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Abstract

For an additively commutative semiring with zero S, we let DVn(S)
denote the set of all A ∈ Mn(S) of the form⎡

⎢⎢⎢⎢⎣

x1 0 · · · 0 x1

0 x2 · · · x2 0
· · · · · · · · · · · · · · ·
0 x2 · · · x2 0
x1 0 · · · 0 x1

⎤
⎥⎥⎥⎥⎦

where Mn(S) is the full n×n matrix semiring over S. We show conditions
for being regular semirings, left regular semirings, right regular semirings
and intra-regular semirings of DVn(S).

1 Introduction and Preliminaries

A semiring S is an algebraic structure (S, +, ·) such that (S, +) and (S, ·)
are semigroups and · is distributive over +. An element 0 of S is a zero of
the semiring (S, +, ·) if x + 0 = x = 0 + x and x · 0 = 0 = 0 · x for all
x ∈ S. A semiring (S, +, ·) is called additively [multiplicatively ] commutative if
x+y = y +x [x · y = y ·x] for all x, y ∈ S. We say that (S, +, ·) is commutative
if it is both addtitively commutative and multiplicatively commutative.

A ring R is called a (Von Neumann) regular ring if for every a ∈ R, a = axa
for some x ∈ R. Regular rings was originally introduced by Von Neumann in
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order to clarify certain aspects of operater algebras. For this reason, regular
semirings are defined analogously. That is, a semiring S is said to be regular
if for every a ∈ S, a = axa for some x ∈ S. We can see that the semirings
Q+

0 and R+
0 are regular but Z+

0 is not regular. Also, the following semirings in
Example 1.1 are regular semirings.

Example 1.1 ([1]). (1) If S = {0, 1} with 0+0 = 0, 0+1 = 1+0 = 1+1 = 1,
0 · 0 = 0 · 1 = 1 · 0 = 0 and 1 · 1 = 1, then (S, +, ·) is a commutative semiring
with zero 0 which is not a ring.
(2) Let S be a nonempty subset of R such that minS exists. Define

x ⊕ y = max{x, y} and x � y = min{x, y} for all x, y ∈ S.

Then (S,⊕,�) is a commutative semiring having minS as its zero. Also, if S
contains more than one element, then (S,⊕,�) is not a ring.

Throughout, let S be an additively commutative semiring (S, +, ·) with
zero. Mn(S) denotes the full n × n matrix semiring over S, that is, Mn(S) is
the set of all n×n matrices over S which is an additively commutative semiring
under the usual addition and multiplication of matrices.

Moreover, various types of regularity have been studied. Left regular semi
rings, right regular semirings and intra-regular semirings are defined as follows:

Definition 1.2. A semiring S is called a left [right ] regular semiring if for
every a ∈ S, a = xa2 [a = a2x] for some x ∈ S.

Definition 1.3. A semiring S is called an intra-regular semiring if for every
a ∈ S, a = xa2y for some x, y ∈ S.

In terms of Green’s relations, we have that
(1) S is a left [right] regular semiring if and only if aLa2 [aRa2] for all a ∈ S
and
(2) S is an intra-regular semiring if and only if aJ a2 for all a ∈ S.

In 2010, Sararnrakskul, Lertvijitsilp, Wassanawichit and Pianskool [3] prove
that the ring Dn(R) of all A ∈ Mn(R) of the form

⎡
⎢⎢⎢⎢⎣

x1 0 · · · 0 y1

0 x2 · · · y2 0
· · · · · · · · · · · · · · ·
0 y2 · · · x2 0
y1 0 · · · 0 x1

⎤
⎥⎥⎥⎥⎦

is a maximal commutative subring of the ring Mn(R). In 2014, Chatjaroenporn,
Pobpitak, Patlertsin and Sararnrakskul [2] show that the semirings Vn(S) of
all A ∈ Mn(S) of the form
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⎡
⎢⎢⎢⎢⎣

x1 0 · · · 0 x1

0 x2 · · · x2 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

is a regular commutative subsemiring of the semiring Mn(S).
In this paper, we show the conditions for regularity of the set DVn(S)

consisting of all matrices in Mn(S) of the form
⎡
⎢⎢⎢⎢⎣

x1 0 · · · 0 x1

0 x2 · · · x2 0
· · · · · · · · · · · · · · ·
0 x2 · · · x2 0
x1 0 · · · 0 x1

⎤
⎥⎥⎥⎥⎦.

This means that if n is even, then DVn(S) is the set of all A ∈ Mn(S) of the
form ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 · · · 0 x1

0 x2 x2 0
. . . . . .

... xm xm

...

