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Abstract

An arithmetic function f is said to be completely multiplicative if
f(1) = 1 and f(mn) = f(m)f(n) for all positive integers m and n.
In this paper, we define that an arithmetic function f is a generalized
completely multiplicative function if f(1) = 1 and there is a completely
multiplicative function fb such that f(mn) = f(m)fb(n)f(n)fb(m) for all
positive integers m and n. We consider some basic structure properties of
these functions. The functions v(n) = nn and ExpD are examples of gen-
eralized completely multiplicative functions, where D is the arithmetic
derivative.

1 Introduction

By an arithmetic function we mean a real-valued function defined on the set
of positive integers. An arithmetic function f is said to be multiplicative if
f(1) = 1 and f(mn) = f(m)f(n) whenever gcd(m,n) = 1, and it is said to be
completely multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all positive
integers m and n. Each completely multiplicative function is multiplicative.
Multiplicative functions are totally determined by their values at prime powers,
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and completely multiplicative functions are totally determined by their values
at primes.

The works of E. T. Bell and R. Vaidyanathaswamy are prominent in the his-
tory of multiplicative type functions, see e.g. [3, 14]. Multiplicative functions
were called factorable functions by E. T. Bell, and completely multiplicative
functions were called linear functions by R. Vaidyanathaswamy. Modern liter-
ature applies the terms multiplicative and completely multiplicative functions.
For material on these functions, see [1, 8, 9, 12, 13].

An arithmetic function f is a generalized multiplicative function if f(1) = 1
and there is a multiplicative function fb such that

f(mn) = f(m)fb(n)f(n)fb(m) (1)

for all positive integers m and n with gcd(m,n) = 1 ([5, 15]). If f(m) is zero
for some m, then fb(n) has to be nonnegative for all n with gcd(m,n) = 1. For
basic properties of generalized multiplicative functions, see [5, 15].

The concept of a generalized multiplicative function suggests we define that
an arithmetic function f is a generalized completely multiplicative function if
f(1) = 1 and there is a completely multiplicative function fb such that (1) holds
for all positive integers m and n. If f is a generalized completely multiplica-
tive function such that fb is identically 1, then f is completely multiplicative.
Conversely, if f is a completely multiplicative function, then it is a generalized
completely multiplicative function such that fb is identically 1. It should be
noted that in the case that f is somewhere zero, fb need not be unique.

The condition (1) implies that f(1) = 0 or f(1) = 1, and further f(1) = 0
implies that f is identically zero. For the sake of brevity, we assume that
f(1) = 1, which means that the function identically zero is not a generalized
completely multiplicative function.

An arithmetic function f is said to be additive if f(mn) = f(m) + f(n)
whenever gcd(m,n) = 1, and it is said to be completely additive if f(mn) =
f(m) + f(n) for all positive integers m and n. Each completely additive func-
tion is additive. For material on additive functions and completely additive
functions, see [7, 9, 10, 11].

An arithmetic function f is said to be a generalized additive function if
there is a multiplicative function fb such that

f(mn) = f(m)fb(n) + f(n)fb(m) (2)

for all positive integers m and n with gcd(m,n) = 1 ([5]). If f is a generalized
additive function such that fb is identically 1, then f is additive. An arithmetic
function f is said to be Leibniz-additive if there is a completely multiplicative
function fb such that (2) for all positive integers m and n ([6]). These functions
could also be termed as generalized completely additive functions. Chawla
[4] refers to generalized additive functions and generalized completely addi-
tive functions (or Leibniz-additive functions) as distributive and completely
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distributive arithmetic functions. For basic properties of generalized additive
functions and generalized completely additive functions, see [4, 5, 6].

Let Ω(n) denote the total number of prime factors of n with Ω(1) = 0, and
let ω(n) denote the number of distinct prime factors of n with ω(1) = 0. Then
Ω is a completely additive function and ω is an additive function . This implies
that the function f(n) = nΩ(n) for all positive integers n is an example of a
generalized completely additive function and the function f(n) = nω(n) for
all positive integers n is an example of a generalized additive function. The
function f(n) = nlog(n) for all positive integers n is another example of a
generalized completely additive function.

The property (2) may be considered a generalized Leibniz rule. The arith-
metic derivative D(n) = n′ is defined as the arithmetic function satisfying the
property D(p) = 1 for all primes p and the usual Leibniz rule

D(mn) = D(m)n+D(n)m

for all positive integers m and n. Thus it satisfies the generalized Leibniz rule
(2) for all positive integers m and n with Db(n) = n. The function Db(n) =
n is completely multiplicative. This implies that the arithmetic derivative
D(n) = n′ is a Leibniz-additive function. For example, it possesses the property
D(pk) = kpk−1 for all primes p and integers k ≥ 0. See [2, 6].

