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Abstract

In this paper, we consider the Kirchhoff-type problem for a class of
nonlinear operators containing p(-)-Laplacian and mean curvature oper-
ator with mixed boundary conditions. More precisely, we are concerned
with the problem with the Dirichlet condition on a part of the boundary
and the Steklov boundary condition on an another part of the bound-
ary. We show the existence of at least three weak solutions according to
hypotheses on given functions and values of parameters.

1 Introduction
In this paper, we consider the following mixed boundary value problem

M) fae, Vo) = Mol () + i le) 09
M(®(u))n(x) - a(x, Vu(z)) = Ago(z, u(z)) + pg1(z,u(x)) on 1"2?(1 )
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90 Existence of three weak solutions for the Kirchoff-type problem...

Here © is a bounded domain of RY (N > 2) with a Lipschitz-continuous (C%*
for short) boundary T" satisfying that

I'y and I'; are disjoint open subsets of ' such that T,Uly =T and I'y #0,
(1.2)
and the vector field n denotes the unit, outer, normal vector to I". The func-
tion a(r,&) is a Carathéodory function on Q x R¥ satisfying some structure
conditions associated with an anisotropic exponent function p(z). The function
M = M (s) defined in [0, 00) satisfies the following condition (M).
(M) M : [0,00) — [0,00) is a continuous and monotone increasing (i.e.,
non-decreasing) function, and there exist 0 < mg < my < oo and I > 1 such
that

mes' < M(s) < myst~! for all s > 0.

Furthermore, the function ®(u) is defined by
D(u) = / Az, Vu(z))de, (1.3)
Q

where A(z,€) is a function on Q x RY satisfying a(z,€) = V¢A(z, £).

Here the operator u + div[a(z, Vu(z)] is more general than the p(-)-
Laplace operator A, u(z) = div [[Vu(z)[P(®)=2Vu(z)] and the mean curva-
ture operator div [(14|Vu(x)|?)P®)~2/2Wy(x)]. This generality brings about
difficulties and requires some conditions.

Thus we impose the mixed boundary conditions, that is, the Dirichlet con-
dition on I'y and the Steklov condition on I'y. The given data f; : @ x R - R
and g; : I's x R — R for ¢ = 0,1 are Carathéodory functions satisfying some
structure conditions and A, u are real parameters.

The study of differential equations with p(-)-growth conditions is a very
interesting topic recently. Studying such problem stimulated its application
in mathematical physics, in particular, in elastic mechanics (Zhikov [31]), in
electrorheological fluids (Diening [11], Halsey [19], Mihéilescu and Rédulescu
[24], Ruzicka [26]).

For physical motivation to the problem (1.1), we consider the case where
I' =T and p(z) = 2. Then the equation

M(HV“Hi?(Q))AU@?) = f(z,u(z)) (1.4)
is the Kirchhoff equation which arises in nonlinear vibration, namely

Uty — M(||Vu\|%2(m)Au = f(z,u) in Qx (0,7),
u=0 on ' x (0,7), (1.5)

u(x,0) = up(x), ug(x,0) = up ().
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Equation (1.4) is the stationary counterpart of (1.5). Such a hyperbolic equa-
tion is a general version of the Kirchhoff equation
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po  E 0°u
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h 2L J,
presented by Kirchhoff [21]. This equation extends the classical d’Alembert
wave equation by considering the effect of the changes in the length of the
strings during the vibrations, where L, h, E, p and pg are constants.

Over the last two decades, there are many articles on the existence of weak
solutions for the Dirichlet boundary condition, that is, in the case I'y = ) in
(1.1), (for example, see Arosio and Pannizi [5], Cavalcante et al. [7], Corréa
and Figueiredo [9], D’Ancona and Spagnolo [10], He and Zou, [20], Yiicedag
28]).

However, since we find a few papers associate with the problem with the
mixed boundary condition in variable exponent Sobolev space as in (1.1) (for
example, Aramaki [3, 4]). We are convinced of the reason for existence of this
paper.

According to some assumptions on f;, g; (i = 0,1) and values of parameters,
we derive the existence of at least three weak solutions for the problem (1.1)
using the Ricceri theorem (cf. Ricceri [25, Theorem 2]). In the previous paper
[4], we considered the similar problem for a class of operators containing p(:)-
Laplacian, but not containing the mean curvature operator. Thus this paper
is an extension of [4].

The paper is organized as follows. Section 2 consists of four subsections. In
Subsection 2.1, we recall some results on variable exponent Lebesgue-Sobolev
spaces and trace. In Subsection 2.2, we consider some weighted variable ex-
ponent Lebesgue spaces. Subsection 2.3 is devoted to the Nemytskii operators
and their properties. In Subsection 2.4, we introduce the Poincaré-type in-
equality by Ciarlet and Dinca [8]. According to this inequality, we can consider
the mixed boundary value problem as (1.1). In Section 3, we give the setting
of problem (1.1) rigorously and a main theorem (Theorems 3.7) on the exis-
tence of at least three weak solutions and its proof. Section 4 is devoted in the
proof of the main theorem and furthermore, we obtain a corollary of the main
theorem.

