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AbstractOur purpose in this paper is to present inertial block-iterative schemes
with selective technique for finding a solution of a variational inequality prob-
lem over the set of common fixed points of a finite family of demiclosed quasi-
nonexpansive mappings in Hilbert spaces. First, we introduce a basic scheme
and show that any sequence, generated by this scheme, converges weakly to a
point in the common fixed point set. Then, based on a specific combination of
the scheme with the steepest-descent method, we propose new schemes, strong
convergence of which is proved without the approximately shrinking and bound-
edly regular assumptions on the mappings and their fixed point sets, respec-
tively, that are usually required recently in literature. An application to study a
networked system and computational experiments are given for illustration and
comparison.
1. Introduction

Let H be a Hilbert space equipped with the inner product ⟨., .⟩, the cor-
responding norm ∥.∥ and with the identity mapping I. Let Ti, for i ∈ L :=
{1, ...,m} with a finite integer m ≥ 1, be a demiclosed quasi-nonexpansive
mapping on H with the property ∩i∈LFix(Ti) ̸= ∅ where Fix(Ti) = {p ∈ H :
p = Tip}, the fixed point set of Ti. The considered problem in this paper is to
find a point

p∗ ∈ C := ∩i∈LFix(Ti) such that ⟨Fp∗, p∗ − p⟩ ≤ 0 ∀p ∈ C, (1.1)
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where F is η-strongly monotone and l-Lipschitz continuous on H.
When Ti is a nonexpansive mapping, Yamada [31] proposed the hybrid

steepest-descent method,

xk+1 = (I − tkµF )Txk, k ≥ 0, (1.2)

where µ ∈ (0, 2η/l2) is a fixed number and T is either TmTm−1...T1 or
∑

i∈L ωiTi

with ωi ∈ (0, 1) and
∑

i∈L ωi = 1, and proved the strong convergence of method
(1.2) under two conditions on tk, one of which is that

(t) tk ∈ (0, 1) for all k ≥ 1, limk→∞ tk = 0 and
∑

k≥0 tk = ∞.
In [7], Ng. Buong and L.T.T. Duong gave a modification of (1.2),

xk+1 = (1− αk)x
k + αk(I − tkµF )T kxk, k ≥ 0, (1.3)

αk ∈ [ε, 1] and T k = T k
mT k

m−1...T
k
1 where T k

i = I + βk
i (Ti − I), βk has the

property
(β) βk

i ∈ [β, β] ⊂ (0, 1)
and tk satisfies only condition (t).

When each Ti is quasi-nonexpansive, method (1.2) and its modifications
have been recently investigated in [9-15]. Cegielski and Zalas [12] proposed
the generalized hybrid steepest-descent method with selective technique, called
selective hybrid steepest descent method,

xk+1 = (I − tkF )Tikx
k, (1.4)

where ik is selected by

ik = argmax
i∈L

∥Tix
k − xk∥. (1.5)

The strong convergence of (1.4)–(1.5) is guaranteed when the mapping Ti is
approximately shrinking for each i ∈ L and the family F := {Fix(Ti) : i ∈ L}
is boundedly regular. A combination of method (1.4)–(1.5) with the outer ap-
proximations, has been presented by Gibali et al. [15] with the same properties
of Ti and F as the above. The last two conditions are deleted by He and Tian
[17], when Ti is nonexpansive and then Tik in the equivalent form to (1.4),
xk+1 = Tik(I − tkF )xk, is replaced by I + βk

i (Tik − I). Very recently, Ng.
Buong [8] gave a scheme, that is a specific combination of the block-iterative
method, introduced by Aleyner and Reich [1] for the convex feasibility problem,
with the steepest-descent method and proved the strong convergence without
the approximately shrinking and boundedly regular assumptions, where µ is
still chosen in dependence of η and l.

To speed up the convergence of the Krasnoselskii [20]- Mann [25] iterative
method of finding a point in C, for the general case m = ∞, Maingé [22,23]
suggested a combination of this method with an inertial effect, that is

uk = xk + θk(x
k − xk−1),

xk+1 = (1− αk)x
k + αkT

kuk,
(1.6)
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where T k = (1/γk)
∑

i≥1 γiTi with γi > 0,
∑

i≥1 γi = 1 and γk =
∑k

i=1 γi,
αk ∈ (0, 2) and θk is chosen such that

(c1) {θk} ⊂ [0, θ], where θ ∈ [0, 1).

(c2)
∑

k≥1 θk∥xk − xk−1∥2 < ∞.

When m = 1 and T is nonexpasnive on H, Bot et al. [6] also studied the
convergence of (1.6) with removing condition (c2). But, they required a strict
condition on θk and αk. Shehu [27] combined the inertial effect uk in (1.6)
with the Ishikawa [19] iterative method under weaker conditions on the inertial
factor θk and iterative parameters αk than those in [6]. Recently, in order to
obtain a strongly convergent sequence, Tan et al. [29], by combining the inertial
Krasnoselskii-Mann iterative method with the Halpern [16] and Moudafi [26]
viscosity approximation methods under a new condition on θk,

(c3) limk→∞
θk
tk
∥xk − xk−1∥ = 0.