The property (1) may be considered a multiplicative analogue of generalized
Leibniz rule and the property

f(mn) = f(m)nf(n)m (3)

may be considered a multiplicative analogue of Leibniz rule.
In this paper we consider basic structure properties of generalized com-

pletely multiplicative functions, that is, the functions satisfying the multiplica-
tive analogue of generalized Leibniz rule. As an example we show that the
function v(n) = nu(n) is a generalized completely multiplicative function with
vb(n) = u(n), where u is a completely multiplicative function. The function
ExpD is another example of a generalized completely multiplicative function.

2 Properties

Given arithmetic functions g and h, we define the power function gh elemen-
twise as (gh)(n) = g(n)h(n). If g(n) = 0 for some positive integer n, then we
have to assume that h(n) ≥ 0.

Theorem 1. If f is a generalized completely multiplicative function such that
fb(n) 6= 0 for all positive integers n, then the function g defined as g(n) =
f(n)1/fb(n) for all positive integers n is completely multiplicative.
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Proof. Clearly, g(1) = f(1)1/fb(1) = 11/1 = 1. From (1) we obtain

g(mn) = f(mn)
1

fb(mn) = [f(m)fb(n)f(n)fb(m)]
1

fb(m)fb(n)

= f(m)
1

fb(m) f(n)
1

fb(n) = g(m)g(n)

for all positive integers m and n. Thus g = f1/fb is a completely multiplicative
function. �

Theorem 2. If f is a generalized completely multiplicative function such that
fb(n) 6= 0 for all positive integers n, then f can be written in the form

f = gfb ,

where g is a completely multiplicative function.
Conversely, assume that f is an arithmetic function of the form

f = gh, (4)

where g and h are completely multiplicative functions such that if g(n) = 0 for
some positive integer n, then h is always nonnegative. Then f is a generalized
completely multiplicative function with fb = h.

Proof. Let n = q1q2 · · · qr, where q1, q2, . . . , qr are prime numbers (not neces-
sarily distinct). Then

f(n) = f(q1)fb(q2···qr)f(q2 · · · qr)fb(q1) = f(q1)
fb(n)

fb(q1) f(q2 · · · qr)fb(q1) = · · ·

= f(q1)
fb(n)

fb(q1) · · · f(qr)
fb(n)

fb(qr) = [f(q1)
1

fb(q1) · · · f(qr)
1

fb(qr) ]fb(n).

Defining g as

g(n) = f(q1)
1

fb(q1) · · · f(qr)
1

fb(qr)

we see that f(n) = g(n)fb(n) for all positive integers n, that is, f = gfb , where
g is completely multiplicative.

Conversely, assume that f is of the form (4). Then, for all positive integers
m and n,

f(mn) = [g(mn)]h(mn) = [g(m)g(n)]h(m)h(n)

= [g(m)h(m)]h(n)[g(n)h(n)]h(m) = f(m)h(n)f(n)h(m).

This completes the proof. �
Theorem 2 shows that each generalized completely multiplicative function

f such that fb is always nonzero can be represented as a pair of two completely
multiplicative functions g and h; we write f = (g, h) = (fa, fb). This means
that f = gh = ffba .
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Example 1. All functions f satisfying the multiplicative Leibniz property

f(mn) = f(m)nf(n)m

are of the form f(n) = g(n)n, where g is a completely multiplicative function.
Thus, f = (g,N), where N(n) = n for all positive integers n.

Theorem 3. If f is a generalized completely multiplicative function such that
f(p) 6= 0,±1 and fb(p) 6= 0 for all primes p, then the representation f =
(g, h) = (fa, fb) is unique.

Proof. Let f = (g1, h1) = (g2, h2). If p is a prime, then

f(p) = g1(p)h1(p) = g2(p)h2(p), f(p2) = f(p)2h1(p) = f(p)2h2(p),

and thus g1(p) = g2(p) and h1(p) = h2(p). This completes the proof. �
A completely multiplicative function f is totally determined by its values

at primes. Next theorem shows that a generalized completely multiplicative
function f is totally determined by the values of f and fb at primes.

Theorem 4. A generalized completely multiplicative function f is totally de-
termined by the values of f and fb at primes. In fact, if n = q1q2 · · · qr, where
q1, q2, . . . , qr are prime numbers, then

f(n) =

r∏
i=1

f(qi)
fb(q1)···fb(qi−1)fb(qi+1)···fb(qr).