Ju
ox

2 Preliminaries

Throughout this paper, let 2 be a bounded domain in RY (N > 2) with a
C%l-boundary I' and Q is locally on the same side of I'. Moreover, we assume
that I' satisfies (1.2).

In the present paper, we only consider vector spaces of real valued func-
tions over R. For any space B, we denote BY by the boldface character B.
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Hereafter, we use this character to denote vectors and vector-valued functions,
and we denote the standard inner product of vectors a = (a1,...,ay) and
b= (by,...,by) in RN bya-b= Ef\il a;b; and |a| = (a - a)'/2. Furthermore,
we denote the dual space of B by B* and the duality bracket by (-, ) g+ 5.

2.1 Definitions of the Lebesgue and Sobolev spaces and
their properties

In this subsection, we recall some well-known results on variable exponent
Lebesgue and Sobolev spaces. See Fan and Zhang [16], Kovacik and Récosnik
[22], Diening et al. [12] and references therein for more detail. Furthermore,
we consider some new properties on variable exponent Lebesgue space. Define
C(Q) = {p; p is a continuous function on Q}, and for any p € C(Q), put

p* = maxp(z) and p~ = minp(z).
€N €N

For any p € C(Q) with p~ > 1 and for any measurable function v on Q, a
modular p,.y = pp(.),o is defined by

oy () = [ futa) P
Q
The variable exponent Lebesgue space is defined by
LPO(Q) = {u;u : Q — R is a measurable function satisfying Pp(y(u) < oo}

equipped with the (Luxemburg) norm
. u
[ull Lre> () = inf {)\ > 05 ppey (X) < 1} .

Then LP()(Q) is a Banach space. We also define a Sobolev space: for any
integer m > 0,

Wm,p()(Q) _ {u c LP()(Q%aau c LP()(Q) for |OZ| < m}a

where oo = (aq,...,an) is a multi-index, |a| = vazl o, 0% =0 -+ - O and
0; = 0/0z;, endowed with the norm

lllwmrore = 3 10%ull o e
la|<m
Of course, WoP()(Q) = LPO)(Q).
The following three propositions are well known (see Fan et al. [18], Fan
and Zhao [17], Zhao et al. [30].
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Proposition 2.1. Let p € C(Q) with p~ > 1, and let u,u,, € LPO(Q) (n =
1,2,...). Then we have the following properties.

(@) Nlullzrer @) < U= 1> 1) <= ppy(u) < U=1,>1).

.. - +

() oo oy > 1= Nl gy < 0y () < [l

e + -

(iti) [Jullpror (o) <1 = ||U||Izp<->(g) < pp(y(w) < ||“||’2p<->(9)~

(iv) limy, o0 [[tn — vl Lrer (@) = 0 == limy 00 pp(y (Un — u) = 0.

(V) llunllLrer (@) — 00 as n — 00 <= pp(y(un) — 00 as n — 0.

The following proposition is a generalized Holder inequality.
Proposition 2.2. Let p € C, (). where Cy(Q) := {p € C(Q);p~ > 1}. For
any u € LPO)(Q) and v € LP'()(Q), we have

1 1
u(z)v(x)lde < | — + —— | ||ul|7»¢ V||
/2|< o(a)| (p_ (pq_>|||L<uQn||L .

< 2full o> oy 0l o -

Here and from now on, for any p € C (), p’(-) denote the conjugate exponent
of p(-), that is, p'(z) = p(x)/(p(x) — 1).
For p € C (), define

Np(z) :
P (z) = N (2] if p(x) < N,
00 if p(z) > N.

Proposition 2.3. Let © be a bounded domain of RY with C%!-boundary and
let p € C;(2) and m > 0 be an integer. Then we have the following properties.

(i) The spaces LP()(Q) and W™P()(Q) are separable, reflexive and uni-
formly convex Banach spaces.

(ii) If ¢(-) € C(Q) with ¢— > 1 satisfies ¢(z) < p(z) for all x € Q, then
WmP()(Q) < Wm™a()(Q), where < means that the embedding is continuous.

(iii) If g(x) € C(Q) with ¢~ > 1 satisfies that q(z) < p*(z) for all z € Q,
then the embedding WP()(Q) «— L10)(Q) is compact.