. . . . . .
0 x2 x2 0
x1 0 · · · 0 x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where n = 2m

and if n is odd, then DVn(S) is the set of all A ∈ Mn(S) of the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 · · · 0 x1

0 x2 x2 0
. . . . . .

... xm

...

. . . . . .
0 x2 x2 0
x1 0 · · · 0 x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where n = 2m − 1.

2 The Subsemiring DVn(S) of Mn(S)

From now on, let S be an additively commutative semiring with zero 0.

Lemma 2.1. The set DVn(S) is an additively commutative semiring with zero.
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Proof. We have that DVn(S) ⊆ Mn(S) and the zero matrix in DVn(S) is the
zero of DVn(S). Observe that for A ∈ Mn(S)

A ∈ DVn(S) ⇔ (i) Aii = Ai,n−i+1 = An−i+1,i = An−i+1,n−i+1

for all i ∈ {1, 2, . . . ,
⌈n

2

⌉
}

(ii) Aij = 0 otherwise.

Let B, C ∈ DVn(S). Clearly, B + C = C + B. Then for all i ∈ {1, 2, . . . ,
⌈

n
2

⌉}
(B + C)ii = Bii + Cii = Bi,n−1+1 + Ci,n−i+1 = (B + C)i,n−i+1.

Similarly, (B + C)ii = (B + C)n−i+1,i = (B + C)n−i+1,n−i+1. Otherwise
(B+C)ij = Bij +Cij = 0 where i, j ∈ {1, 2, . . . , n} with j �= i and j �= n−i+1.
Let i, j ∈ {1, 2, . . . , n} and Ω = {1, 2, . . . ,

⌈
n
2

⌉}. Assume i ∈ Ω. We have that

Bii = Bi,n−i+1 = Bn−i+1,i = Bn−i+1,n−i+1 and
Cii = Ci,n−i+1 = Cn−i+1,i = Cn−i+1,n−i+1.

If n is even or (n is odd and i �= ⌈
n
2

⌉
), then

(BC)ii =
n∑

k=1

BikCki

= BiiCii + Bi,n−i+1Cn−i+1,i

= BiiCi,n−i+1 + Bi,n−i+1Cn−i+1,n−i+1

=
n∑

k=1

BikCk,n−i+1

= (BC)i,n−i+1

= BiiCi,n−i+1 + Bi,n−i+1Cn−i+1,n−i+1

= Bn−i+1,iCii + Bn−i+1,n−i+1Cn−i+1,i

( = (BC)n−i+1,i)
= Bn−i+1,iCi,n−i+1 + Bn−i+1,n−i+1Cn−i+1,n−i+1

= (BC)n−i+1,n−i+1.

If n is odd and i =
⌈

n
2

⌉
, then n − i + 1 = i. Thus (BC)ii = (BC)i,n−i+1 =

(BC)n−i+1,i = (BC)n−i+1,n−i+1.
Next, assume that i /∈ Ω. Since B ∈ DVn(S), Bil = 0 for all l ∈ {1, 2, . . . , n}.

Hence (BC)ij =
∑n

k=1 BikCkj = 0. This proves that DVn(S) is an additively
commutative semiring with zero.

Lemma 2.2. Let S be commutative. Then DVn(S) is a commutative subsemi
ring of the semiring Mn(S).



N. Sirasuntorn and R. I. Sararnrakskul 27

By the proof of Lemma 2.2 and Theorem 2.3 in [3], we have more generalized
result for Dn(S) where S is a commutative semiring with zero 0 and unity 1
as the following theorem.

Theorem 2.3. Dn(S) is a maximal commutative subsemiring of the semiring
Mn(S).

Remark 2.4. By Theorem 2.3, we have DVn(S) is not a maximal commutative
subsemiring of Mn(S) because DVn(S) � Dn(S).

Next, we consider the regularity of DVn(S). We begin with showing the
condition for being regular semirings of DVn(S) as follows.

Theorem 2.5. For a positive integer n, the semiring DVn(S) is regular if and
only if S is a regular semiring satisfying the condition that for any a ∈ S,
a = 2x for some x ∈ S.

Proof. Assume DVn(S) is regular. Let a ∈ S. Let A ∈ Mn(S) be such that
A11 = A1n = An1 = Ann = a and Aij = 0 otherwise. Then A ∈ DVn(S). Thus
A = ABA for some B ∈ DVn(S). Hence

a = A11 = (ABA)11

=
n∑

k=1

A1k(BA)k1

= A11(BA)11 + A1n(BA)n1

= A11(BA)11 + A11(BA)11

= A11

n∑
k−1

B1kAk1 + A11

n∑
k−1

B1kAk1

= A11(B11A11 + B11A11) + A11(B11A11 + B11A11)
= A11(B11 + B11 + B11 + B11)A11

= a(4B11)a.

