EDGE-ODD GRACEFUL LABELINGS OF SOME PRISMS AND PRISM-LIKE GRAPHS.

Ratinan Boonklurb ${ }^{1}$, Sirirat Singhun ${ }^{2}$
and
Akkaporn Wongpradit ${ }^{3}$
${ }^{1}$ Department of Math. and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: ratinan.b@chula.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
e-mail: sin_sirirat@ru.ac.th
${ }^{3}$ The Demonstration School, Silpakorn University, Sanamchandra Palace Campus, Nakhon Phathom 73000, Thailand
e-mail: aw_np@hotmail.com

Abstract

A simple graph G with q edges is called an edge-odd graceful graph, EOGG, if there is a bijection f from the edge set of the graph to the set $\{1,3,5, \ldots, 2 q-1\}$ such that, when each vertex is assigned the sum of all values of the edges incident to it modulo $2 q$, the resulting vertex labels are distinct.

In this paper, we define new graphs called a prism of $\operatorname{star} S_{n}, \operatorname{Prism}\left(S_{n}\right)$, a prism-like graph, $\operatorname{Prism}_{3}\left(S_{n}\right)$, and a prism of wheel graph $W_{n}, \operatorname{Prism}\left(W_{n}\right)$. We give necessary conditions on n that force these graphs to be EOGG, namely, (i) if $n \geq 3$, then $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG; (ii) if $n \geq 3$ and $n \equiv 2(\bmod 6)$, then $\operatorname{Prism}_{3}\left(S_{n}\right)$ is an EOGG; (iii) if $n \geq 3$ and $2 \mid n$, then $\operatorname{Prism}\left(W_{n}\right)$ is an EOGG.

[^0]
1 Introduction

Let G be a simple graph with q edges. In this article, we let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. In 1967, Rosa [3] gave a definition of a graceful labeling of G which is an injection f from $V(G)$ to the set $\{0,1,2, \ldots, q\}$ such that each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. In 1991, Gnanojothi [2] introduced an odd-graceful labeling concept for a graph, that is an injection f from $V(G)$ to the set $\{0,1,2, \ldots, 2 q-1\}$ such that, when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edges labels are in the set $\{1,3,5, \ldots, 2 q-1\}$. In 2009, Solairaju and Chithra [6] reversed the concepts of those two previous vertex labelings by defining an edge-odd graceful labeling as the following.

Definition 1.1. Let G be a simple graph an edge-odd graceful labeling of G is a bijection f from $E(G)$ to the set $\{1,3,5, \ldots, 2 q-1\}$ so that the induced mapping f^{+}from $V(G)$ to the set $\{0,1,2, \ldots, 2 q-1\}$ given by $f^{+}(x)=\sum f(x y)$ $(\bmod 2 q)$ where the vertex x is adjacent to the vertex y. The edge labels and vertex labels are distinct. A graph that admitted an edge-odd graceful labeling is called an edge-odd graceful graph denoted by EOGG.
Solairaju and Chithra [6] showed edge-odd graceful labelings of graphs related to paths. Later, Singhun [4] showed edge-odd graceful labelings of graphs related to cycles, $S F(n, m)$, where n is an odd integer and m is an even integer such that $n \geq 3$ and $n \mid m$ and a wheel graph W_{n}, where n is even. In 2013, Boonklurb et. al. [1] showed edge-odd graceful labelings of prism of cycle C_{n}, where $n \geq 3$ and $\operatorname{Shaft}(n, 1)$, where $n \geq 3$ and $n \equiv 1(\bmod 2)$. Note that $\operatorname{Shaft}(n, 1)$ is a graph consists of 2 copies of wheel graphs joining at the middle. Here, we define new graphs from star, S_{n}, and wheel, W_{n}. Thus, for ease of reference, we give definitions of them as follow.

Definition 1.2. Let $n \in \mathbb{N}$. A complete bipartite $K_{1, n}$ is called star, denoted by S_{n}.

In this article, we usually let the first partite with one element be $\{u\}$ and the second partite with n elements be $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$.

Definition 1.3. A wheel graph W_{n} is a graph with $n+1$ vertices obtained by connecting a single vertex u to all vertices of a cycle $u_{1} u_{2} u_{3} \cdots u_{n} u_{1}$. Then, the vertex set of W_{n} is the set $\left\{u, u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ and the edge set of W_{n} is the set $\left\{u u_{i} \mid i \in\{1,2,3, \ldots, n\}\right\} \cup\left\{u_{i} u_{i+1} \mid i \in\{1,2,3, \ldots, n-1\}\right\} \cup\left\{u_{1} u_{n}\right\}$.

In Section 2, a prism of star, $\operatorname{Prism}\left(S_{n}\right)$, is defined, algorithms for constructing edge-odd graceful labelings are given and we can prove that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG for $n \geq 3$. In Section 3, we extend the idea of prism to a prism-like graph by defining $\operatorname{Prism}_{3}\left(S_{n}\right)$. After that, we can show that if $n \geq 3$ and $n \equiv 2$ $(\bmod 6)$, then we can be able to label the edge of $\operatorname{Prism}_{3}\left(S_{n}\right)$ in such a way that $\operatorname{Prism}_{3}\left(S_{n}\right)$ is an EOGG. In Section 4, we give a definition of a prism of
wheel, $\operatorname{Prism}\left(W_{n}\right)$. If we impose the conditions: $n \geq 3$ and $n \equiv 0(\bmod 2)$, then we can find an algorithm for labeling $\operatorname{Prism}\left(W_{n}\right)$ and can prove that this labeling is an edge-odd graceful labeling for $\operatorname{Prism}\left(W_{n}\right)$. In the last section, we give a conclusion of our results and some discussion on the on-going research.