Next we consider the trace (cf. Fan [14]). Let Q be a bounded domain of
RY with a C%'-boundary T and p € C(Q) with p~ > 1. Since WHP()(Q) C
Wh(Q), the trace vy(u) = u|F to T' of any function u in WP0)(Q) is well
defined as a function in L*(T"). We define

Te(WHP0(Q)) = (Tew*0)(T)
= {f; f is the trace to T of a function F € W10 (Q)}

equipped with the norm

LAl w10y = E{ || Fllwiner 0y F € WP (Q) satisfying Fl.= f}



94 Existence of three weak solutions for the Kirchoff-type problem...

for f € (TeW1PO)(T'), where the infimum can be achieved. Then we can see
that (TrWP())(T) is a Banach space. In the later we also write F}F: g by
F = g on I'. Moreover, for ¢ = 1,2, we denote

(TWHPOYT) = {flp; £ € (TWHO)(D))
equipped with the norm
19l (rew 100y rsy = ELLFlmewrooy oy £ € (TeWHPO)(T) satisfying f|ri: g},

where the infimum can also be achieved, so for any g € (TrWP())(T;), there
exists I € WP()(Q) such that F‘F,»: g and [|Fllwiec ) = 9l mewreoy ;)

For any ¢ € C(T"), we also deﬁne/q‘Ir = maxger ¢(2) and ¢~ = minger q(z).
Let ¢ € CL(T) := {q € C(T"); ¢~ > 1} and denote the surface measure on I'
induced from the Lebesgue measure dz on 2 by do. We define

LIO(T) = {u; u: I' — R is a measurable function with respect to do

satisfying /\u(z)|q(“")do < oo}
r

and the norm is defined by

1l Loc) (ry = inf {)\ > 0;/
r

and we also define a modular on L9()(T") by

puo (1) = / ()@ dor

u(z)

x
A

q(z)
do <15,

Proposition 2.4. Let ¢ € O(T') with ¢~ > 1, and let u, u,, € L)(T"). Then we
have the following properties.

) el ooy < 1= 1,> 1) <= pyyr(u) < 1(=1,> 1)

. - +

(ii) HU||L4<~>(1‘) >1= ||U||%q(->(r) < py(yr(u) < H“||qu<->(r)'
1 qt < < q"
(iii) ||UHL61<->(F) <l= ||u||Lq<»)(p) < pg(y,r(u) < HUHL‘I(')(F)'
(iv) [Jun || Lacr vy = 0 <= pg(),r(un) = 0.
(V) HunHLG(')(F) — 0 <— Pq(~),F(un) —r Q0.

The Holder inequality also holds for functions on T'.
Proposition 2.5. Let ¢ € C(T'). Then the following inequality holds.

/F [£gldo < 2] fll acr 0y 9l v py for all f € LIO(T), g € LEO(T),

where ¢'(z) = q(x)/(q(x) — 1) for x € T.
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Proposition 2.6. Let 2 be a bounded domain of RY with a C%!'-boundary T
and let p € C(Q). If f € (TrWHPO)(T), then f € LPO(T) and there exists a
constant C' > 0 such that

[£lzro @y < Cllfllemwrpoy -

In particular, If f € (TeW'?O)(T), then f € LPO(Ty) and || f|lroe)r,) <
C”f”(TrWle('))(F) fori=1,2.
For p € C (), define
N—-1)p(z .
() { WBo) it p(z) < N,

00 if p(z) > N.

The following proposition follows from Yao [27, Proposition 2.6].

Proposition 2.7. Let p € C,(Q). Then if q(z) € C(T) satisfies ¢(z) < p? (=)
for all x € T', then the trace mapping WP()(Q) — L)(T) is well-defined and
compact. In particular, the trace mapping W1()(Q) — LPC)(T) is compact
and there exists a constant C' > 0 such that

1wl Leer (ry < Cllullwrpe ) for u € whro(Q).

2.2 Weighted variable exponent Lebesgue spaces

Now we consider the weighted variable exponent Lebesgue space. Let p € C(Q)
with p~ > 1 and let a(x) be a measurable function on Q with a(z) > 0 a.e.
z € 2. We define a modular

P(p(),a(-)) (W) = / a(z)|u(x) [P dz for any measurable function u in €.
Q
Then the weighted Lebesgue space is defined by
LP()

a(.)(Q) = {u;u is a measurable function on Q satisfying p(,(.).a(.))(v) < 0o}

equipped with the norm

HUHLP(')(Q) = inf {)\ > 0;/ a(x)
a() O

Then LZE’_)(Q) is a Banach space.

We have the following proposition (cf. Fan [15, Proposition 2.5].
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Proposition 2.8. Let p € C(Q) with p~ > 1. For u,u,, € LZE ;(Q), we have the
following.
(i) For w2 0, [[ull o) (@) = A <= Po().a() » (3) =
ii) HuHLpE) )<1(—1 >1)<:>p(p() ()< (_1 >1>

iii) HUHLZE@(Q) >1= ||u\|Lp(.)(Q) < Pp()a(y () < ||u||pp(,>(m.