This means that a is regular. Moreover, a = a(4B11)a = a(2B11 + 2B11)a =
2(a(2B11)a).

Conversely, assume S is regular and for every a ∈ S, a = 2x for some x ∈ S.
Then for every a ∈ S, a = 2(2x) = 4x for some x ∈ S. To show that DVn(S)
is regular, let A ∈ DVn(S). For each i ∈ {1, 2, . . . ,

⌈
n
2

⌉}, let ai = Aii. Then for
every i ∈ {1, 2, . . . ,

⌈
n
2

⌉}, ai = aixiai and xi = 2(2ui) = 4ui for some xi, ui ∈ S.

Case 1: n is even.
Let B ∈ Mn(S) be such that ui = Bii = Bi,n−i+1 = Bn−i+1,i =
Bn−i+1,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉} and Bij = 0 otherwise. Then
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B ∈ DVn(S). Let i ∈ {1, 2, . . . ,
⌈

n
2

⌉}. Then

(ABA)ii =
n∑

k=1

Aik(BA)ki = Aii(BA)ii + Ai,n−i+1(BA)n−i+1,i

= Aii(BA)ii + Aii(BA)ii

= Aii

n∑
k−1

BikAki + Aii

n∑
k−1

BikAki

= Aii(BiiAii + BiiAii) + Aii(BiiAii + BiiAii)
= Aii(4Bii)Aii

= AiixiAii

= Aii.

Case 2: n is odd.
Let B ∈ Mn(S) be such that ui = Bii = Bi,n−i+1 = Bn−i+1,i =
Bn−i+1,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉ − 1}, xi = Bii if i =
⌈

n
2

⌉
and

Bij = 0 otherwise. Then B ∈ DVn(S). If i ∈ {1, 2, . . . ,
⌈

n
2

⌉ − 1}, then
(ABA)ii = Aii(4Bii)Aii = Aii. If i =

⌈
n
2

⌉
, then (ABA)ii = Aii(BA)ii =

AiiBiiAii = AiixiAii = Aii.

In both cases, (ABA)ii = Aii for all i ∈ {1, 2, . . . ,
⌈

n
2

⌉}. Thus (ABA)i,n−i+1 =
(ABA)ii = Aii = Ai,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉}. Similarly, (ABA)n−i+1,i =
An−i+1,i and (ABA)n−i+1,n−i+1 = An−i+1,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉}.
Otherwise, for i, j ∈ {1, 2, . . . , n} such that j �= i and j �= n − i + 1, we
have Aij = An−i+1,j = 0. If n is even or (n is odd and i �= ⌈

n
2

⌉
), then

(ABA)ij =
∑n

k=1(AB)ikAkj = (AB)iiAij + (AB)i,n−i+1An−i+1,j = 0 = Aij.
If n is odd and i =

⌈
n
2

⌉
, then (ABA)ij = (AB)iiAij = 0 = Aij . It follows that

(ABA)ij = Aij for all i, j ∈ {1, 2, . . . , n}. Therefore A is regular.

Furthermore, we find that the condition in the previous theorem also makes
the use of being left regular semirings, right regular semirings and intra-regular
semirings.

Theorem 2.6. Let S be a semiring with zero satisfying for every a ∈ S, a = 2x
for some x ∈ S. Then the following statements hold.
(i) DVn(S) is regular iff S is regular.
(ii) DVn(S) is left regular iff S is left regular.
(iii) DVn(S) is right regular iff S is right regular.
(iv) DVn(S) is intra-regular iff S is intra-regular.

Proof. Let S be a semiring with zero satisfying for every a ∈ S, a = 2x for
some x ∈ S.
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(i) is obtained from Theorem 2.5.
(ii) Assume DVn(S) is left regular. Let a ∈ S. Let A ∈ Mn(S) be such that
A11 = A1n = An1 = Ann = a and Aij = 0 otherwise. Then A ∈ DVn(S). Thus
A = BA2 for some B ∈ DVn(S). Hence

a = A11 = (BA2)11 = (BAA)11

=
n∑

k=1

B1k(AA)k1

= B11(AA)11 + B1n(AA)n1

= B11

n∑
k=1

A1kAk1 + B1n

n∑
k=1

AnkAk1

= B11(A11A11 + A1nAn1) + B1n(An1A11 + AnnAn1)
= B11(aa + aa) + B11(aa + aa)

= B11a
2 + B11a

2 + B11a
2 + B11a

2

= (4B11)a2.