2 Prism of star

Definition 2.1. For $n \geq 3$. Let S_{n} be a star and S_{n}^{\prime} be a copy of S_{n}. Define $\operatorname{Prism}\left(S_{n}\right)$, called the prism of S_{n}, by joining u of S_{n} to the corresponding vertex u^{\prime} of S_{n}^{\prime} and each u_{i} of S_{n} to the corresponding vertex u_{i}^{\prime} of S_{n}^{\prime} for all $i \in\{1,2,3, \ldots, n\}$. Thus,

$$
E\left(\operatorname{Prism}\left(S_{n}\right)\right)=E\left(S_{n}\right) \cup E\left(S_{n}^{\prime}\right) \cup\left\{u_{i} u_{i}^{\prime} \mid i \in\{1,2,3, \ldots, n\}\right\} \cup\left\{u u^{\prime}\right\}
$$

Figure 1: $\operatorname{Prism}\left(S_{4}\right)$
Note that, $\operatorname{Prism}\left(S_{n}\right)$ can be called a book graph. Solairaju et.al. [5] gave algorithms to construct an edge-odd graceful labeling for book graphs without rigorous proofs. The following algorithms are different from those given in [5] and later we give rigorous proofs to show that the labelings from the following algorithms are edge-odd graceful labelings for $\operatorname{Prism}\left(S_{n}\right)$.

Algorithm 2.1. If $n=3$, we label each edge as shown in Figure 2.

Figure 2: Edge-labelings for $\operatorname{Prism}\left(S_{3}\right)$

Algorithm 2.2. Let $n \geq 4$ and $n \equiv 0(\bmod 2)$. Then, $q=\left|E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right|=$ $3 n+1$. Define $f: E\left(\operatorname{Prism}\left(\left(S_{n}\right)\right) \rightarrow\{1,3,5, \ldots, 6 n+1\}\right.$ by
i $f\left(u_{i} u_{i}^{\prime}\right)=2 i-1$, for $i \in\{1,2,3, \ldots, n\}$;
ii $f\left(u_{i} u\right)=2 n+4 i-3$, for $i \in\{1,2,3, \ldots, n\}$;
iii $f\left(u_{i}^{\prime} u^{\prime}\right)=2 n+4 i-1$, for $i \in\{1,2,3, \ldots, n\}$;
iv $f\left(u u^{\prime}\right)=6 n+1$.

Figure 3: Edge-labelings for $\operatorname{Prism}\left(S_{6}\right)$
For an odd integer n such that $n>3$, we separate it into 3 cases as follow.
Algorithm 2.3. Let $n>3$ and $n \equiv 5(\bmod 6)$. Then, $q=\left|E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right|=$ $3 n+1$. Define $f: E\left(\operatorname{Prism}\left(\left(S_{n}\right)\right) \rightarrow\{1,3,5, \ldots, 6 n+1\}\right.$ by
i $f\left(u_{i} u_{i}^{\prime}\right)=2 n+2 i-1$, for $i \in\{1,2,3, \ldots, n\}$;
ii $f\left(u_{n} u\right)=1$;
iii $f\left(u_{i} u\right)=2 i+1$, for $i \in\{1,2,3, \ldots, n-1\}$;
iv $f\left(u_{i}^{\prime} u^{\prime}\right)=4 n+2 i-1$, for $i \in\{1,2,3, \ldots, n\}$;
v $f\left(u u^{\prime}\right)=6 n+1$.

Figure 4: Edge-labelings for $\operatorname{Prism}\left(S_{5}\right)$

Algorithm 2.4. Let $n>3$ and $n \equiv 1(\bmod 6)$. Then, $q=\left|E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right|=$ $3 n+1$. Define $f: E\left(\operatorname{Prism}\left(\left(S_{n}\right)\right) \rightarrow\{1,3,5, \ldots, 6 n+1\}\right.$ by
i $f\left(u_{i} u_{i}^{\prime}\right)=4 n+2 i+1$, for $i \in\{1,2,3, \ldots, n\} ;$
ii $f\left(u_{i} u\right)=2 i+1$, for $i \in\{1,2,3, \ldots, n\}$;
iii $f\left(u_{1}^{\prime} u^{\prime}\right)=1$;
iv $f\left(u_{i}^{\prime} u^{\prime}\right)=2 n+2 i+1$, for $i \in\{2,3,4, \ldots, n\}$;
v $f\left(u u^{\prime}\right)=2 n+3$.

Figure 5: Edge-labelings for $\operatorname{Prism}\left(S_{7}\right)$

Algorithm 2.5. Let $n>3$ and $n \equiv 3(\bmod 6)$. Then, $q=\left|E\left(\operatorname{Prism}\left(S_{n}\right)\right)\right|=$ $3 n+1$. Define $f: E\left(\operatorname{Prism}\left(\left(S_{n}\right)\right) \rightarrow\{1,3,5, \ldots, 6 n+1\}\right.$ by
i $f\left(u_{i} u_{i}^{\prime}\right)=4 n+2 i+1$, for $i \in\{1,2,3, \ldots, n\}$;
ii $f\left(u_{i} u\right)=2 i+1$, for $i \in\{1,2,3, \ldots, n\}$;
iii $f\left(u_{i}^{\prime} u^{\prime}\right)=2 n+2 i+1$, for $i \in\{1,2,3, \ldots, n\}$;
iv $f\left(u u^{\prime}\right)=1$.

Figure 6: Edge-labelings for $\operatorname{Prism}\left(S_{9}\right)$

Lemma 2.1. $\operatorname{Prism}\left(S_{3}\right)$ is an $E O G G$.

Figure 7: The vertex-labeling for $\operatorname{Prism}\left(S_{3}\right)$ induced by Figure 2

Proof. The vertex labeling of $\operatorname{Prism}\left(S_{3}\right)$ induced by the edge labeling given in Algorithm 2.1 is shown in Figure 7. Therefore, the function f defined in Algorithm 2.1 is an edge-odd graceful labeling and this implies that Prism $\left(S_{3}\right)$ is an EOGG.

