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Abstract

The laws of thermodynamics describe the temperature and the en-
tropy of perfect fluid black holes. The temperature can be calculated
from the thermal radiation or Hawking radiation using surface gravity,
while the entropy is related to the determined temperature. In this pa-
per, we explain in detail the temperature and the entropy of black holes.
Finally, we calculate the entropy composition of the perfect fluid black
hole systems that have three black holes in the same coordinates. We are
interested in two of these coordinates, the Schwarzschild coordinates and
the isotropic coordinates, and will also analyze the two types of entropy
compositions.
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1 Introduction

Perfect fluid black holes are used in the modeling of stars that have sizes smaller
than the Schwarzschild radius, which will be transformed into black holes. In
the previous research, we were interested in temperature and entropy of per-
fect fluid black holes in Schwarzschild and isotropic coordinates. There are
static spherically symmetric perfect fluid solutions of the Einstein field equa-
tions in general relativity such as Wyman ssspf, Buchdahl ssspf, Kuchowicz
ssspf, Heintzmann ssspf, Goldman ssspf, Stewart ssspf, and the BVW algo-
rithm [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Ngampitipan et al., has studied and
researched about greybody factors, and the temperature and entropy of black
holes in dRGT massive gravity [13], while Sansuk has obtained about the tem-
perature and entropy of perfect fluid black holes, and the entropy composition
of black hole systems that contain two black holes [14]. The Hawking tem-
perature of the black hole is related to the surface gravity and the important
thermodynamic quantities associated with the black hole horizon, which is the
entropy. Thus, temperature is correlated with entropy [15, 16]. We use the
entropy composition rule from V. G. Czinner, et al[17]. In this paper, we are
interested in the entropy composition of black hole systems that contain three
black holes, and we will focus on perfect fluid black holes in two coordinates;
Schwarzschild and isotropic coordinates. We use perfect fluid black holes classi-
fied by Sansuk [14] to calculate the entropy composition of black hole systems.
We also analyze the entropy of black hole systems in terms of additive and
nonadditive entropy compositions. An additive quantity is comprehensive, and
comprehensive quantities can also be nonadditive, and can be used with the
Rényi model in entropy of black holes [18, 19, 20].

2 Perfect fluid black hole

Perfect fluid spheres are the simplest model used in the modeling of stars like
black holes. There are three properties of the perfect fluid sphere; no viscos-
ity, no heat conductivity, and isotropy [14]. If the radius of the perfect fluid
sphere is smaller than the Schwarzschild radius, it will be transformed into a
perfect fluid black hole. In this paper, we are interested in perfect fluid black
holes in two different coordinates; Schwarzschild and isotropic coordinates, be-
cause they are the most commonly used. We are also interested in perfect
fluid spheres in two coordinates, namely, Schwarzschild and isotropic coordi-
nates. The Schwarzschild coordinates is estimated to be about 55% and the
isotropic coordinates is estimated to be about 35% of the generally used coor-
dinates. Both these coordinates constitute the major proportion of the overall
coordinates used [14, 21].
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Table 1: Perfect fluid black hole in Schwarzschild coordinates [14]
Black holes Metrics

Schwarzschild Exterior ds2 = −(1− 2m
r

)dt2 + (1− 2m
r

)−1dr2 + r2dΩ2

Tolman VI ds2 = −(Ar1−n +Br1+n)2dt2 + (2− n2)dr2 + r2dΩ2

Kuch 68 II ds2 = −(1− 2m
r

)dt2 + [(1− 2m
r

)(1 + C(2r − 2m)2)]−1dr2 + r2dΩ2

M-W III ds2 = −Ar(r − a)dt2 +
7/4

1−r2/a2 dr
2 + r2dΩ2

2.1 Perfect fluid black hole in Schwarzschild coordinates

We start with the spherically symmetric geometry in Schwarzschild (curvature)
coordinates [14]

ds2 = −ζ(r)2dt2 +
1

B(r)
dr2 + r2dθ2 + r2 sin2(θ)dφ2. (1)

We calculate the radius of perfect fluid spheres in Schwarzschild coordinates
by matching it with the Schwarzschild exterior black hole.
Using a perfect fluid constraint [12, 26]

Gr̂r̂ = Gθ̂θ̂ = Gφ̂φ̂, (2)

we consider

Gr̂r̂ =
−2rB(r)ζ(r) + ζ(r)− ζ(r)B(r)

r2ζ(r)
. (3)

Considering the Einstein field equation

Gr̂r̂ = 8πGTr̂r̂, (4)

where Gr̂r̂ is the Einstein tensor, Tr̂r̂ is the stress energy tensor, G is the grav-
itational constant, and the pressure inside the perfect fluid sphere is expressed
by [14, 26]

p =
Gr̂r̂
8πG

=
1

8πG

−2rB(r)ζ(r) + ζ(r)− ζ(r)B(r)

r2ζ(r)
. (5)

So, the radius r of a perfect fluid sphere must satisfy

p(r) = 0. (6)

If the radius is smaller than the Schwarzschild radius, it will be transformed
into a black hole.
We will be using these perfect fluid spheres to calculate the entropy composition
in additive and nonadditive entropy compositions.
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Table 2: Perfect fluid black hole in isotropic coordinates [14].