Therefore a is left regular for all a ∈ S.
Assume S is left regular. Let A ∈ DVn(S). For each i ∈ {1, 2, . . . ,

⌈
n
2

⌉}, let
ai = Aii. Then for every i ∈ {1, 2, . . . ,

⌈
n
2

⌉}, ai = xia
2
i and xi = 4ui for some

xi, ui ∈ S.

Case 1: n is even.
Let B ∈ Mn(S) be such that ui = Bii = Bi,n−i+1 = Bn−i+1,i =
Bn−i+1,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉} and Bij = 0 otherwise. Then
B ∈ DVn(S). Let i ∈ {1, 2, . . . ,

⌈
n
2

⌉}. Thus

(BAA)ii =
n∑

k=1

Bik(AA)ki = Bii(AA)ii + Bi,n−i+1(AA)n−i+1,i

= Bii(AA)ii + Bii(AA)ii

= Bii

n∑
k=1

A1kAki + Bii

n∑
k=1

A1kAki

= Bii(AiiAii + AiiAii) + Bii(AiiAii + AiiAii)

= (4Bii)A2
ii

= Aii.

Case 2: n is odd.
Let B ∈ DVn(S) be such that ui = Bii = Bi,n−i+1 = Bn−i+1,i =
Bn−i+1,n−i+1 for all i ∈ {1, 2, . . . ,

⌈
n
2

⌉−1}, xi = Bii if i =
⌈

n
2

⌉
and Bij =

0 otherwise. If i ∈ {1, 2, . . . ,
⌈

n
2

⌉ − 1}, then (BAA)ii = (4Bii)A2
ii = Aii.

If i =
⌈

n
2

⌉
, then (BAA)ii = Bii(AA)ii = xiAiiAii = Aii.
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Thus (BAA)i,n−i+1 = (BAA)ii = Aii = Ai,n−i+1 for all i ∈ {1, 2, . . . ,
⌈

n
2

⌉}.
Also, (BAA)n−i+1,i = An−i+1,i and (BAA)n−i+1,n−i+1 = An−i+1,n−i+1.
Otherwise, for i, j ∈ {1, 2, . . . , n} such that j �= i and j �= n − i + 1, we have
(BAA)ij = 0 = Aij .
(iii) analogous to (ii).
(iv) Assume DVn(S) is intra-regular. Let a ∈ S. Let A ∈ Mn(S) be such that
A11 = A1n = An1 = Ann = a and Aij = 0 otherwise. Then A ∈ DVn(S), so
A = BA2C for some B, C ∈ DVn(S). It follows that

a = A11 = (BA2C)11 =
n∑

k=1

B1k(A2C)k1

= B11(A2C)11 + B1n(A2C)n1

= B11(A2C)11 + B11(A2C)11

= B11

n∑
k=1

(A2)1kCk1 + B11

n∑
k=1

(A2)1kCk1

= B11[(A2)11C11 + (A2)11C11] + B11[(A2)11C11 + (A2)11C11]

= (4B11)[(A2)11C11]

= (4B11)[
n∑

k=1

A1kAk1](C11)

= (4B11)[(A2)11 + (A2)11](C11)

= (4B11)(A2)11(2C11)

= (4B11)a2(2C11).

Also, a = (4B11)a2(2C11) = 2[(2B11)a2(2C11)].
Conversely, assume S is intra-regular and for every a ∈ S, a = 2x for

some x ∈ S. For each i ∈ {1, 2, . . . ,
⌈

n
2

⌉}, let ai = Aii. Then for every
i ∈ {1, 2, . . . ,

⌈
n
2

⌉} there exist xi, yi, ui, vi ∈ S such that ai = xia
2
i yi, xi = 4ui

and yi = 2vi.

Case 1: n is even.
Let B, C ∈ Mn(S) be such that

ui = Bii = Bi,n−i+1 = Bn−i+1,i = Bn−i+1,n−i+1 and
vi = Cii = Ci,n−i+1 = Cn−i+1,i = Cn−i+1,n−i+1

for all i ∈ {1, 2, . . . ,
⌈

n
2

⌉} and Bij = 0 = Cij otherwise. Then B ∈
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DVn(S). Let i ∈ {1, 2, . . . ,
⌈

n
2

⌉}. Thus

(BA2C)ii = Bii(A2C)ii + Bi,n−i+1(A2C)n−i+1,i

= Bii(A2C)ii + Bii(A2C)ii

= Bii[(A2)iiCii + (A2)iiCii] + Bii[(A2)iiCii + (A2)iiCii]
= Bii[(AiiAii + AiiAii)Cii + (AiiAii + AiiAii)Cii]
+ Bii[(AiiAii + AiiAii)Cii + (AiiAii + AiiAii)Cii]

= (4Bii)(AiiAii + AiiAii)Cii

= (4Bii)(Aii)2(2Cii)

= xia
2
i yi

= ai

= Aii.