(
(
)l 33 < 1= Wl ) < P60 () < ol g
(V) lim,, oo ||un — uHLZE)) ) = 0 <— lim,, oo p(p(.)’a(i))(un — ’LL) =0.
(

vi) ||u"||L§§ﬁ§(Q) — 00 a8 N — 00 <= P(p(.),a(-)) (Un) — 00 aS N — 00.

The author of [15] also derived the following proposition (cf. [15, Theorem
2.1]).

Proposition 2.9. Let (2 be a bounded domain of RY with a C%!-boundary and
p € C4(Q). Moreover, let a € LV (Q) satisfy a(z) > 0 ae. z € Q and
a € Cp(Q). If g € C(Q) satisfies

p*(z) for all x € Q.

then the embedding W1P()(Q) — LZ(()) (Q) is compact. Moreover, there exists
a constant ¢ > 0 such that

T + -
[ al@ut@) e < el gV el o

Proof. Let u € W'P()(Q). Set h(z) = o/(x)q(z). From the hypothesis, we
have h(z) < p*(x) for all z € Q. By Proposition 2.3 (iii), the embedding
WP (Q) < LM)(Q) is compact. Since |u(z)|?) € L* )(T), it follows from
the Holder inequality (Proposition 2.5) that

/Qa(w)IU(ff)lq“)dfc < 2llall pocs oy 1l "l Lo ) < o0

Hence W1r()(Q) c LZE;(Q) We show that the embedding W'P()(Q) —

LZE %(Q) is compact. Let u, — 0 weakly in W?()(Q). Then u, — 0 strongly

in L"(Q), 50 [[[un 90| pary () — 0. Hence

/Qa(fc)lun(fﬂ)lq“”)dw < 2all o) llunl®™ |l porc 0y = 0.

This implies that HunHLq('>(Q) — 0. Therefore, the embedding W1P()(Q) —
a()

ngg(ﬂ) is compact. By the Edmunds and Rékosnik [13, Lemma 2.1], if u €
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WhrO)(Q), then

) +
% vy < Nl gy ¥ Il -
Since [[ullre) ) < Cllullwree) ) for some constant C' > 0, we obtain the
estimate. O

Similarly, let ¢ € C(T") with ¢~ > 1 and let b(z) be a measurable function
with respect to o on I" with b(x) > 0 g-a.e. € I'. We define a modular

Pla() b)), (1) :/Fb(zﬂu(x)\q(””)dm
Then the weighted Lebesgue space on I' is defined by
LZE?(F) = {u;u is a o-measurable function on I' satisfying p(4(.)(.)),r(u) < 0o}

equipped with the norm

y. =inf .
lell o)y = 10 {)\>O,/Fb(;c)

Then ng ))(I‘) is a Banach space.

Then we have the following proposition.

u(z)

q(z)
do<13;.

Proposition 2.10. Let ¢ € C(T") with ¢~ > 1. For u,u, € ng ;(F), we have the
following.
(i) HUHLZE:))(F) < 1(: 1,> 1) <— p(q(.)’b(.))’r(u) < 1(: 1,> 1).

() 3030y > 1 = T ) < Ptarsn.0(0) < Ty
() 0y < 1= ol gy < para000) < el o
(iv) limy, o0 Jun — u||Lg(<:;(F) 0 < lim,,_, o p(q(%b(.)),p(un —u) =0.
(v) HunHLg((:;(F) — 00 a8 N — 00 <= P(¢(-),b()),T (Un) — 00 as 1 — 00.

The following proposition plays an important role in the present paper.

Proposition 2.11. Let Q be a bounded domain of RY with a C%!-boundary T
and let p € C4(Q). Assume that 0 < b € LO(T), g € C.(T). If r € C(T)
satisfies

Bla) -1

Blx)

Then the embedding WP()(Q) — Lb( ;(1") is compact.

1<r(z) < pP(z) forall z € T,
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2.3 The Nemytskii operators

Now we consider the Nemytskii operators.

Proposition 2.12. Let ¢ € C(Q) with ¢~ > 1 and a be a measurable function
with a(x) > 0 for a.e. z € 2. Assume that

(F.1) A function F(x,t) is a Carathéodory function on Q x R.

(F.2) The growth condition holds: there exist ¢ € L%()(Q) with c(z) > 0

ae. v €Q, ¢p € C(Q) with ¢ > 1, and a constant ¢; > 0 such that
|F(x,t)| < c(z) + cra(x)/ 0@ 9@/ a@),

Then the Nemytskii operator Ng : LZ(())(Q) > u s F(r,u(z)) € LuO(Q) is
continuous and there exists a constant C' > 0 such that

Par() (N (W) < Clpg, () (1) + prae).a( (w)) for all u € L) ().