In this paper, based on method (1.3) and a reconstruction of a method
in [1] with the inertial effect uk, we first propose an inertial block-iterative
scheme with selective technique, that converges weakly to a point in C. Next,
for solving (1.1), we introduce new block-iterative schemes and prove their
strong convergence without the approximately shrinking and boundedly regular
assumptions on Ti and F , respectively. Moreover, the parameter µ in our
schemes is chosen through an adaptive way.

We organize the rest of this paper as follows. In Section 2, we list some ter-
minologies, using in this paper, and related facts, that will be used in the proof
of our results. In Section 3, we suggest two block-iterative schemes with several
modifications and give convergence theorems for the schemes and modifications.
An application to a networked system and computational experiments are given
for illustration and comparison.

2. Preliminaries

We remember that an operator T in H is called (see, [14]):

• nonexpansive or contractive if ∥Tx − Ty∥ ≤ a∥x − y∥ with a = 1 or
a ∈ [0, 1), respectively, for all x, y ∈ H.

• quasi-nonexpansive, if Fix(T ) ̸= ∅ and ∥Tx− p∥ ≤ ∥x− p∥ for all x ∈ H
and p ∈ Fix(T ).

• a cutter, if Fix(T ) ̸= ∅ and ⟨p − Tx, x − Tx⟩ ≤ 0 for all x ∈ H and
p ∈ Fix(T ).

• ρ-strongly quasi-nonexpansive, if Fix(T ) ̸= ∅ and, for all x ∈ H and
p ∈ Fix(T ), ∥Tx − p∥2 ≤ ∥x − p∥2 − ρ∥Tx − x∥2 where the real number
ρ ≥ 0.
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• approximately shrinking on a subsetD ⊆ H, if for any sequence {xk} ⊆ D
the following implication holds

lim
k→∞

∥Txk − xk∥ = 0 =⇒ lim
k→∞

ρ(xk,Fix(T )) = 0. (2.1)

• demiclosed if for any sequence {xk} ⊂ H it holds

(xkconverges weakly to x and ∥Txk − xk∥ → 0) =⇒ x ∈ Fix(T ). (2.2)

• The family {Fix(Ti) : i ∈ L} is called boundedly regular, if for any
bounded subset D ⊂ H and for any ε > 0, there exists a real number
δ > 0 such that for any x ∈ D

max
i∈L

ρ(x,Ci) ≤ δ =⇒ ρ(x,C) ≤ ε,

where ρ(x,C) = infy∈C ∥x− y∥.

Clearly, a ρ-strongly quasi-nonexpansive mapping T with ρ = 0 is quasi-
nonexpansive and a nonexpansive mapping T with Fix(T ) ̸= ∅ is quasi -
nonexpansive. In this case Fix(T ) is closed and convex. A ρ-strongly quasi-
nonexpansive mapping T with ρ = 1 is a cutter. A mapping T is ρ-strongly
quasi-nonexpansive, if and only if λ⟨p−x, Tx−x⟩ ≥ ∥Tx−x∥2 for all x ∈ H and
all p ∈ Fix(T ), where λ = 2/(ρ + 1). It is worth mentioning that in a general
Hilbert space H (2.2) is only a necessary condition for implication (2.1) and
even a firmly nonexpansive mapping may not have this property (see, [15]). A
mapping F : H → H is said to be η-strongly monotone and γ-Lipschitz con-
tinuous, if it satisfies, respectively, the conditions ⟨Fx−Fy, x−y⟩ ≥ η∥x−y∥2
and ∥Fx − Fy∥ ≤ γ∥x − y∥ for all x, y ∈ H with γ ≥ η > 0. It is well known
that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩ ∀x, y ∈ H.

Lemma 2.1 ([31]) Let H be a real Hilbert space and let F be an η-strongly
monotone and l-Lipschitz continuous mapping on H with some positive con-
stants l ≥ η > 0. Let Tµ = I − µF and let T t,µ = I − tµF . Then, for a fixed
number µ ∈ (0, 2η/l2) and any t ∈ (0, 1), I−µF and I−tµF are all contractions
with coefficients 1− τ and 1− tτ , respectively, where τ = (1/2)µ(2η − µl2).

Lemma 2.2 ([30]) Let {ak}, {bk} and {ck} be sequences of real numbers such
that, for all k ≥ 0, ak+1 ≤ (1 − bk)ak + bkck; ak ≥ 0; bk satisfies a condi-
tion of type (t); and either

∑∞
k=1 bk|ck| < ∞ or lim supk→∞ ck ≤ 0. Then,

limk→∞ak = 0.