Lemma 2.2. If $n \geq 3$ and $n \equiv 0(\bmod 2)$, then $\operatorname{Prism}\left(S_{n}\right)$ is an $E O G G$.
Proof. From Algorithm 2.2(i-iv), the edge labels are arranged in the set $\{1,3,5$, $\ldots, 2 n-1\},\{2 n+1,2 n+5,2 n+9, \ldots, 6 n-3\},\{2 n+3,2 n+7,2 n+11, \ldots, 6 n-1\}$, and $\{6 n+1\}$, respectively. Then, f is a bijection from $E\left(\operatorname{Prism}\left(S_{n}\right)\right)$ to $\{1,3,5, \ldots, 6 n-1\}$.

Next, from Algorithm 2.2, we have $f^{+}\left(u_{i}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2)=2 n+6 i-4(\bmod 6 n+2)$ for
$i \in\{1,2,3, \ldots, n\}$;
$f^{+}\left(u_{i}^{\prime}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2)=2 n+6 i-2(\bmod 6 n+2)$ for
$i \in\{1,2,3, \ldots, n\}$;
$f^{+}(u)=\left(\left(\sum_{i=1}^{n} f\left(u_{i} u\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(4 n^{2}+5 n+1\right)(\bmod 6 n+2)$; $f^{+}\left(u^{\prime}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(4 n^{2}+7 n+1\right)(\bmod 6 n+2)$.

Since n is even, we can see from the division algorithm easily that there is an integer t for which $f^{+}(u)=\left(4 n^{2}+5 n+(6 n+2) t\right)+1$. Thus, $f^{+}(u)$ is an odd integer. Similarly, we can use the division algorithm to prove that $f^{+}\left(u^{\prime}\right)$ is an odd integer and $f^{+}\left(u_{i}\right)$ and $f^{+}\left(u_{i}^{\prime}\right)$ are even integers. Since the sequences $\{6 i-4\}_{i=1}^{n}$ and $\{6 i-2\}_{i=1}^{n}$ are all distinct, it clearly that $\left\{f^{+}\left(u_{i}\right)\right\}_{i=1}^{n}$ and $\left\{f^{+}\left(u_{i}^{\prime}\right)\right\}_{i=1}^{n}$ are also distinct.

Next, we will show that $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct. Suppose in the contrary that $f^{+}(u) \equiv f^{+}\left(u^{\prime}\right)(\bmod 6 n+2)$. Then, $4 n^{2}+5 n+1 \equiv 4 n^{2}+$ $7 n+1(\bmod 6 n+2)$. This implies that $2 n \equiv 0(\bmod 6 n+2)$, which is a contradiction. Thus, for all $i \in\{1,2,3, \ldots, n\}, f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are all distinct and they are in $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function f defined in Algorithm 2.2 is an edge-odd graceful labeling and this implies that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG.

Lemma 2.3. If $n \geq 3$ and $n \equiv 5(\bmod 6)$, then $\operatorname{Prism}\left(S_{n}\right)$ is an $E O G G$.

Proof. From Algorithm 2.3(i-v), the edge labels are arranged in the set $\{2 n+$ $1,2 n+3,2 n+5, \ldots, 4 n-1\},\{1\},\{3,5,7, \ldots, 2 n-1\},\{4 n+1,4 n+3,4 n+$ $5, \ldots, 6 n-1\}$ and $\{6 n+1\}$, respectively. Then, f is a bijection from $E\left(\operatorname{Prism}\left(S_{n}\right)\right)$ to $\{1,3,5, \ldots, 6 n-1\}$.

Next, from Algorithm 2.3, we have
$f^{+}\left(u_{i}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2)=2 n+4 i$, for $i \in\{1,2,3, \ldots, n-1\}$; $f^{+}\left(u_{n}\right)=4 n ;$
$f^{+}\left(u_{i}^{\prime}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2)=4 i-4$, for $i \in\{1,2,3, \ldots, n\}$;
$f^{+}(u)=\left(\left(\sum_{i=1}^{n} f\left(u_{i} u\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(n^{2}-1\right)(\bmod 6 n+2)$;
$f^{+}\left(u^{\prime}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(5 n^{2}-1\right)(\bmod 6 n+2)$.
Since $n=6 k-1$ for some $k \in \mathbb{N}, f^{+}\left(u_{i}\right)=2(6 k-1)+4 i=4(3 k+i-1)+2$ for all $i \in\{1,2,3, \ldots, n-1\}$. Then, $4 \nmid f^{+}\left(u_{i}\right)$. However, $4 \mid f^{+}\left(u_{i}^{\prime}\right)$ for all $i \in\{1,2,3, \ldots, n\}, 4 \mid f^{+}\left(u_{n}\right)$, and $\max _{1 \leq i \leq n}\left\{f^{+}\left(u_{i}^{\prime}\right)\right\}=4 n-4$. We can conclude that $\left\{f^{+}\left(u_{i}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ and $\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ are disjoint. Since $n=6 k-1$ for some $k \in \mathbb{N}$, we can use the division algorithm to prove that $4 \mid f^{+}(u)$ and $4 \mid f^{+}\left(u^{\prime}\right)$. Then, to complete the prove, we will show that the values of $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ under the integer modulo $6 n+2$ are greater than $4 n$.