Case 2: n is odd.
Let B, C ∈ DVn(S) be such that

ui = Bii = Bi,n−i+1 = Bn−i+1,i = Bn−i+1,n−i+1,

vi = Cii = Ci,n−i+1 = Cn−i+1,i = Cn−i+1,n−i+1

for all i ∈ {1, 2, . . . ,
⌈

n
2

⌉ − 1}, xi = Bii and yi = Cii if i =
⌈

n
2

⌉
and

Bij = 0 = Cij otherwise. If i ∈ {1, 2, . . . ,
⌈

n
2

⌉ − 1}, then (BA2C)ii =
(4Bii)(Aii)2(2Cii) = Aii. If i =

⌈
n
2

⌉
, then (BA2C)ii = Bii(Aii)2Cii =

Aii.

Hence for every i ∈ {1, 2, . . . ,
⌈

n
2

⌉}, (BA2C)i,n−i+1 = (BA2C)ii = Aii =
Ai,n−i+1, (BA2C)n−i+1,i = An−i+1,i and (BA2C)n−i+1,n−i+1 = An−i+1,n−i+1.
Otherwise, for i, j ∈ {1, 2, . . . , n} such that j �= i and j �= n − i + 1, we have
(BA2C)ij = 0 = Aij . This completes the proof.

Remark 2.7. Let F be a field. The following remarkable properties of DVn(F )
are shown.
(1) If F is a finite field of order q, then |Mn(F )| = qn2

while

|DVn(F )| =
{

q
n
2 if n is even,

q
n+1

2 if n is odd.

(2) As vector spaces over F , dimMn(F ) = n2, DVn(F ) is a subspace of Mn(F )
and

dimDVn(F ) =
{

n
2

if n is even,
n+1

2
if n is odd.
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For each k ∈ {1, 2, . . . ,
⌊

n
2

⌋}, let B(k) ∈ Mn(F ) be defined by

B
(k)
ij =

{
1 if i, j ∈ {k, n− k + 1},
0 otherwise.

If n is odd, let K ∈ Mn(F ) be as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0

0
. . .

... . . .

0 0 0
... 0 1 0

...
0 0 0

. . . . . .
0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is clear that if n is even, then {B(1), . . . , B( n
2 )} is a basis of DVn(F ) over F

and if n is odd, then {B(1), . . . , B( n−1
2 ), K} is a basis of DVn(F ). Observe that

for A ∈ DVn(F ),

A = A11B
(1) + · · ·+ An

2 , n
2
B( n

2 ) if n is even,

A = A11B
(1) + · · ·+ An−1

2 , n−1
2

B( n−1
2 ) + An+1

2 , n+1
2

K if n is odd.

(3) For each k ∈ {1, 2, . . . ,
⌈

n
2

⌉}, we let

DV
(k)

n (F ) = { A ∈ DVn(F )|Akk = Ak,n−k+1 = An−k+1,k = An−k+1,n−k+1 =
0 }.

Then for every k ∈ {1, 2, . . . ,
⌈

n
2

⌉}, DV
(k)

n (F ) is a subspace of DVn(F ) over F

and DVn(F )/DV
(k)

n (F ) ∼= F .
(4) DV

(k)
n (F ) are also ideals of the ring DVn(F ) for all k ∈ {1, 2, . . . ,

⌈
n
2

⌉}.
Acknowledgement The authors acknowledge the support of the SWU En-

dowment Fund Year 2014 through the reseach project, under contract number
112/2557, Srinakharinwirot University.

References
[1] S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, On regular matrix semirings,

Thai J. Math. 7(1) (2009), 69-75.

[2] A. Chatjaroenporn, P. Pobpitak, S. Patlertsin and R.I. Sararnrakskul, Certain regular
commutative subsemiring of full matrix semirings, Bachelor Project, Srinakharinwirot
University, (2013).

[3] R.I. Sararnrakskul, P. Lertwichitsilp, A. Wasanawichit and S. Pianskool, Certain maxi-
mal commutative subrings of full matrix rings, Chamchuri J. Math. 2(1) (2010), 47-55.

[4] N. Sirasuntorn, A. Wasanawichit and K. Savettaseranee, Some maximal commutative
subring of full matrix rings, East-West J. Math., 10(2008), 101-107.