Lemma 2.3 ([22]) Let {ak} be a sequence of real numbers with a subsequence
{lk} of {k} such that alk < alk+1. Then, there exists a nondecreasing sequence
{mk} ⊆ {k} such that mk → ∞, amk

≤ amk+1 and ak ≤ amk+1 for all (suffi-
ciently large) numbers k ≥ 0. In fact, mk = max{l ≤ k : al ≤ al+1}.
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Lemma 2.4 ([2,3]) Let {φk} ⊂ [0,∞) and {δk} ⊂ [0,∞) verify
(i) φk+1 − φk ≤ θk(φk − φk−1) + δk,
(ii)

∑∞
k=1 δk < ∞,

and there holds condition (c1). Then, limk→∞ φk exists and
∑∞

k=1[φk+1 −
φk]+ < ∞, where [t]+ = max{t, 0} for any t ∈ R.

3. Main results

In order to find a point in C, we consider the following inertial block-
iterative scheme with selective technique, a main scheme.
Main scheme:

St.0 Choose any two points x−1, x0 ∈ H such that x−1 ̸= x0 and an integer
s ≥ 1. Set k := 0.

St.1 Calculate uk = xk + θk(x
k − xk−1), where θk satisfies (c1) and (c2).

St.2 For t = 1, · · · , s, let Lk
t be an ordered subset of L such that L = Lk

1 ∪
· · · ∪ Lk

s and define yk,t by the rule:

yk,0 := uk, yk,t = Timax(t)y
k,t−1, imax(t) = arg max

i(t)∈Lk
t

pi(t)(y
k,t−1), (3.1)

where pi(x) = ∥Tix− x∥ for any x ∈ H.

St.3 Compute xk+1 = (1−αk)x
k +αky

k,s with αk ∈ [ε, 1]. Then, set xk−1 :=
xk, xk := xk+1 and k := k + 1. Return to St.1.

Remark
1. Clearly, uk is a point in C if and only if pimax(t)(y

k,t−1) = 0 for t = 1, ..., s.
We will show that any sequence, generated by the main scheme, converges
weakly to a point in C. For solving the stated problem, we replace {xk+1} in
St.3 by a new xk+1, defined by

xk+1 = (1− αk)(I − tkµkF )xk + αky
k,s, (3.2)

where tk satisfies (t),

µk =

{
⟨Fxk−Fxk−1,xk−xk−1⟩

∥Fxk−Fxk−1∥2 , xk ̸= xk−1,

µk−1, otherwise,

and condition (c2) is replaced by (c3).

We have the following results.

Theorem 3.1 Any sequence {xk}, generated by the main scheme, converges
weakly to a point in C, as k → ∞.
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Proof. Let p be any fixed point in C. Using the definition of yk,t and the
properties of Timax(t), we get

∥yk,t − p∥2 = ∥Timax(t)y
k,t−1 − p∥2

≤ ∥yk,t−1 − p∥2 − ρmin∥Timax(t)y
k,t−1 − yk,t−1∥2,

for all t = 1, 2, ..., s. Summing the last inequalities with t = 1, ..., s and noting
yk,0 = uk, we obtain

∥yk,s − p∥2 ≤ ∥uk − p∥2 − ρmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2. (3.3)

On the other hand,

∥uk − p∥2 = ∥xk − p+ θk(x
k − xk−1)∥2

= ∥xk − p∥2 + 2θk⟨xk − p, xk − xk−1⟩+ θ2k∥xk − xk−1∥2
(3.4)

From the well known property,

⟨u, v⟩ = −1

2
∥u− v∥2 + 1

2
∥u∥2 + 1

2
∥v∥2

for any two points u, v ∈ H, it follows that

⟨xk − p, xk − xk−1⟩ = −1

2
∥xk−1 − p∥2 + 1

2
∥xk − p∥2 + 1

2
∥xk − xk−1∥2.

This together with (3.3), the definition of xk+1 in St.3 and (3.4) implies that

∥xk+1 − p∥2 − ∥xk − p∥2 ≤ θk(∥xk − p∥2 − ∥xk−1 − p∥2) + 2θk∥xk − xk−1∥2

− ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2.

(3.5)
since θ2k ≤ θk. Therefore,

∥xk+1 − p∥2 − ∥xk − p∥2 ≤ θk(∥xk − p∥2 − ∥xk−1 − p∥2) + 2θk∥xk − xk−1∥2.

Using Lemma 2.4 with φk = ∥xk − p∥2 and δk = θk∥xk − xk−1∥2, we have the
existence of limk→∞ ∥xk −p∥. Consequently, {xk} is bounded. Moreover, from
(3.5) we can deduce that

ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + 2θk∥xk − xk−1∥2

+ θk
(
∥xk − p∥2 − ∥xk−1 − p∥2

)
.
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Again, by using Lemma 2.4, we get
∑∞

k=1[∥xk − p∥2 − ∥xk−1 − p∥2]+ < ∞.
Hence,

ερmin

∞∑
k=1

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 < ∞.