In particular, if ¢;(x) = 1, then Np : LZE%(Q) — LY(Q) is continuous.
Proof. The map Q > = — F(z,u(x)) is clearly measurable in  from (F.1)
and the estimate easily follows from (F.2). We show the continuity of Np. Let
Up — U in LZ(()(Q) Then a'/90)u,, — a/9)y in LIC)(Q). Then there exists
a subsequence {u, '} of {u,} and g € LI*)(Q) such that a(z)®u,, (z) —
a(z)1u(z) ae. z € Q and a(x)V1®|u, (z)| < g(x) a.e. x € Q (cf. [3, Propo-
sition A.1]). Since a(z) > 0, uy (z) — u(x) a.e. z € Q. Thus F(z,uy (z)) —
F(z,u(z)) ae. = € Q, so |F(z,un(r)) — F(z,u(x))|2® — 0 ae in Q as
n — co0. On the other hand, it follows from (F.2) that

|F (@, up (2)) = F (2, u(z))| "
< Ci(e(2)m) + cra(@) un ()17 + cra(e)|u(z)| "))
< Ca(e(a)™ @ + 1))
for some constants C7,Cs > 0. The last term is an integrable function in
Q independent of n’. Hence by the Lebesgue dominated convergence theo-

rem, Np(u,/) — Np(u) in L9()(Q). By the convergent principle (Zeidler [29,
Proposition 10.13], for full sequence {u,}, Nr(u,) = Ng(u) in LC)(Q). O

Remark 2.13. This proposition is an extension of [3, Proposition 2.12].

Similarly we have the following proposition.

Proposition 2.14. Let r € C(T'y) with r= > 1 and b be a o-measurable function
with b(x) > 0 for o-a.e. x € I'y. Assume that
(G.1) A function G(z,t) is a Carathéodory function on I'y x R.
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(G.2) The growth condition holds: there exist d € L™ ()(Ty) with d(x) >0
o-a.e. x € 'y, 1y € C(T'2) with 1 > 1, and a constant dy > 0 such that

G(z, 1) < d(z) + dib(z)/™@ || @/m(@),

Then the Nemytskii operator Ng : ngg (T2) 3 u + G(z,u(z)) € L"O)(Ty) is
continuous and there exists a constant C' > 0 such that

Pri(,0s (Ne (1) < Clpry ()1 (d) + dip(),b(),rs (w) for all u € LZ((f))(Fz)~

In particular, if 71 (z) = 1, then Ng : L") (T'y) — L*(T'3) is continuous.

2.4 The Poincaré-type inequality

In this subsection, we state an important proposition, so, that is why we can
consider the mixed boundary value problem.
Define a space by

X ={vewO(Q);v=0o0nT}. (2.1)

Then it is clear to see that X is a closed subspace of W'P()(Q), so X is a
reflexive and separable Banach space. We show the following Poincaré-type
inequality (cf. [8]).

Proposition 2.15. Let { be a bounded domain of RN with a C%!-boundary
and let p € C (). Then there exists a constant C = C(2, N,p) > 0 such that

[ull Lror (@) < ClIVullgro(q) for all u € X.

In particular, || Vu| o) (o) is equivalent to [ullyy1.p0)(q) for u € X.

For the direct proof, see [4, Lemma 2.5].
Thus we can define the norm on X so that

[ollx = [[Vllgrer (o) for v e X, (2.2)

which is equivalent to [[v]|yy 1.6 () from Proposition 2.15.

3 Assumptions and a main theorem

In this section, we state the assumptions and main theorems.

Let p € C,(Q) be fixed and let A : Q x RN — R be a function satisfying
that for a.e. x € €, the function A(z,-) : RY 3 €+ A(x, €) is of Cl-class, and
for all £ € RV, the function A(-, &) : Q > x + A(x, £) is measurable. Moreover,
suppose that A(z,0) = 0 and put a(z,§) = V¢A(z,€). Then a(z,§) is a
Carathéodory function. Assume that there exist constants c, kg, k1,70 > 0 and
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nonnegative functions hy € LP ()(Q) and hy € LL_(Q) with hy(z) > 1 a..
x € 2 such that the following conditions hold.
(A1) |a(z, &)] < c(ho(x) + hy(x)[€|P@~1) for all £ € RY and a.e. z € Q.
(A.2) A is p(-)-uniformly convex, that is,

A2 55) + ki@l - nP® < G4 €+ pAle)

for all £, € RY and a.e. z € Q.

(A.3) kohy(z)|€]P®) < a(x,€) - & < p(x)A(z, €) for all € € RY and a.e. x €
Q.

