
m,m,m. Let n1(H) and n2(H) denote the

number of Type 1 and Type 2 edges in H , respectively. Each Hamiltonian cycle
in Section 2, C(i, j), C ′(i, j), (CM (i) and C ′

M(i)) and h(x, y) can be regarded
as a subhypergraph of K

(3)
m,m,m. We count the number of Type 1 edges and

Type 2 edges for each of the four forms of Hamiltonian cycle in Section 2 and
overall edges in K

(3)
m,m,m as shown in the following table.

H n1(H) n2(H) condition
K

(3)
m,m,m m3 3m3 − 3m2 −

C(i, j) m 2m m ≡ 0 (mod 3)
C ′(i, j) 3 3m − 3 m is odd

CM (i), C ′
M(i) 0 3m m is even

h(x, y) 3m 0 −

Let C(0, 0) be a Hamiltonian cycle in Lemma 2 and C ′(0, 0) be a Hamilto-
nian cycle in Lemma 4. We obtain several results as follows.

3.1 m = 3

For m = 3, n1(K
(3)
3,3,3) = 27 and n2(K

(3)
3,3,3) = 54. The sets of Hamilto-

nian cycles C1 = {C(i, j) : i, j ∈ Zm} and C2 = {C ′(i, j) : i, j ∈ Zm}
both have m2 Hamiltonian cycles. We calculate the number of edges in C1,∑

H∈C1
n1(H) = m3 = 27 and

∑
H∈C1

n2(H) = 2m3 = 54, and the number of
edges in C2,

∑
H∈C2

n1(H) = 3m2 = 27 and
∑

H∈C2
n2(H) = 3m3 − 3m2 = 54.

By Lemma 1 and Lemma 3, we can conclude that C1 and C2 are both Hamil-
tonian decompositions of K

(3)
3,3,3.

Example 4. Let C(0, 0) = (0, 0, 0, 1, 1, 1, 2, 2, 2). Then the Hamiltonian de-
composition C1 of K

(3)
3,3,3 obtained from Section 2.1 is shown below.

C(0, 0) = (0, 0, 0, 1, 1, 1, 2, 2, 2),

C(0, 1) = (0, 1, 1, 2, 1, 2, 0, 0, 2),

C(0, 2) = (0, 2, 2, 0, 1, 0, 1, 1, 2),
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C(1, 0) = (1, 0, 1, 2, 2, 1, 2, 0, 0),

C(1, 1) = (1, 1, 2, 0, 2, 2, 0, 1, 0),

C(1, 2) = (1, 2, 0, 1, 2, 0, 1, 2, 0),

C(2, 0) = (2, 0, 2, 0, 0, 1, 2, 1, 1),

C(2, 1) = (2, 1, 0, 1, 0, 2, 0, 2, 1),

C(2, 2) = (2, 2, 1, 2, 0, 0, 1, 0, 1).

3.2 m ≡ 0 (mod 6)

For m ≡ 0 (mod 6), we have two families H1 and H2 of Hamiltonian cycles
forming two Hamiltonian decompositions of K

(3)
m,m,m . First,

H1 = {C(i, j) : i, j ∈ Zm} ∪ {CM (i), C ′
M(i) : i ∈ Zm/2, M ∈ F1},

where F1 is a 1-factorization of a graph G with V (G) = Zm = [0̄]∪ [1̄]∪ [2̄] and
E(G) = {uv : u, v ∈ Zm, ||u − v|| ≡ 0 (mod 3)}. G is isomorphic to 3Km/3,
three copies of Km/3 . Each component consists of vertices in the same class of
modulo 3. Next,

H2 = {h(x, y) : (x, y) ∈ A0} ∪ {CM(i), C ′
M (i) : i ∈ Zm/2, M ∈ F2},

where F2 is a 1-factorization of Km with Zm as a vertex set and A0 = {(x, y) ∈
Z2

m : x − y ≡ 0 (mod 3)}.
Since K2n is factorizable into 2n−1 1-factors [9], we have |F1| = m/3−1 and

|F2| = m− 1. Then we calculate the number of edges in H1,
∑

H∈H1
n1(H) =

m2 × m = m3 and
∑

H∈H1
n2(H) = m2 × 2m + m(m/3 − 1) × 3m = 3m3 −

3m2 and the number of edges in H2,
∑

H∈H2
n1(H) = m2/3 × 3m = m3 and∑

H∈H2
n2(H) = m(m − 1) × 3m = 3m3 − 3m2.