It means that

lim
k→∞

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 = 0,

which is equivalent to

lim
k→∞

∥Timax(t)y
k,t−1 − yk,t−1∥2 = 0, (3.6)

for t = 1, ..., s. Therefore, from (3.1) and (3.6) we have

lim
k→∞

∥yk,t − yk,t−1∥ = 0. (3.7)

Hence, limk→∞ ∥yk,t − uk∥ = 0, for t = 1, ..., s, as yk,0 = uk. Further, from the
definition of uk with properties (c1) and (c2), we obtain

∥uk − xk∥2 = θ2k∥xk − xk−1∥2 ≤ θk∥xk − xk−1∥2 =⇒ 0,

as k → ∞. Thus,
lim
k→∞

∥yk,t − xk∥ = 0, (3.8)

for t = 1, ..., s. Since {xk} is bounded, there exists a subsequence {xnk} ⊂ {xk}
such that {xnk} converges weakly to a point p̃ ∈ H. Noting (3.7) and (3.8),

lim
k→∞

∥ynk,t−1 − xnk∥ = 0, (3.9)

for t = 1, ..., s. As L = Lnk
1 ∪ · · · ∪ Lnk

s , for each i ∈ L there exists at least
an integer rk such that i ∈ Lnk

rk
:= {i1(rk), ..., i, ..., i|Lnk

rk
|(rk)}. Then, from the

definition of yk,t in (3.1) and (3.6) with k and t replaced, respectively, by nk

and rk, it is easy to verify that

0 ≤ lim
k→∞

∥Tiy
nk,rk−1 − ynk,rk−1∥2 ≤ lim

k→∞
∥Timax(rk)y

nk,rk−1 − ynk,rk−1∥2 = 0,

i.e.,
lim
k→∞

∥Tiy
nk,rk−1 − ynk,rk−1∥ = 0. (3.10)

By virtue of (3.9) with t replaced by rk, (3.10), the property of the sequence
{xnk} and the demiclosed property of Ti, p̃ ∈ Fix(Ti) for any i ∈ L, i.e., p̃ ∈ C.
Similarly, any weak cluster point of {xk} belongs to C. Then, by Corollary 3.3.3
in [14], the sequence {xk} converges weakly to a point in C. This completes
the proof. 2 Next, in order to prove the strong convergence
of any sequence, generated by our scheme with new xk+1 in (3.2), we need the
following Lemma.
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Lemma 3.2 For any sequence, generated by our scheme with new xk+1 in
(3.2) and (c3) instead of (c2), is bounded. Moreover, we still have

∥xk+1 − p∥2 ≤ (1− αkγkβk)∥xk − p∥2 + 2γk
(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)
+ 2θk∥xk − xk−1∥M2 − ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2,

(3.11)
for all k ≥ k1, a positive integer, where γk = tkµk, βk = (1/2)(2η − γkl

2), M1

and M2 are some positive constants.

Proof. Put

ηk =
⟨Fxk − Fxk−1, xk − xk−1⟩

∥xk − xk−1∥2
and lk =

∥Fxk − Fxk−1∥
∥xk − xk−1∥

.

It is easy to see that

η ≤ ηk ≤ ∥Fxk − Fxk−1∥
∥xk − xk−1∥

= lk ≤ l,

and hence,
η

l2
≤ µk =

ηk
l2k

≤ 1

ηk
≤ 1

η
. (3.12)

Since tk → 0 as k → ∞, from (3.12), we can confirm the existence of an integer
k1 such that γk ∈ (0, η/l2) and βk ≥ η/2 for all k ≥ k1. Thus, by using Lemma
2.1, (3.3) and (3.12), we obtain

∥(I − γkF )xk − p∥ = ∥(I − γkF )xk − (I − γkF )p− γkFp∥
≤ (1− γkβk)∥xk − p∥+ γk∥Fp∥

and

∥yk,s − p∥ ≤ ∥uk − p∥ ≤ ∥xk − p∥+ tk
θk
tk

∥xk − xk−1∥. (3.13)

Let c be a positive constant such that θk
tk
∥xk − xk−1∥ ≤ c for all k ≥ 0. This

constant exists due to (c3). Then,

∥xk+1 − p∥ ≤ (1− αk)∥(I − γkF )xk − p∥+ αk∥yk,s − p∥
≤ (1− αk)

(
(1− γkβk)∥xk − p∥+ γk∥Fp∥

)
+αk

(
∥xk − p∥+ tkc

)
≤ (1− αkγkβk)∥xk − p∥+ 2αkγkβk

(
∥Fp∥
εη

+
cl2

η2

)
≤ r := max {∥xk1

− p∥, 2(∥Fp∥/(εη) + cl2/η2)} ∀k ≥ k1.
(3.14)
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It means that {xk} is bounded. Consequently, ∥Fxk∥ ≤ M1 for all k ≥ 0,
where M1 is some positive constant, that exists because {xk} is bounded and
F is l̃-Lipschitz continuous. Further, by Lemma 2.1,

∥(I − γkF )xk − p∥2 = ∥(I − γkF )xk − (I − γkF )p− γkFp∥2

≤ (1− γkβk)∥xk − p∥2 + 2γk
(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)
,

for all k ≥ k1. Clearly,

∥uk − p∥2 ≤ ∥xk − p∥2 + 2θk⟨xk−1 − xk, uk − p⟩
≤ ∥xk − p∥2 + 2θk∥xk − xk−1∥M2,

where, M2 = r+ tkc ≤ r+ c for all k ≥ k1 due to (3.13), (3.14) and tk ∈ (0, 1).
Thus, (3.3) deduces

∥yk,s−p∥2 ≤ ∥xk−p∥2+2θk∥xk−xk−1∥M2−ρmin

s∑
t=1

∥Timax(t)y
k,t−1−yk,t−1∥2.