Let k be an integer such that $n=6 k-1$, then $6 n+2=36 k-4, n^{2}-$ $1=36 k^{2}-12 k$ and $5 n^{2}-1=180 k^{2}-60 k+4$. Thus, $f^{+}(u)=\left(36 k^{2}-\right.$ $12 k)(\bmod 36 k-4)=28 k-4>24 k-4=4 n$, and $f^{+}\left(u^{\prime}\right)=\left(5 n^{2}-\right.$ 1) $(\bmod 6 n+2)=32 k-4>24 k-4=4 n$. Hence, for all $i \in\{1,2,3, \ldots, n\}$, $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are in $\{0,1,2, \ldots, 6 n+$ $1\}$. Therefore, the function f defined in Algorithm 2.3 is an edge-odd graceful labeling and this implies that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG.

Lemma 2.4. If $n \geq 3$ and $n \equiv 1(\bmod 6)$, then $\operatorname{Prism}\left(S_{n}\right)$ is an $E O G G$.
Proof. From Algorithm 2.4(i-iv), the edge labels are arranged in the set $\{4 n+$ $3,4 n+5,4 n+7, \ldots, 6 n+1\},\{3,5,7, \ldots, 2 n+1\},\{1\},\{2 n+5,2 n+7,2 n+$ $9, \ldots, 4 n+1\}$ and $\{2 n+3\}$, respectively. Then, f is a bijection from $E\left(\operatorname{Prism}\left(S_{n}\right)\right)$ to $\{1,3,5, \ldots, 6 n-1\}$.

Next, from Algorithm 2.4, we have
$f^{+}\left(u_{i}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2)=(4 n+4 i+2)(\bmod 6 n+2)$,
for $i \in\{1,2,3, \ldots, n\}$;
$f^{+}(u)=\left(\left(\sum_{i=1}^{n} f\left(u_{i} u\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(n^{2}+4 n+3\right)(\bmod 6 n+2) ;$
$f^{+}\left(u_{1}^{\prime}\right)=4 n+4 ;$
$f^{+}\left(u_{i}^{\prime}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2)=4 i$, for $i \in\{2,3,4, \ldots, n\}$;
$f^{+}\left(u^{\prime}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2)$.
Since $n=6 k+1$ for some $k \in \mathbb{N}$,
$\left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{1,2,3, \ldots, \frac{n-1}{2}\right\}\right.\right\} \cup\left\{f^{+}\left(u_{i}\right) \left\lvert\, i \in\left\{\frac{n+1}{2}, \frac{n+3}{2}, \frac{n+5}{2}, \ldots, n\right\}\right.\right\}$
$=\{4 n+6,4 n+10,4 n+14, \ldots, 6 n\} \cup\{2,6,10, \ldots, 2 n\}$
$=\{24 k+10,24 k+14,24 k+18, \ldots, 36 k+6\} \cup\{2,6,10, \ldots, 12 k+2\}$ and
$\left\{f^{+}\left(u_{i}^{\prime}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$

$$
=\{8,12,16, \ldots, 4 n, 4 n+4\}=\{8,12,16, \ldots, 24 k+4,24 k+8\}
$$

Since $n=6 k+1$ for some $k \in \mathbb{N}$, we have $6 n+2=36 k+8, n^{2}+4 n+3=$ $36 k^{2}+36 k+8 \equiv 28 k+8(\bmod 36 k+8)$ and $3 n^{2}+2 n+1=108 k^{2}+48 k+6 \equiv$ $24 k+6(\bmod 36 k+8)$. Then, $f^{+}(u)=28 k+8$ and $f^{+}\left(u^{\prime}\right)=24 k+6$. Hence, for all $i \in\{1,2,3, \ldots, n\}, f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are in $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function f defined in Algorithm 2.4 is an edge-odd graceful labeling and this implies that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG.

Lemma 2.5. If $n \geq 3$ and $n \equiv 3(\bmod 6)$, then $\operatorname{Prism}\left(S_{n}\right)$ is an $E O G G$.
Proof. From Algorithm 2.5, the edge labels are arranged in the set $\{4 n+3,4 n+$ $5,4 n+7, \ldots, 6 n+1\} \cup\{3,5,7, \ldots, 2 n+1\} \cup\{2 n+3,2 n+5,2 n+7, \ldots, 4 n+1\} \cup\{1\}$, respectively. Then f is a bijection from $E\left(\operatorname{Prism}\left(S_{n}\right)\right)$ to $\{1,3,5, \ldots, 6 n-1\}$.

Next, from Algorithm 2.5, we have
$f^{+}\left(u_{i}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i} u\right)\right)(\bmod 6 n+2)=(4 n+4 i+2)(\bmod 6 n+2)$, for
$i \in\{1,2,3, \ldots, n\}$;
$f^{+}(u)=\left(\left(\sum_{i=1}^{n} f\left(u_{i} u\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(n^{2}+2 n+1\right)(\bmod 6 n+2)$;
$f^{+}\left(u_{i}^{\prime}\right)=\left(f\left(u_{i} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)\right)(\bmod 6 n+2)=4 i$, for $i \in\{1,2,3, \ldots, n\}$;
$f^{+}\left(u^{\prime}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)\right)+f\left(u u^{\prime}\right)\right)(\bmod 6 n+2)=\left(3 n^{2}+2 n+1\right)(\bmod 6 n+2)$.
Since $n=6 k+3$ for some $k \in \mathbb{N}$, the similar argument as in Lemma 2.4 can show that $f^{+}\left(u_{i}\right), f^{+}\left(u_{i}^{\prime}\right), f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct and they are subsets of $\{0,1,2, \ldots, 6 n+1\}$. Therefore, the function f defined in Algorithm 2.5 is an edge-odd graceful labeling and this implies that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG.

The results from those of Lemma 2.1-2.5 can be concluded as the following theorem.

Theorem 2.1. The $\operatorname{Prism}\left(S_{n}\right)$ is an $E O G G$ for every $n \geq 3$.