(A4) (a(z,€) —a(z,m))- (€ —n) >0 for all £, € RN with £ # 1 and a.e.
z €.

(A.5) A(x,—€) = A(x,€) for all £ € RY and a.e. z € Q.

Remark 3.1. (i) The condition (A.1) is more general than that of Mashiyev
et al [23] who considered the case hi(xz) = 1. In our case, to overcome this we
have to consider the space Y defined by (3.1) later as a basic space rather than
the space X defined by (2.2).

(ii) (A.3) implies that A is p(-)-sub-homogeneous, that is,

Az, s€) < A(x,E)sp(“") for any £ € RV, ae. z € Qand s > 1.
For the proof, see Aramaki [2, (4.14)].

Example 3.2. (i) A(x,€&) = M|§|p($) with p~ > 2, h € L (Q) satisfying

- p(x) loc
h(z) > 1ae. o€ Q. Then a(x,€) = 28 g[p()-2¢,
(i) Az, &) = ’;Eg (1+|€[2)P@)/2 —1) with p~ > 2, h € LF'()(Q) satisfying

h(z) > 1 a.e. x € Q. Then a(z, &) = h(z)(1 + |£|2)(P(x)—2)/2€.
Then A(zx, €) and a(z, &) of (i), (ii) satisfy (A1)-(Ab).

Remark 3.3. (i) When h(xz) = 1, (i) corresponds to the p(-)-Laplacian and
(ii) corresponds to the prescribed mean curvature operator for nonparametric
surface.

(ii) The condition (A.1) is more general than that of [23] who considered
the case hi(z) = 1.

For the function h; € L} (Q) with hy(z) > 1 ae. x € §Q, we define a
modular

Pp()hn () (VV) = /Q hi ()| Vo(z)|P@dz for v € X,
where the space X is defined by (2.1). Define our basic space

Y = {U S X;p(p(.)’hl(.))(V’U) < OO} (3.1)
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equipped with the norm

. Vv
lvlly = inf {A > 03P(p() 11 () (A> < 1} :

Proposition 3.4. The space (Y, |- ||y) is a separable and reflexive Banach space.

Proof. The author of [2, Lemma 2.12] showed that the space Y is a reflexive

Banach space. We show the separability of Y. We note that v € Y if and only

if hi/p(')Vu e L*V(Q), and ||ully = ||h}/p(')VuHLp(.)(Q). Thus the operator

T:Y >uw— h}/p(')Vu € Lp(')(Q) is linear and isometric. Since L) (Q) is

separable, TY is also separable (cf. Brezis [6, Proposition II1.2.2]), so Y is

separable. O
We note that C§°(Q2) C Y. Since hi(z) > 1 a.e. z € Q, it follows that

1 .
Pip(-),ha () (V) = pp(.)(hl/p( )Vv) > pp(y (Vo) forv ey
and
lolly = 177"V 0] oo @) > 1V 0ll oo o) = l[v]lx for v € Y. (3.2)

From (3.2) and Proposition 2.1, we have the following proposition.

Proposition 3.5. Let p € C(Q) and let u,u, € Y (n = 1,2,...). Then the
following properties hold.
(i) The embedding Y — X is continuous and |ju||x < ||ully.

il) Hu”y > 1(2 1, < 1) <= p(p(.)’hl(.))(vu) > 1(2 1, < 1).

cee - +

iii) [lully > 1= [[ull} < pepe)nay) (V) < Jully -

v) limy, o0 [|tn, — ully = 0 <= lim, p(p(.),hl(.))(Vun —Vu) =0.

(

(

. + _

EIV) lully <1 = lully < pio).na () (V) < lully -

(Vi) [Junlly — 00 as n — 00 <= p(p(),hy () (Vn) — 00 as n — oo.

For ¢ = 0,1, we assume the following (f;) and (g;).
(fi) A function f;(z,t) is a Carathéodory function on 2 x R and there exist
1<a; € L%0(Q) with a; € C(Q) and ¢; € C(Q) such that

a;(x) —

1 _
* for all Q
i (D) p*(z) for all x €

1< g(x) <

satisfying
|filz,t)] < (1 + as(2)[t]% @) for aer € Qand t € R

for some constant ¢; > 0.
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(i) A function g;(w,1) is a Carathéodory function on I'y x R and there exist
1< € Lﬂl()(rg) with 8; € Cy (FQ) and r; € O(Fg) such that

Bix)

1<rix) < (; pP(x) for all z € Ty

satisfying
lgi(z,t)| < di(1 4 bs(2)|t]"*®) 1) for a.e.x € Ty and t € R

for some constant d; > 0.
We introduce the notion of a weak solution for the problem (1.1).