(3.15)
Finally, by using Lemma 2.1 and (3.15) we have

∥xk+1 − p∥2 ≤ (1− αk)∥(I − γkF )xk − p∥2 + αk∥yk,s − p∥2

≤ (1− αk)
[
(1− γkβk)∥xk − p∥2 + 2γk

(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)]
+ αk

[
∥xk − p∥2 + 2θk∥xk − xk−1∥M2

− ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2

]
≤ (1− αkγkβk)∥xk − p∥2 + 2γk

(
⟨Fp, p− xk⟩+ γkM1

)
+ 2θk∥xk − xk−1∥M2 − ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2,

that is (3.11). The proof is completed. 2 Now, we are in the position to prove
a strong convergence result.

Theorem 3.3 Any sequence, generated by our block-iterative scheme with new
xk+1 and (c3) instead of (c2), as k → ∞, converges strongly to a point p∗ ∈ H,
solving (1.1).

Proof. Obviously, from (3.12) and the definitions of γk, βk in Lemma 3.2, we
get

θk∥xk − xk−1∥ = tk
θk
tk

∥xk − xk−1∥ ≤ γkβk(2l
2/η2)τk, (3.16)
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where, following condition (c3), τk = (θk/tk)∥xk−xk−1∥ → 0 as k → ∞. Then,
from (3.11), βk ≥ η/2, αk ∈ [ε, 1] and the last inequality, we have

∥xk+1 − p∥2 ≤ (1− αkγkβk)∥xk − p∥2 + 4γkβk

[
⟨Fp, p− xk⟩+ γk∥Fp∥M1

]
/η

+ 2γkβk(2l
2/η2)τkM2 − ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2

≤ (1− εγkβk)∥xk − p∥2 + εγkβk4
[(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)
/η

+ (l2/η2)τkM2

]
/ε− ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2.

(3.17)
Now, we need only to consider two cases.
Case 1. ∥xk+1 − p∥ ≤ ∥xk − p∥ for all k ≥ k1.

Then there exists limk→∞ ∥xk − p∥ and it is easy to see from (3.17) that

ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + dkγk,

(3.18)
where dk = 4βk∥Fp∥

[
(r + γkM1)/η) + τkM2l

2/η2. Next, we prove that

lim
k→∞

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 = 0. (3.19)

Clearly, if

ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 ≤ dkγk

for all k ≥ k1, then (3.19) holds. If

0 ≤ ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 > dkγk

for all k ≥ k1, then from (3.18) it follows that

M∑
k=k1

(
ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 − dkγk

)
≤ ∥xk1

− p∥2 − ∥xM+1 − p∥2,

for any positive integer M . Thus,

∞∑
k=k1

(
ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 − dkγk

)
≤ ∥xk1

− p∥2,
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Therefore,

lim
k→∞

(
ερmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2 − dkγk

)
= 0,

and hence, we obtain (3.19), because γk → 0. By the similar argument as in
the proof of Theorem 3.1, we get (3.6)–(3.10) and that any weak cluster point
of {xk} belongs to C. Therefore,

lim sup
k→∞

⟨Fp∗, p∗ − xk⟩ ≤ 0. (3.20)

Now, from (3.17), we obtain

∥xk+1 − p∗∥2 ≤ (1− bk)∥xk − p∗∥2 + bkck, (3.21)

where bk = εγkβk and

ck = 4
[(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)
/η + (l2/η2)τkM2

]
/ε.

Clearly,
∑∞

k=1 bk ≥
∑∞

k=1 εtkη
2/(2l2) = ∞ and from (3.20) with γk, τk → 0

it follows that lim supk→∞ ck ≤ 0. So, applying Lemma 2.3 to (3.21) with
ak = ∥xk − p∗∥2, we get limk→∞ ∥xk − p∗∥ = 0.

Case 2. There exists a subsequence {lk} ⊂ {k} such that ∥xlk−p∥ ≤ ∥xlk+1−p∥
for all k ≥ k1.