Black holes Metrics

Schwarzschild Exterior ds2 = − (1−M
2r

)2

(1+M
2r

)2
dt2 + (1 + M

2r
)4{dr2 + r2dΩ2}

N-P-V Ia ds2 = −(ar1+
x
2 + br1−

x
2 )2(Ar1+

n
2 +Br1−

n
2 )−2dt2+

(Ar1+
n
2 +Br1−

n
2 )−2{dr2 + r2dΩ2}

Burl I ds2 = −A(1 + r2)
4(a+1)

2a2+4a+1 dt2 + (1 + r2)
4a

2a2+4a+1 {dr2 + r2dΩ2}

2.2 Perfect fluid black hole in isotropic coordinates

We start with the spherically symmetric geometry in isotropic coordinates [14]

ds2 = −ζ(r)2dt2 +
1

ζ(r)2B(r)2
{dr2 + r2dθ2 + r2 sin2(θ)dφ2}. (7)

We calculate the radius of perfect fluid sphere in isotropic coordinates by match-
ing it with Schwarzschild exterior black hole. Using a perfect fluid constraint
[12, 26]

Gr̂r̂ = Gθ̂θ̂ = Gφ̂φ̂, (8)

we use Gr̂r̂ to calculate the radius of the perfect fluid sphere.

We consider

Gr̂r̂ = (ζ
′
)2B2 − (B

′
)2ζ2 + 2B

′
B
ζ2

r
. (9)

Considering the Einstein field equation

Gr̂r̂ = 8πGTr̂r̂, (10)

the pressure inside the perfect fluid sphere is given by [14, 26]

p =
Gr̂r̂
8πG

=
1

8πG
(ζ
′
)2B2 − (B

′
)2ζ2 + 2B

′
B
ζ2

r
. (11)

So, the radius r of a perfect fluid sphere must satisfy

p(r) = 0. (12)

If the radius is smaller than the Schwarzschild radius, it will be transformed
into a black hole.

We will be using these perfect fluid spheres to calculate the entropy composition
in additive and nonadditive entropy compositions.
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3 Temperature and entropy of perfect fluid black
hole

The temperature of the Hawking radiation can be calculated in relation with
the surface gravity of a black hole, which can be written in this form [13]

T =
κ

2π
, (13)

where κ = (
√
ζ2(r)B(r))′,

for perfect fluid black holes in Schwarzschild coordinates. For isotropic coordi-
nates, we can obtain κ in this form;

κ = (ζ(r)2B(r))′. (14)

Entropy is also one of the fundamental properties in thermodynamics, which
can be expressed in the form [13]

S =

∫
1

T
dM. (15)

Then, we use this form of entropy to calculate the entropy composition systems
of perfect fluid black holes.

3.1 Thermodynamics

The zeroth law of thermodynamics states that when two systems are each in
thermal equilibrium with a third system, the first two systems are in thermal
equilibrium with each other as well [22].
The first law of thermodynamics, or the law of conservation of energy states
that the change in a system’s internal energy is equal to the difference between
the heat added to the system from its surroundings and the work done by the
system on its surroundings [22].

dE = Tds+ udQ+ ΩdJ, (16)

for black holes,

dM =
κ

8πG
dA+ udQ+ ΩdJ. (17)

The second law of thermodynamics states that the heat does not flow sponta-
neously from a colder region to a hotter region, or, equivalently, heat at a given
temperature cannot be converted entirely into work [22].

4S ≥ 0, (18)
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for black holes, the net area in any process never decreases [22],

4A ≥ 0. (19)

For a black hole, we use the surface area to calculate the temperature. Since
temperature is related with entropy, then we can use the temperature to cal-
culate entropy.

3.2 Temperature

Black holes have energy E and entropy S, then it must also have temperature
T given by [23]

1

T
=
dE

dS
. (20)

For Schwarzschild black hole, the area and the entropy scales as S ∼ M2.
Temperature that scales as M is given by [23]

1

T
=

dS

dM
∼ dM2

dM
∼M. (21)

Hawking’s calculation showed that the spectrum emitted by black holes is ther-
mal, with temperature [23]

T =
~κ
2π

=
~

8πGM
. (22)

After that, we will explain the black hole entropy formula using the temperature
formula.

3.3 Entropy

The formula for the Hawking temperature and the first law of thermodynamics
is [24]

dM = TdS =
κ~

8πG~
dA. (23)

The entropy and the area of a black hole is given by [24]

S =
Ac3

4G~
. (24)

4 Entropy composition of black hole systems

We focus on two entropy compositions of black hole systems; additive and
nonadditive entropy compositions, while each black hole system has three black
holes in the same coordinate. We have extended this topic from Sansuk [14],
who obtained the entropy composition of black hole systems that contain only
2 black holes.
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Table 3: The additive entropy composition of black hole systems in
Schwarzschild coordinates.