Definition 3.6. We say u € Y is a weak solution of (1.1), if

M(®(u) / a(z, Vu(z)) - Vo(z)d

—) (/ Fola, u(@))o(@)dz + /F go(x,u(x))v(x)da>

+u </ filz, u(z))v(z)dx + /FQ gl(a:,u(x))v(x)da) foralveY. (3.3)

For the Carathéodory functions f;, g; and the function M in (M), define

¢ ¢ ¢
M(t) :/ M (s)ds, F;(z,t) :/ fi(z, s)ds and G;(x,t) :/ gi(x, 8)ds.
0 0 0
(3.4)
We obtain the following main theorem.

Theorem 3.7. Let Q be a bounded domain of RV (N > 2) with a C%'-boundary
T satisfying (1.2) and let p € C(92). Assume that (A.1)-(A.5) hold and func-
tions fo and go satisfy (fp) and (gg), respectively. Suppose that

o —1 Np~ s —1(N—-1)p
Ip™ <min{a0 — L ,50 - ( o
ag N-—-p=" g N —p~

if p~ < N. (3.5)
}

Moreover, suppose that

a {l s Fo(z, ¢ lim s Gol@,?) } <0
max 1M sup €ss su 97’ 1M Sup €SS su; T T . =~ U,
0 p Pze (.T)‘t|lp+ 0 p Pzel, bo(x)|t‘lp+
(3.6)
Fo(l‘,t

G t
)7 ,limsup ess supwepzb(o(x’)} <0,
0

max {hm Sup €ss SUPzecq SR

Jt]—o0 ao(x)[tP” 7 4 S eo
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and there exists d; > 0 such that
Fo(xz,t) >0 for a.e. z € Qand 0 <t < dy. (3.8)

Set

. N (B(u) 2 ()
e‘f{h%wMWM+A;Mawmw

/ Fo(w, u(x))dz +
Q

;u €Y with

Go(z,u(z))do > 0}. (3.9)

I'>

Then for each compact interval [a,b] C (,00), there exists r > 0 with the
following properties: for every A € [a,b] and any functions f; and g; satisfying
(f1) and (g1), respectively, there exists 6 > 0 such that for each p € [0,4],
problem (1.1) has at least three weak solutions whose norms are less that r.

Remark 3.8. If we choose ¢ € C§°(Q)(C Y) such that 0 < ¢(x) < §; and
¢ # 0, then from (3.8)

[ Fotwptanda+ [ Golap(o))do = [ Fole.ola))de > 0.
Q Q

2

So 0 is well-defined and 6 > 0.

4 Proof of Theorem 3.7

In order to prove Theorem 3.7, we apply the following Ricceri theorem of [25,
Theorem 2].

Theorem 4.1. Let (B, ] - ||g) be a separable, reflexive and real Banach space.
Assume that a functional ¥ : B — R is coercive, that is, ¥(u) — oo as |lul|p —
00, sequentially weakly lower semi-continuous, of C''-functional belonging to
Whg, that is, if u,, — u weakly in B and liminf,, o ¥U(u,) < ¥(u), then the
sequence {u,} has a subsequence converging to u strongly in B, bounded on
every bounded subset of B and the derivative ¥’ : B — B* admits a continuous
inverse (¥/)~! : B* — B. Moreover, assume that J : B — R is a C''-functional
with compact derivative, and assume that ® has a strictly local minimum
ug € B with U(ug) = J(ug) = 0. Finally, put
J(u)
(

. J(u) .
a =max 4 0, limsup Jimsup ——= 7, (4.1)
{ [[u]| =00 \I/('U,) u—ug U ’LL)}

f=  sup ;
u€W—1((0,00)) W (u)
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and assume that a < . Then for each compact interval [a,b] C (1/8,1/«)
(with the conventions 1/0 = 0o, 1/00 = 0), there exists r > 0 with the following
property: for every A € [a, b] and every C*-functional K : B — R with compact
derivative, there exists 6 > 0 such that for each p € [0, 6], the equation ¥'(u) =
A (u) + pK'(u) has at least three solutions in B whose norms are less that r.

Proof of Theorem 3.7

We apply Theorem 4.1 with (B, | - [|g) = (Y, | - |ly). The proof of Theo-
rem 3.7 consists of some propositions and lemmas. First we note that Y is a
separable, reflexive and real Banach space by Proposition 3.4.

Define functionals on Y by

U(u) = M(®(u)), (4.3)
where ®(u) is defined by (1.3) and M(t) = [J M(s)ds,
J(u) = /Q Fol(w, u(x))dz + 5 Go(z, u(z))do, (4.4)
and
u) = /QF1 (z, u(z))dz + 5 G (z,u(x))do (4.5)
forueY.

It easily follows from (M) that

?tl < M@t) < %tl for all £ > 0,

and M (t) is of C'-class and a convex and strictly monotone increasing function
on [0, 00).