Then, by Lemma 2.3, there exists a non-decreasing sequence {mk} ⊆ {k}
such that mk → ∞,

∥xmk − p∥ ≤ ∥xmk+1 − p∥ and ∥xk − p∥ ≤ ∥xmk+1 − p∥ (3.22)

for each k ≥ k1. Hence, from (3.16), (3.17) and the first inequality in (3.22),
we have

∥xmk − p∥2 ≤ 4[
(
⟨Fp, p− xk⟩+ γk∥Fp∥M1

)
/η + (l2/η2)τkM2

]
/ε (3.23)

and

ερmin

s∑
t=1

∥Timax(t)y
mk,t−1 − ymk,t−1∥2 ≤ dmk

γmk
.

Hence,

lim
k→∞

∥Timax(t)y
mk,t−1 − ymk,t−1∥2 = 0

for each t = 1, · · · , s. By the similar argument as in the proof of Theorem 3.1,

lim
k→∞

∥Tiy
mk,rk−1 − ymk,rk−1∥ = 0 and lim

k→∞
∥xmk − ymk,rk−1∥ = 0.
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So, any weak cluster point of {xmk} belongs to C. Consequently,

lim sup
k→∞

⟨Fp∗, p∗ − xmk⟩ ≤ 0.

Using (3.23) with p changed by p∗, the above lim sup and γmk
, τmk

→ 0, we
obtain

lim
k→∞

∥xmk − p∗∥ = 0. (3.24)

Again, from (3.17) with k and p replaced, respectively, by mk and p∗, we get

∥xmk+1−p∗∥2 ≤ ∥xmk−p∗∥2+4γmk
βmk

[
∥Fp∥

(
r+γmk

M1

)
/η+(l2/η2)τmk

M2

]
.

From the last inequality, (3.24), γmk
, τmk

→ 0 and βk ≤ η for all k ≥ k1,
it follows that limm→∞ ∥xmk+1 − p∗∥2 = 0. The last limit together with the
second inequality in (3.22) implies that limk→∞ ∥xk − p∗∥ = 0. This completes
the proof. 2

Remarks

2. If the given Ti is quasi-nonexpansive, then the relaxation T i = I + β(T − I)
satisfies the condition

∥T ix− p∥2 ≤ ∥x− p∥2 − λ∥Tix− x∥2 ∀x ∈ H, p ∈ Fix(Ti)

for any fixed β ∈ (0, 1] where λ = β(1−β). It is easy to see that T i is demiclosed
if and only if T does. Moreover, we still have that Fix(Ti) = Fix(T i) (see, [21]).
Analyzing the proofs of the Theorems, we obtain that they are also valid, when
we replace Ti(t) in (3.1) by T i(t).
3. Take F = I − u for some fixed point u ∈ H. Clearly, F is η-strongly
monotone with any η ∈ (0, 1] and γ-Lipschitz continuous with any γ ≥ 1.
Clearly, in this case, µk = 1 for all k ≥ 1. Then, xk+1 in the methods listed
above has the form,

xk+1 = (1− αk)(1− tk)x
k + (1− αk)tku+ αky

k,s. (3.25)

Taking u = 0 in (3.25), we obtain an improvement modification for the selective
inertial block-iterative scheme,

xk+1 = (1− αk)(1− tk)x
k + αky

k,s, (3.26)

for all k ≥ 0. Note that any sequence, generated by (3.26) converges strongly
to a minimal-norm point of C, as k → ∞.
4. Now, we consider the case when the expression xk+1 in (3.2) is replaced by

xk+1 = (1− αk)y
k,s + αk(I − tkµkF )yk,s, (3.27)
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with a new

µk =

{
⟨Fyk,s−Fyk−1,s,yk,s−yk−1,s⟩

∥Fyk,s−Fyk−1,s∥2 , yk,s ̸= yk−1,s,

µk−1, otherwise,
(3.28)

y−1,s = x−1 and y0,s = x0. Then, the inequalities in (3.12) are still true.
Moreover, γk ∈ (0, η/l2) and βk ≥ η/2 for all k ≥ k2, some positive constant.
Next, from (3.13) and θk

tk
∥xk − xk−1∥ ≤ c, we get

∥yk,s − p∥ ≤ ∥xk − p∥+ tkc ∀k ≥ 0.

Consequently,

∥xk+1 − p∥ ≤ (1− αk)∥yk,s − p∥+ αk∥(I − γkF )yk,s − p∥
≤ (1− αk)(∥xk − p∥+ tkc) + αk

[
(1− γkβk)(∥xk − p∥+ tkc) + γk∥Fp∥

]
≤ (1− αkγkβk)∥xk − p∥+ tkc+ αkγk∥Fp∥
≤ (1− αkγkβk)∥xk − p∥+ αkγkβk(c/(αkµkβk) + ∥Fp∥/βk)

≤ r′ = max{∥xk1 − p∥, 2(cl2/(εη2) + ∥Fp∥/η)},

a positive constant, for all k ≥ k2. It means that {xk} is bounded. Hence,
{yk,s} is also bounded. Then, ∥Fyk,s∥ ≤ M ′

1, some positive constants, and

∥xk+1 − p∥2 ≤ (1− αk)∥yk,s − p∥2 + αk∥(I − γkF )yk,s − p∥2

≤ (1− αk)∥yk,s − p∥2 + αk[(1− γkβk)∥yk,s − p∥2

+ 2γk(⟨Fp, p− yk,s⟩+ γk⟨Fp, Fyk,s⟩)]
≤ (1− αkγkβk)∥yk,s − p∥2 + 2γk(⟨Fp, p− yk,s⟩+ γk∥Fp∥M ′

1).