If fb is always nonzero, then

f(n) =

[
r∏
i=1

f(qi)
1

fb(qi)

]fb(n)
.

If n = pn1
1 · · · pns

s , where p1, . . . , ps are distinct primes, and fb is always nonzero,
then

f(n) =

[
s∏
i=1

f(pi)
ni

fb(pi)

]fb(n)
.

Proof. Similar to the proof of Theorem 2. �

Theorem 5. Assume that f is a generalized completely multiplicative function
and u is a completely multiplicative function such that if f(n) = 0 for some
positive integer n, then u is always nonnegative. Then the function fu defined
by fu(n) = f(n)u(n) is a generalized completely multiplicative function with
(fu)b = fbu.
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Proof. For all positive integers m and n,

(fu)(mn) = f(mn)u(mn) = [f(m)fb(n)f(n)fb(m)]u(m)u(n)

= (fu)(m)(fbu)(n)(fu)(n)(fbu)(m).

Thus fu is a generalized completely multiplicative function with (fu)b = fbu.
�

Example 2. Assume that f and u are completely multiplicative functions such
that if f(n) = 0 for some positive integer n, then u is always nonnegative. Then
the function fu is not necessarily a completely multiplicative function but ac-
cording to Theorem 5 it is a generalized completely multiplicative function. For
example, the function v(n) = nu(n) is a generalized completely multiplicative
function with vb(n) = u(n), where u is a completely multiplicative function. In
particular, the function v(n) = nn is not a completely multiplicative function
but it is a generalized completely multiplicative function with vb(n) = n. Also
the function v(n) = nλ(n) is not a completely multiplicative function but it is
a generalized completely multiplicative function with vb(n) = λ(n), where λ is
Liouville’s function.

If f is a completely multiplicative function and u is a completely multiplica-
tive function with positive integer values, then their composite function f ◦ u
is completely multiplicative. In fact, for all positive integers m and n,

(f ◦ u)(mn) = f(u(m)u(n)) = f(u(m))f(u(n)) = (f ◦ u)(m)(f ◦ u)(n).

In next theorem we apply this result to provide a generalization with respect
to f .

Theorem 6. If f is a generalized completely multiplicative function and u
is a completely multiplicative function with positive integer values, then their
composite function f ◦ u is generalized completely multiplicative function with
(f ◦ u)b = fb ◦ u.

Proof. For all positive integers m and n,

(f ◦ u)(mn) = f(u(mn)) = f(u(m)u(n)) = f(u(m))fb(u(n))f(u(n))fb(u(m))

= (f ◦ u)(m)(fb◦u)(n)(f ◦ u)(n)(fb◦u)(m).

Now, the result follows, since fb◦u is completely multiplicative. This completes
the proof. �

If f is a completely multiplicative function with positive values, then the
function Logf defined as (Logf)(n) = log(f(n)) is completely additive, where
log is the natural logarithm of a real number. Conversely, if f is a completely
additive function, then the function Expf defined as (Expf)(n) = exp(f(n)) is
completely multiplicative, where exp is the real exponential function. See [11].
Next theorem generalizes this result.
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Theorem 7. If f is a generalized completely multiplicative function with posi-
tive values, then the function Logf is a generalized completely additive function
with (Logf)b = fb.

Conversely, if f is a generalized completely additive function, then the func-
tion Expf is a generalized completely multiplicative function with (Expf)b = fb.

Proof. If f is a generalized completely multiplicative function with positive
values, then

f(mn) = f(m)fb(n)f(n)fb(m)

for all positive integers m and n, and thus

log(f(mn)) = fb(n) log(f(m)) + fb(m) log(f(n))

or
(Logf)(mn) = fb(n)(Logf)(m) + fb(m)(Logf)(n).

This proves the first part of the theorem.
Conversely, if f is a generalized completely additive function, then

f(mn) = fb(n)f(m) + fb(m)f(n)

for all positive integers m and n, and thus

exp(f(mn)) = (exp(f(m)))fb(n)(exp(f(n)))fb(m)

or
(Expf)(mn) = ((Expf)(m))fb(n)((Expf)(n))fb(m).

This proves the second part of the theorem. �

Example 3. If D is the arithmetic derivative, then the function ExpD is the
generalized completely multiplicative function such that g(p) = (ExpD)a(p) =
exp(1/p) and h(p) = (ExpD)b(p) = p in Theorem 2. The function ExpD
may be considered a multiplicative analogue of the arithmetic derivative. For
example, (ExpD)(pk) = exp(kpk−1) = (exp(pk−1))k. According to Theorem 7,
(ExpD)b(n) = n, and thus ExpD satisfies the multiplicative analogue of Leibniz
rule (3).
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