Figure 8: The vertex-labeling for $\operatorname{Prism}\left(S_{6}\right)$ induced by Algorithm 2.2

Figure 9: The vertex-labeling for $\operatorname{Prism}\left(S_{5}\right)$ induced by Algorithm 2.3

Figure 10: The vertex-labeling for $\operatorname{Prism}\left(S_{7}\right)$ induced by Algorithm 2.4

Figure 11: The vertex-labeling for $\operatorname{Prism}\left(S_{9}\right)$ induced by Algorithm 2.5

3 Prism-like graph

In this section, we give a definition of $\operatorname{Prism}_{3}\left(S_{n}\right)$ and an algorithm of each edge labeling of $\operatorname{Prism}_{3}\left(S_{n}\right)$ for $n \geq 3$ and $n \equiv 2(\bmod 6)$. After that we prove
that the labeling given in this algorithm is an edge-odd graceful labeling.
Definition 3.1. For $n \geq 3$, let $S_{n}^{(1)}$ be a star and $S_{n}^{(2)}$ and $S_{n}^{(3)}$ be copies of $S_{n}^{(1)}$. Define $\operatorname{Prism}_{3}\left(S_{n}\right)$ by joining $u^{(1)}$ of $S_{n}^{(1)}$ to the corresponding vertex $u^{(2)}$ of $S_{n}^{(2)}, u^{(2)}$ of $S_{n}^{(2)}$ to the corresponding vertex $u^{(3)}$ of $S_{n}^{(3)}$, each $u_{i}^{(1)}$ of $S_{n}^{(1)}$ to the corresponding vertex $u_{i}^{(2)}$ of $S_{n}^{(2)}$, and each $u_{i}^{(2)}$ of $S_{n}^{(2)}$ to the corresponding vertex $u_{i}^{(3)}$ of $S_{n}^{(3)}$ for all $i \in\{1,2,3, \ldots, n\}$. Thus,

$$
\begin{gathered}
E\left(\operatorname{Prism}_{3}\left(S_{n}\right)\right)=E\left(S_{n}^{(1)}\right) \cup E\left(S_{n}^{(2)}\right) \cup E\left(S_{n}^{(3)}\right) \cup\left\{u_{i}^{(1)} u_{i}^{(2)} \mid i \in\{1,2,3, \ldots, n\}\right\} \\
\cup\left\{u_{i}^{(2)} u_{i}^{(3)} \mid i \in\{1,2,3, \ldots, n\}\right\} \cup\left\{u^{(1)} u^{(2)}\right\} \cup\left\{u^{(2)} u^{(3)}\right\} .
\end{gathered}
$$

Algorithm 3.1. Let $n \geq 3$ be an integer and $n \equiv 2(\bmod 6)$. We can easily obtain that $q=\left|E\left(\operatorname{Prism}_{3}\left(S_{n}\right)\right)\right|=5 n+2$. Define $f: E\left(\operatorname{Prism}_{3}\left(S_{n}\right)\right) \rightarrow$ $\{1,3,5, \ldots, 10 n+3\}$ by
i $f\left(u^{(1)} u_{i}^{(1)}\right)=4 n+2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
ii $f\left(u^{(2)} u_{i}^{(2)}\right)=2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
iii $f\left(u^{(3)} u_{i}^{(3)}\right)=6 n+2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
iv $f\left(u_{i}^{(1)} u_{i}^{(2)}\right)=8 n+2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
v $f\left(u_{i}^{(2)} u_{i}^{(3)}\right)=2 n+2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
vi $f\left(u^{(1)} u^{(2)}\right)=10 n+3$;
vii $f\left(u^{(2)} u^{(3)}\right)=10 n+1$.

Theorem 3.1. If $n \geq 3$ and $n \equiv 2(\bmod 6)$, then $\operatorname{Prism}_{3}\left(S_{n}\right)$ is an $E O G G$.
Proof. From Algorithm 3.1(i-vii), the edge labels are arranged in the set $\{4 n+$ $1,4 n+3,4 n+5, \ldots, 6 n-1\},\{1,3,5, \ldots, 2 n-1\},\{6 n+1,6 n+3,6 n+5, \ldots 8 n-$ $1\},\{8 n+1,8 n+3,8 n+5, \ldots, 10 n-1\},\{2 n+1,2 n+3,2 n+5, \ldots, 4 n-1\},\{10 n+$ $3\}$, and $\{10 n+1\}$, respectively. Then, f is a bijection from $E\left(\operatorname{Prism}_{3}\left(S_{n}\right)\right)$ to $\{1,3,5, \ldots, 10 n+4\}$.

Next, from Algorithm 3.1, we have
$f^{+}\left(u^{(1)}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{(1)} u^{(1)}\right)\right)+f\left(u^{(1)} u^{(2)}\right)\right)(\bmod 10 n+4)$
$=\left(5 n^{2}-1\right)(\bmod 10 n+4)$;
$f^{+}\left(u^{(2)}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{(2)} u^{(2)}\right)\right)+f\left(u^{(1)} u^{(2)}\right)+f\left(u^{(2)} u^{(3)}\right)\right)(\bmod 10 n+4)$
$=\left(n^{2}-4\right)(\bmod 10 n+4) ;$
$f^{+}\left(u^{(3)}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{(3)} u^{(3)}\right)\right)+f\left(u^{(2)} u^{(3)}\right)\right)(\bmod 10 n+4)$
$=\left(7 n^{2}-3\right)(\bmod 10 n+4) ;$
$f^{+}\left(u_{1}^{(2)}\right)=\left(f\left(u_{1}^{(1)} u_{1}^{(2)}\right)+f\left(u_{1}^{(2)} u_{1}^{(3)}\right)+f\left(u_{1}^{(2)} u^{(2)}\right)\right)(\bmod 10 n+4)=10 n+3 ;$