This together with (3.15) and (3.16) implies that

∥xk+1 − p∥2 ≤ (1− αkγkβk)∥xk − p∥2 + αkγkβk(2l
2/(εη2))τk

− (1− αkγkβk)ρmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2

+ 4αkγkβk(⟨Fp, p− yk,s⟩+ γk∥Fp∥M ′
1)/(εη)

≤ (1− αkγkβk)∥xk − p∥2 + 2αkγkβk[(l
2/η)τk + 2⟨Fp, p− xk⟩

+ ∥Fp∥(2∥yk,s − xk∥+ γkM
′
1)]/(εη)

− (1− αkγkβk)ρmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2.

Since γk → 0, αk > ε and βk ≥ η/2 for all k ≥ k1, there exists a positive
integer k̃ ≥ k1 such that, for all k ≥ k̃, 1 − αkγkβk ≥ c̃, a positive constant.
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Therefore, the last inequality yields

∥xk+1 − p∥2 ≤ (1− αkγkβk)∥xk − p∥2 + 2αkγkβk[(l
2/η)τk + 2⟨Fp, p− xk⟩

+ ∥Fp∥(2∥yk,s − xk∥+ γkM
′
1)]/(εη)

− c̃ρmin

s∑
t=1

∥Timax(t)y
k,t−1 − yk,t−1∥2,

where limk→∞ ∥yk,s − xk∥ = 0 due to (3.8). Repeating step by step the proof
of Theorem 3.3, we obtain the following result.

Theorem 3.4 Any sequence {xk}, generated by the main scheme with new
xk+1, defined by (3.27) and (3.28), as k → ∞, converges strongly to the point
p∗, solving (1.1).

4. Taking αk = 1 for all k ≥ 0, (3.27) has the form,

xk+1 = (I − tkµkF )yk,s, (3.29)

that together with θk = 0 is the steepest descent block iterative method, studied
in [7] with µk = µ ∈ (0, 2η/l2) and yk,s = xk,s. In the case that F = I − u,
we have the following Halpern’s selective inertial block-iterative scheme, that
is the our main inertial iterative scheme with xk+1 in (3.29) replaced by

xk+1 = tku+ (1− tk)y
k,s, (3.30)

since, in this case, µk = 1 for all k ≥ 0.

4. Applications and computational experiments

We consider a networked system consisting of an operator, who manages
the system, and a finite number m−1 of participating users. In the system the
manage operator can be seen as an user m. We suppose that each i-user has
its own private objective function fi on En, an n-dimensional Euclidian space,
and own capacity constraint, depicted by a nonempty closed convex Ci in En.
Moreover, the following is assumed.

• Ti is a mapping on En with Fix(Ti) = Ci for each i ∈ L and ∩i∈LFix(Ti) ̸=
∅.

• fi is a concave and Fréchet differentiable function on En such that −▽fi
is ηi-strongly monotone and li-Lipschitz continuous.

• User i ∈ L can use its own private Ci and fi.

• The operator can communicate with all users.
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The considered problem is formulated as finding a point p∗ in En such that

f(p∗) = max
p∈C

f(p), f(x) =
∑
i∈L

fi(x), C = ∩i∈LFix(Ti). (4.1)

Problem (4.1) is closely related to network recourse allocation [5,28] which
is a central issue in modern communication networks. The main objective
of the problem is to share the available resources among users in the net-
work so as to maximize the sum of their utilities subject to the feasible re-
gions for allocating the resources. This problem is equivalent to the follow-
ing one, f̃(p∗) = infp∈C f̃(p), where f̃ = −

∑
i∈L fi(x) is convex and Fréchet

differentiable with η-strongly monotone and l-Lipschitz continuous ▽f̃ where
l̃ = maxi∈L li and η = mini∈L ηi. To solve (4.1), when − ▽ fi is ηi-strongly
monotone and li-Lipschitzian and Ti is quasi-nonexpansive, Iiduka [18] intro-
duced a parallel optimization algorithm, at each iteration steep of which the
value µ is chosen in dependence of ηi and li. It is easy to see that the considered
problem can be solved by any method, generated by one of our schemes, where
F = ▽f̃ and C is given in (4.1).