Black hole systems Metrics
Schwarzschild Exterior

⊕ Tolman VI ⊕ Kuch 68 II SSTK = 2M2π +
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

+
π(d+ln[M ]−ln[1+d])

2C
Tolman VI

⊕ Kuch 68 II ⊕ M-W III STKM =
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6
+
π(d+ln[M ]−ln[1+d])

2C

+
∫
dM
dr

1
T
dr

Table 4: The additive entropy composition of black hole systems in isotropic
coordinates.

Black hole systems Metrics
Schwarzschild Exterior (isotropic)

⊕ N-P-V Ia ⊕ Burl I SSNB = 125M
24π π

− 4(r(4b+3ar)+3(b+ar)
√
−r2(b+ar) ln[b+ar])

3aπ
√
−r2(b+ar)3

+− 4r(1+r2)−q [(1+4a+2a2)g−(1+6a+2a2)h+2aj]

(1+4a+2a2)Aπ
√

(1+r2)−2q/A

4.1 Additive Entropy Composition

The additive entropy composition is given by [17]

S123 = S1 + S2 + S3. (25)

where S1, S2, and S3 are the first black hole, second black hole, and third black
hole, respectively.

Tables 3 and 4 show the additive entropy composition of black hole systems in
Schwarzschild and isotropic coordinates, and also that the three black holes in
each system are not correlated.

4.2 Nonadditive Entropy Composition

The nonadditive entropy composition rule can be obtained using the Abe’s
equation [17]

S123 = S1 + S2 + S3 + λ(S1 + S2 + λS1S2)S3, (26)

where 0 < λ < 1.
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Table 5: The nonadditive entropy composition of black hole systems in
Schwarzschild coordinates.

Black hole systems Metrics
Schwarzschild Exterior

⊕ Tolman VI ⊕ Kuch 68 II SSTK = 2M2π +
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

+
π(d+ln[M ]−ln[1+d])

2C
+

λ

(
2M2π +

15π(A+Br8) tan−1[
√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

)
π(d+ln[M ]−ln[1+d])

2C
+

λ2(2M2π)

(
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

)(
π(d+ln[M ]−ln[1+d])

2C

)
Tolman VI

⊕ Kuch 68 II ⊕ M-W III STKM =
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

+
π(d+ln[M ]−ln[1+d])

2C
+
∫
dM
dr

1
T
dr+

λ

(
15π(A+Br8) tan−1[

√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6
+
π(d+ln[M ]−ln[1+d])

2C

)∫
dM
dr

1
T
dr+

λ2
(

15π(A+Br8) tan[
√
B/Ar4]

4r3
√

−14AB(A+Br8)2/r6

)(
π(d+ln[M ]−ln[1+d])

2C

)
(
∫
dM
dr

1
T
dr)

Table 6: The nonadditive entropy composition of black hole systems in isotropic
coordinates.

Black hole systems Metrics
Schwarzschild Exterior (isotropic)

⊕ N-P-V Ia ⊕ Burl I SSNB = 125M
24π

π

− 4(r(4b+3ar)+3(b+ar)
√

−r2(b+ar) ln[b+ar])
3aπ
√

−r2(b+ar)3

− 4r(1+r2)−q [(1+4a+2a2)g−(1+6a+2a2)h+2aj]

(1+4a+2a2)Aπ
√

(1+r2)−2q/A

+

[
λ

(
125M
24π

π)− 4(r(4b+3ar)+3(b+ar)
√

−r2(b+ar) ln[b+ar])
3aπ
√

−r2(b+ar)3

)
+λ2

(
125M
24π

π

)(
4(r(4b+3ar)+3(b+ar)

√
−r2(b+ar) ln[b+ar])

3aπ
√

−r2(b+ar)3

)]
4r(1+r2)−q [(1+4a+2a2)g−(1+6a+2a2)h+2aj]

(1+4a+2a2)Aπ
√

(1+r2)−2q/A
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Tables 5 and 6 show the non-additive entropy composition of black hole
systems in Schwarzschild and isotropic coordinates, and that the three black
holes in each system are correlated through λ.

5 Conclusion

We are interested in perfect fluid black holes that have a radius smaller than the
Schwarzschild radius. We then used these perfect fluid black holes to calculate
the two entropy compositions; additive and nonadditive entropy compositions
of the black hole systems in two coordinates, with each system having three
black holes in the same coordinates. The results show that the three black holes
in the additive entropy composition of black hole systems in Schwarzschild
and isotropic coordinates are not correlated, while the nonadditive entropy
composition of black hole systems in Schwarzschild and isotropic coordinates
are correlated through λ.
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