Figure 12: Edge-labelings for $\operatorname{Prism}_{3}\left(S_{8}\right)$

$$
\begin{aligned}
& f^{+}\left(u_{i}^{(2)}\right)=\left(f\left(u_{i}^{(1)} u_{i}^{(2)}\right)+f\left(u_{i}^{(2)} u_{i}^{(3)}\right)+f\left(u_{i}^{(2)} u^{(2)}\right)\right)(\bmod 10 n+4)=6 i-7 \text { for } \\
& \quad i \in\{2,3,4, \ldots, n\} ; \\
& f^{+}\left(u_{i}^{(1)}\right)=\left(f\left(u_{i}^{(1)} u_{i}^{(2)}\right)+f\left(u_{i}^{(1)} u^{(1)}\right)\right)(\bmod 10 n+4)=2 n+4 i-6 ; \\
& f^{+}\left(u_{i}^{(3)}\right)=\left(f\left(u_{i}^{(2)} u_{i}^{(3)}\right)+f\left(u_{i}^{(3)} u^{(3)}\right)\right)(\bmod 10 n+4) \\
& \quad=(8 n+4 i-2)(\bmod 10 n+4)
\end{aligned}
$$

Since $n \equiv 2(\bmod 6)$, we can see from the division algorithm that for all $i \in\{1,2,3, \ldots, n\}, f^{+}\left(u^{(2)}\right), f^{+}\left(u_{i}^{(1)}\right)$, and $f^{+}\left(u_{i}^{(3)}\right)$ are even integers and $f^{+}\left(u^{(1)}\right), f^{+}\left(u^{(3)}\right)$, and $f^{+}\left(u_{i}^{(2)}\right)$ are odd integers. First, we claim that $f^{+}\left(u^{(2)}\right)$, $f^{+}\left(u_{i}^{(1)}\right)$, and $f^{+}\left(u_{i}^{(3)}\right)$ are distinct for all $i \in\{1,2,3, \ldots, n\}$. Since $n=6 k+2$ for some $k \in \mathbb{N}$, we have

$$
\begin{aligned}
& f^{+}\left(u^{(2)}\right)=\left(36 k^{2}+24 k\right)(\bmod 60 k+24) \\
& f^{+}\left(u_{i}^{(1)}\right)=(12 k+4 i-2)(\bmod 60 k+24) \\
& f^{+}\left(u_{i}^{(3)}\right)=(48 k+4 i+14)(\bmod 60 k+24)
\end{aligned}
$$

By the division algorithm, $4 \mid f^{+}\left(u^{(2)}\right), 4 \nmid f^{+}\left(u_{i}^{(1)}\right)$ and $4 \nmid f^{+}\left(u_{i}^{(3)}\right)$. Suppose that $f^{+}\left(u_{i}^{(1)}\right) \equiv f^{+}\left(u_{j}^{(3)}\right)(\bmod 10 n+4)$ for some $i, j \in\{1,2,3, \ldots, n\}$ and $i \neq j$. Then, $2 n+4 i-6 \equiv 8 n+4 j-2(\bmod 10 n+4)$. This implies that $4(i-j-1)=6 n+(10 n+4) t$ for some integer t. Since $i, j \in\{1,2,3, \ldots, n\}$ and $i \neq j$, we have $-4 \leq 4(i-j-1) \leq 4 n-8$. However, if $t<0$, then $4(i-j-1)=$ $6 n+(10 n+4) t<-4 n-4$ and if $t \geq 0$, then $4(i-j-1)=6 n+(10 n+4) t \geq 6 n$. This is a contradiction.

Next, we claim that $f^{+}\left(u^{(1)}\right), f^{+}\left(u^{(3)}\right)$, and $f^{+}\left(u_{i}^{(2)}\right)$ are distinct. Since $n=6 k+2$ for some $k \in \mathbb{N}, f^{+}\left(u_{1}^{(2)}\right)=60 k+23, f^{+}\left(u^{(1)}\right)=\left(180 k^{2}+\right.$ $120 k+19)(\bmod 60 k+24)=48 k+19$ and $f^{+}\left(u^{(3)}\right)=\left(252 k^{2}+168 k+\right.$ 25) $(\bmod 60 k+24)=\left(12 k^{2}+12 k+1\right)(\bmod 60 k+24)$. Since $f^{+}\left(u^{(3)}\right)=$
$\left(12 k^{2}+12 k+1\right)(\bmod 60 k+24)$, by the division algorithm, there exist unique integers q and r such that $12 k^{2}+12 k+1=(60 k+24) q+r$. Then, $r=$ $6\left(2 k^{2}+8 k-4\right) q+1$. Notice that $f^{+}\left(u_{1}^{(2)}\right)=6(10 k+3)+5, f^{+}\left(u_{i}^{(2)}\right)=$ $6(i-2)+5$ for all $i \in\{2,3,4, \ldots, n\}$, and $f^{+}\left(u^{(1)}\right)=6(8 k+3)+1$. Thus, $\left\{f^{+}\left(u_{i}^{(2)}\right) \mid i \in\{1,2,3, \ldots, n\}\right\}$ and $\left\{f^{+}\left(u^{(1)}\right), f^{+}\left(u^{(3)}\right)\right\}$ are distinct. Moreover, since $\max _{2 \leq i \leq n}\{6 i-7\}=6 n-7<10 n+3=f^{+}\left(u_{1}^{(2)}\right)$, It's clearly that $f^{+}\left(u_{1}^{(2)}\right)$ and $f^{+}\left(u_{i}^{(2)}\right)$ are distinct.