For computations, we consider the case, when f̃ is a differentiable convex
function, the derivative of which, Fx := f̃ ′(x), is η-strongly monotone and
l̃-Lipschitz continuous and Ti is the subgradient projection relative to a convex
function gi, defined by

Pgix :=

{
x− [gi(x)]+

∥ηi(x)∥2 ηi(x), if ηi(x) ̸= 0,

x, otherwise,

where ηi(x) ∈ ∂gi(x) := {z ∈ En : gi(y) − gi(x) ≥ ⟨z, y − x⟩, for all y ∈ En},
called a subgradient of gi. We know in [14] that Ti := Pgi is a demiclosed cutter

and Fix(Ti) = {z ∈ En : gi(z) ≤ 0}. We take a function f̃(x) = ∥x − u∥2/2
and gi(x) = ∥x−PQi

x∥2/2 for i ∈ L, where PQi
is the metric projection of En

onto the set Qi = {x ∈ En : ∥x − ai∥2 ≤ 1} and ai are points in En such that
∩i∈LQi ̸= ∅. Clearly, ∂gi(x) = g′i(x) = x− PQi

x and

PQi
x =

{
ai + 1

∥x−ai∥ (x− ai), if ∥x− ai∥ > 1,

x, otherwise.

Therefore,

Pgix :=

{
(x+ PQix)/2, if ηi(x) ̸= 0,

x, otherwise.

The numerical results, calculated with n = 5,m = 6,

a1 = (0;−1/2; 0; 0; 0), a2 = (0; 1/2; 0; 0; 0), a3 = (1/2; 0; 0; 0; 0),

a4 = (−1/2; 0; 0; 0; 0), a5 = (0; 0; 1/2; 0; 0), a6 = (0; 0;−1/2; 0; 0),
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L = Lk
1 ∪Lk

2 , where Lk
1 = {1, 2, 3} and Lk

2 = {4, 5, 6}. Taking u = (0; 0; 0; 0; 0),
we get the unique solution p∗ = (0; 0; 0; 0; 0). Numerical results, obtained
without the inertial term (θk = 0), are calculated by the formula

xk,1 = Timax(1)x
k,0, imax(1) = argmax

i∈Lk
1

∥Tix
k,0 − xk,0∥,

xk,2 = Timax(2)x
k,1, imax(2) = argmax

i∈Lk
2

∥Tix
k,1 − xk,1∥,

xk+1 = (1− tk)x
k,2,

(4.2)

following from (3.30), with the started point x0 = (2; 2.5; 3; 3.5; 1).

k xk+1
1 xk+1

2 xk+1
3 xk+1

4 xk+1
5

10 0.0557779218 0.0506246428 0.0630224743 0.0976113631 0.0278889609
20 0.0292170066 0.0265176728 0.0330117724 0.0511297616 0.0146085033
30 0.0197921658 0.0179635848 0.0223628135 0.0346362901 0.0098960829
40 0.0149648083 0.0135822227 0.0169084687 0.0261884145 0.0074824041
50 0.0120305321 0.0109190418 0.0135930827 0.0210534313 0.0060152661

Table 1. Numerical results by method (4.2)

The following numerical table is obtained by using our iterative scheme

uk = xk + θk(x
k − xk−1), yk,0 = uk,

yk,1 = Timax(1)y
k,0, imax(1) = argmax

i∈Lk
1

∥Tiy
k,0 − yk,0∥,

yk,2 = Timax(2)y
k,1, imax(2) = argmax

i∈Lk
2

∥Tiy
k,1 − yk,1∥,

xk+1 = (1− tk)y
k,2,

(4.3)

with

θk =

{
min{εk/∥xk − xk−1∥, θ}, ifxk ̸= xk−1 ≤ 0,

θk−1, otherwise,
(4.4)

where εk = 1/(k+1)2, θ = 0.1 and x−1 = (1; 3.5; 3; 2.5; 2), and the same values
for other parameters. We get the numerical results in Table 2.

k xk+1
1 xk+1

2 xk+1
3 xk+1

4 xk+1
5

10 0.0431792242 0.0339803589 0.0444127522 0.0737654623 0.0179932518
20 0.0208410698 0.0164011057 0.0214364492 0.0356039544 0.0086847001
30 0.0134755486 0.0106047292 0.0138605131 0.0230210267 0.0056154075
40 0.0098608472 0.0077601006 0.0101425482 0.0168458319 0.0041091222
50 0.0077297385 0.0060830016 0.0079505588 0.0132051408 0.0032210660

Table 2. Numerical results by method (4.3) and (4.4)
The numerical results in Tables 1 and 2 show the effectiveness of the intro-

duced schemes. Moreover, they also show that the results calculated by using
the inertial term uk is better than that without the same term.
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5. Conclusion

In this paper, for finding a point in the set common fixed points of a finite
family of demiclosed strongly quasi-nonexpansive mappings in Hilbert spaces,
we suggested a selective inertial block-iterative schemes with weak convergence.
Then, based on a specific combination of the scheme with the steepest-descent
method, we propose new schemes, for solving a variational inequality problem
over the set of common fixed points of a finite family of SQNE mappings in
Hilbert spaces. The strong convergence of the latter scheme is proved with-
out the approximately shrinking and boundedly regular assumptions on the
mappings and their fixed point sets, respectively, that are usually required re-
cently in literature. An application to a networked system and computational
experiments are given for illustration and comparison.
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