We make some observations.

1. For any two 1-factors M and M ′ in Km, we see that if M and M ′ are
disjoint, then CM (i) and CM ′(i) are also disjoint for all i ∈ Zm/2.

2. For all Type 2 edges {x, x′, y} in {C(i, j) : i, j ∈ Zm}, ||x− x′|| ≡ 1 or 2
(mod 3).

3. For all Type 2 edges {x, x′, y} in {CM (i), C ′
M(i) : i ∈ Zm/2, M ∈ F1},

||x− x′|| ≡ 0 (mod 3).

4. {h(x, y) : (x, y) ∈ A0} contains only Type 1 edges.

5. {CM (i), C ′
M(i) : i ∈ Zm/2, M ∈ F2} contains only Type 2 edges.

By these observations, Lemma 1, Lemma 6 and Lemma 7, we see that H1 and
H2 are both Hamiltonian decompositions of K

(3)
m,m,m , where m ≡ 0 (mod 6).
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Example 5. For m = 6, the Hamiltonian decomposition H1 consists of C(i, j),
where i, j ∈ Z6 with C(0, 0) in Example 1 and CM (i), C ′

M (i) where i ∈ Z3

and M = {03, 14, 25} in Example 3. The Hamiltonian decomposition H2

consists of {h(x, y) : (x, y) ∈ A0} and CM (i), C ′
M(i) where i ∈ Z3 and

M ∈ {{01, 25, 34}, {02, 31, 45}, {03, 42, 51}, {04, 53, 12}, {05, 14, 23}}.

3.3 m ≡ 3 (mod 6)

For m ≡ 3 (mod 6), let

H3 = {C ′(i, j) : i, j ∈ Zm} ∪ {h(x, y) : (x, y) ∈ A0, x �= y}
where A0 = {(x, y) ∈ Z2

m : x − y ≡ 0 (mod 3)}. We calculate the num-
ber of edges in H3,

∑
H∈H3

n1(H) = m2 × 3 + (m2/3 − m) × 3m = m3 and∑
H∈H3

n2(H) = m2 × (3m− 3) = 3m3 − 3m2.

To show that H3 is a Hamiltonian decomposition of K
(3)
m,m,m , we must show

that {C ′(i, j) : i, j ∈ Zm} contains all edges of difference types (x, y), (x+1, y),
and (x, y + 1) for all x, y ∈ Zm with x = y.

Three edges of the form {a, b, c} in C ′(i, j) for each i, j ∈ Zm have difference
types

(bm−1 − am−1 + i, cm−2 − bm−1 + i) = (i, i + 1)

for the edge {am−1 + j, bm−1 + i + j, cm−2 + 2i + j},
(bm−1 − am−1 + i, cm−1 − bm−1 + i) = (i, i)

for the edge {am−1 + j, bm−1 + i + j, cm−1 + +2i + j},
(bm−1 − a0 + i, cm−1 − bm−1 + i) = (i + 1, i)

for the edge {a0 + j, bm−1 + i + j, cm−1 + 2i + j}.
Since each i, j corresponds to m different values of Zm, {C ′(i, j) : i, j ∈ Zm}
contains all edges of difference type (i, i), (i + 1, i) and (i, i + 1) as desired.

Thus, H3 is a Hamiltonian decompositions of K
(3)
m,m,m, where m ≡ 3 (mod 6).

The following theorem concludes all the results.

Theorem 1. K
(3)
m,m,m is decomposable into Hamiltonian cycles if and only if

3 | m.

4 Discussion

If 3 � m, it is reasonable to consider a Hamiltonian decomposition of K
(3)
m,m,m −

I where I is a 1-factor of K
(3)
m,m,m. When m is even, m �= 4 and 3 � m,

K
(3)
m,m,m−I has a Hamiltonian decomposition by a combination of Hamiltonian

cycles h(x, y) retrieved from [5] and CM (i), C ′
M(i). Thus, the case of m is
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odd with 3 � m and the case of m = 4 are still open for investigating the
existence of Hamiltonian decomposition of K

(3)
m,m,m − I where K

(3)
m,m,m is given

by Definition 1.
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