Finally, to obtain the second claim we have to show that $f^{+}\left(u^{(1)}\right)$ and $f^{+}\left(u^{(3)}\right)$ are distinct. Suppose that $f^{+}\left(u^{(1)}\right) \equiv f^{+}\left(u^{(3)}\right)(\bmod 10 n+4)$. Then, $5 n^{2}-1 \equiv 7 n^{2}-3(\bmod 10 n+4)$. This implies that $n^{2}-1 \equiv 0(\bmod 5 n+2)$ that is there exist $m \in \mathbb{Z}$ such that $n^{2}-1=(5 n+2) m$. Since n is even, $n^{2}-1$ is odd and $5 n+2$ is even integer. This is a contradiction. Hence, $f^{+}\left(u^{(1)}\right)$ and $f^{+}\left(u^{(3)}\right)$ are distinct.

Therefore, the function f defined in Algorithm 3.1 is an edge-odd graceful labeling and this implies that $\operatorname{Prism}_{3}\left(S_{n}\right)$ is an EOGG.

Figure 13: The vertex-labeling for $\operatorname{Prism}_{3}\left(S_{8}\right)$ induced by Algorithm 3.1

4 Prism of wheel

In this section, we give a definition of $\operatorname{Prism}\left(W_{n}\right)$ and an algorithm to label each edge of $\operatorname{Prism}\left(W_{n}\right)$. Then, we prove that the $\operatorname{Prism}\left(W_{n}\right)$ is an edge-odd graceful graph if $2 \mid n$.

Definition 4.1. For $n \geq 3$, let W_{n} be a wheel graph and W_{n}^{\prime} be a copy of W_{n}. Define $\operatorname{Prism}\left(W_{n}\right)$, called the prism of W_{n}, by joining u of W_{n} to the corresponding vertex u^{\prime} of W_{n}^{\prime} and each u_{i} of W_{n} to the corresponding vertex u_{i}^{\prime} of W_{n}^{\prime} for all $i \in\{1,2,3, \ldots, n\}$. Thus,

$$
E\left(\operatorname{Prism}\left(W_{n}\right)\right)=E\left(W_{n}\right) \cup E\left(W_{n}^{\prime}\right) \cup\left\{u_{i} u_{i}^{\prime} \mid i \in\{1,2,3, \ldots, n\}\right\} \cup\left\{u u^{\prime}\right\}
$$

Algorithm 4.1. Let $n \geq 3$ and $2 \mid n$. We can easily to obtain that $q=$ $\left|E\left(\operatorname{Prism}\left(W_{n}\right)\right)\right|=5 n+1$. Define $f: E(G) \rightarrow\{1,3,5, \ldots, 10 n+1\}$ by
i $f\left(u_{i} u_{i}^{\prime}\right)=2 i-1$ for $i \in\{1,2,3, \ldots, n\}$;
ii $f\left(u_{1} u_{n}\right)=2 n+1$;
iii $f\left(u_{i} u_{i+1}\right)=4 n-2 i+1$ for $i \in\{1,2,3, \ldots, n-1\}$;
iv $f\left(u_{1}^{\prime} u_{n}^{\prime}\right)=6 n+1$;
v $f\left(u_{i}^{\prime} u_{i+1}^{\prime}\right)=8 n-2 i+1$ for $i \in\{1,2,3, \ldots, n-1\}$;
vi $f\left(u_{1} u\right)=4 n+1 ;$
vii $f\left(u_{i} u\right)=6 n-2 i+3$ for $i \in\{2,3,4, \ldots, n\}$;
viii $f\left(u_{1}^{\prime} u^{\prime}\right)=8 n+1$;
ix $f\left(u_{i}^{\prime} u^{\prime}\right)=10 n-2 i+3$ for $i \in\{2,3,4, \ldots, n\}$;
$\mathrm{x} f\left(u u^{\prime}\right)=10 n+1$.

Figure 14: Edge-labelings for $\operatorname{Prism}\left(W_{4}\right)$

Theorem 4.1. If $n \geq 3$ and $2 \mid n$, then $\operatorname{Prism}\left(W_{n}\right)$ is an $E O G G$.
Proof. From Algorithm 4.1(i-x), the edge labels are arranged in the set $\{1,3,5$, $\ldots, 2 n-1\},\{2 n+1\},\{4 n-1,4 n-3,4 n-5, \ldots, 2 n+5,2 n+3\},\{6 n+1\},\{8 n-$ $1,8 n-3,8 n-5, \ldots, 6 n+3\},\{4 n+1\},\{6 n-1,6 n-3,6 n-5, \ldots, 4 n+3\},\{8 n+$ $1\},\{10 n-1,10 n-3,10 n-5, \ldots, 8 n+3\}$, and $\{10 n+1\}$, respectively. Then, f is a bijection from $E\left(\operatorname{Prism}\left(W_{n}\right)\right)$ to $\{1,3,5, \ldots, 10 n+1\}$.

Next, from Algorithm 4.1, we have
$f^{+}\left(u_{1}\right)=\left(f\left(u_{1} u_{n}\right)+f\left(u_{1} u_{2}\right)+f\left(u_{1} u\right)+f\left(u_{1} u_{1}^{\prime}\right)\right)(\bmod 10 n+2)=0$;
$f^{+}\left(u_{i}\right)=\left(f\left(u_{i-1} u_{i}\right)+f\left(u_{i} u_{i+1}\right)+f\left(u_{i} u\right)+f\left(u_{i} u_{i}^{\prime}\right)\right)(\bmod 10 n+2)=4 n-4 i+4$ for $i \in\{2,3,4, \ldots, n\}$;
$f^{+}\left(u_{1}^{\prime}\right)=\left(f\left(u_{1}^{\prime} u_{n}^{\prime}\right)+f\left(u_{1}^{\prime} u_{2}^{\prime}\right)+f\left(u_{1}^{\prime} u^{\prime}\right)+f\left(u_{1} u_{1}^{\prime}\right)\right)(\bmod 10 n+2)=2 n-2$;
$f^{+}\left(u_{i}^{\prime}\right)=\left(f\left(u_{i-1}^{\prime} u_{i}^{\prime}\right)+f\left(u_{i}^{\prime} u_{i+1}^{\prime}\right)+f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u_{i} u_{i}^{\prime}\right)\right)(\bmod 10 n+2)=6 n-4 i+2$ for $i \in\{2,3,4, \ldots, n\}$;
$f^{+}(u)=\left(\left(\sum_{i=1}^{n} f\left(u_{i} u\right)+f\left(u u^{\prime}\right)\right)(\bmod 10 n+2)=\left(5 n^{2}-1\right)(\bmod 10 n+2) ;\right.$
$f^{+}\left(u^{\prime}\right)=\left(\left(\sum_{i=1}^{n} f\left(u_{i}^{\prime} u^{\prime}\right)+f\left(u u^{\prime}\right)\right)(\bmod 10 n+2)=\left(9 n^{2}-1\right)(\bmod 10 n+2)\right.$;
It's clearly that for all $i \in\{1,2,3, \ldots, n\}, f^{+}\left(u_{i}\right)$ and $f^{+}\left(u_{i}^{\prime}\right)$ are even inte-
gers and by the division algorithm, we have $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are odd integers. First, we show that $f^{+}\left(u_{i}\right)$ and $f^{+}\left(u_{i}^{\prime}\right)$ are distinct. Since the sequences $\{4 n-4 i+4\}_{i=2}^{n},\{0\},\{6 n-4 i+2\}_{i=2}^{n}$, and $\{2 n-2\}$ are all distinct, it clearly that $\left\{f^{+}\left(u_{i}\right)\right\}_{i=2}^{n},\left\{f^{+}\left(u_{1}\right)\right\},\left\{f^{+}\left(u_{i}^{\prime}\right)\right\}_{i=2}^{n}$ and $\left\{f^{+}\left(u_{1}^{\prime}\right)\right\}$ are also distinct. Next, we claim that $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct. Suppose in the contrary that $f^{+}(u) \equiv f^{+}\left(u^{\prime}\right)(\bmod 10 n+2)$. Then, $5 n^{2}-1 \equiv 9 n^{2}-1(\bmod 10 n+2)$. This implies that $2 n^{2} \equiv 0(\bmod 5 n+1)$
For $n \in\{4,6,8\}, 2 n^{2}(\bmod 5 n+1)$ is 11,10 and 5 , respectively.
If $n=10 k$ for some $k \in \mathbb{N}, 2 n^{2}(\bmod 5 n+1)=200 k^{2}(\bmod 50 k+1)=46 k+1$.
Similarly,
If $n=10 k+2$ for some $k \in \mathbb{N}, 2 n^{2}(\bmod 5 n+1)=36 k+8$.
If $n=10 k+4$ for some $k \in \mathbb{N}, 2 n^{2}(\bmod 5 n+1)=26 k+11$.
If $n=10 k+6$ for some $k \in \mathbb{N}, 2 n^{2}(\bmod 5 n+1)=16 k+10$.
If $n=10 k+8$ for some $k \in \mathbb{N}, 2 n^{2}(\bmod 5 n+1)=6 k+5$.
Thus, $2 n^{2} \not \equiv 0(\bmod 5 n+1)$. Hence, $f^{+}(u)$ and $f^{+}\left(u^{\prime}\right)$ are distinct.
Therefore, the function f defined in Algorithm 4.1 is an edge-odd graceful labeling and this implies that Prism $\left(W_{n}\right)$ is an EOGG.

Figure 15: The vertex-labeling for $\operatorname{Prism}\left(W_{4}\right)$ induced by Algorithm 4.1

5 Conclusion and Discussion

As we can see in this article that $\operatorname{Prism}\left(S_{n}\right)$ is an EOGG for all $n \in \mathbb{N}$. However, we can only prove that if $n \equiv 2(\bmod 6)$, then $\operatorname{Prism}_{3}\left(S_{n}\right)$ is an EOGG and if $2 \mid n$, then $\operatorname{Prism}\left(W_{n}\right)$ is an EOGG. One may try to find algorithms for edge labeling of $\operatorname{Prism}_{3}\left(S_{n}\right)$ and $\operatorname{Prism}\left(W_{n}\right)$ for other cases in such away that force $\operatorname{Prism}_{3}\left(S_{n}\right)$ and $\operatorname{Prism}\left(W_{n}\right)$ to be EOGG. Another way is extend the definition of $\operatorname{Prism}_{3}\left(S_{n}\right)$ to be $\operatorname{Prism}_{m}\left(S_{n}\right)$ for $m \in \mathbb{N}$ and investigate whether we can find the way to have the edge-odd graceful labeling for this type of Prism-like graph or not.

References

[1] R. Boonklurb, S. Singhun and A. Wongpradit, Edge-odd graceful labelings of Prism $\left(S_{n}\right)$ and Shaft $(n, 1)$ graphs, $30^{\text {th }}$ National Graduate Research Conference, 2013, 23-30.
[2] R. B. Gnanajothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University (1991).
[3] A. Rosa, Theory of graphs (International Symposium, Rome, July 1966), Gordon Breach, N.Y. and Dunod Paris, 170 (1967), 349-355.
[4] S. Singhun, Graphs with Edge-Odd Graceful Labelings, International Mathematical Forum, $\mathbf{8}(2013), 577-582$.
[5] A. Solairaju, C. Vimala and A. Sasikala, Edge-Odd Gracefulness of the Graph $S_{2} \square S_{n}$, International Journal of Computer Applications (0975 8887), 9 (2010), 1-3.
[6] A. Solairaju and K. Chithra, Edge-Odd Graceful Graphs, Electron. Notes Discrete Math, 33 (2009), 15-20.

[^0]: Key words: edge-odd graceful labeling, prism, star, wheel.
 2010 AMS Mathematics Subject Classification: 05C78.
 ${ }^{1}$ Corresponding author