Lemma 4.2. (i) We have

ko
Fp(p(-),hl(d)(vu) < @(u) < c2llholl Loy lully +p(p() 11 () (V) for u €,

where ¢ and kg are the constants of (A.1) and (A.3).

(i) We have ® (“52) + k1p(p().n () (Vu — Vv) < 1@(u) + 1@(v) for all
u,v € Y, in particular, ®((1 — T)quTv) (1—=7)®(u)+7P(v) for all u,v €Y
and 7 € [0,1].

(iii) [Fi(z,8)] < ci([t] + ao(2)[¢
is the constant of (f;).

(iv) |Gi(2, )| < di([t| + bi()[t|"*®) for all + € R and o-a.e. x € T'y, where
d; is the constant of (g;).

%)) for all t € R and a.e. x € Q, where ¢;
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Proof. (i) Since A(x,0) =0, it follows from (A.1) and (A.3) that

k,
p—ihl<z>|s|p<m>gA<x,s> = |A(z,€) — A(z,0)|
1
d
= —A
| A
1
- / ale,r€) - Edr
01
= /0 (ho(@)|€] + ha(x)|T€[P )t g])dr
< c(ho(x)|€] + ha(z)]€[P™).
Hence

@ 2)|Vu(z)|P®) dx U c )| Vu(z 2)|Vu(2) P dx
2 [ @i vurids < o) < e [ (@ 9u@)] + ()] Vo))

for any u € Y. By the Holder inequality (Proposition 2.2) and Proposition 3.5

(1),

/Q(ho(x)\vu(x)\dx < 2[lholl Lo @) IVl Loy o)
< 2[holl Lo oy lullx < 2[R0l Lorcr oy llully -

(ii), (iil) and (iv) easily follows from (A.2), (fo) and (go). O

The functional ¥ defined by (4.3) is a continuous modular on a real Banach
space Y in the sense of [12, Definition 2.1.11], that is, ¥ has the following
properties (a)-(e).

(a) ¥(0) = 0. This easily follows from A(z,0) = 0 and the definition of M.

(b) ¥(—u) = ¥(u) for every u € Y. This follows from (A.5).

(¢) W is convex. Indeed, since M is convex and strictly monotone increasing,
and ® is convex, for any u,v € Y and 7 € [0, 1],

V(1 —7)u+7v) = M(®((1 — 7)u+ 70))
< M((1—7)®(u) + 7®(v)) < (1 —7)(u) + 7P (0).
(d) The function [0, 00) 3 A — ¥(Au) is continuous for every v € Y. Indeed,

let [0,00) 3 Ay, = A\ as n — co. Here we can assume that 0 < A, < A\g+1 for
all n € N. From Lemma 4.2 (i), we have

|A(z, \p, Vu(z))| < c(Ao + 1)ho(2)|Vu(z)| + (Ao + 1)p+h1 ()| Vu(z)]P@.
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Since hg € LY O)(Q) and |Vu(-)] € LPO)(Q) and u € Y, the right-hand side
in the above inequality is an integrable function independent of n. Clearly,
we see that A(z, A, Vu(x)) = A(z, \oVu(z)) as n — oo for a.e. x € Q. By
the Lebesgue dominated convergent theorem, we see that ®(\,u) — ®(Aou) as
n — 00, 80 U( A u) = U(Agu).

(e) U(u) = 0 implies u = 0. Indeed, if ¥(u) = 0, then ®(u) = 0. Hence
it follows from (A.3) and the Poincaré-type inequality (Proposition 2.15) that
u=0..

Thus we can define a modular space

Yo ={uey; lirrb U(ru) =0} ={u € Y;¥(ru) < oo for some 7 > 0}
T—
and the Luxemburg norm
|lu||g = inf {7‘ >0; ¥ (E) < 1} for u € Y.
T

Then (Yu,| - |lw) is a normed linear space over R from [12, Theorem 2.1.7].
Clearly we see that Yy =Y.

Lemma 4.3. There exist positive constants cs and Cs such that csljully <
lulle < Csllu|ly for all u € Y.

Proof. By Lemma 4.2 (i), for u €Y,

D(u) < C/Q(ho(x)|Vu(x)| + I (2)| Vu(z) P®)dz

" -
< ellholl oo ey lully + llully v llully ).
Hence
™
l
Here and from now on, we denote a V b = max{a,b} and a A b = min{a, b} for

any real numbers a and b.
On the other hand, we have

l

N .
U(w) < == (clllholl Lorer o lully + [lullf- v ullf- ) (4.6)

k() z ko + -
®(u) = pj/ﬂhl(w)\w(x)\p( Vda > E(IIHII%’/ Allull§ ),

o
l
—_ mo kjo + -
i) = M000) = 50 (2l A lul)) | (@7
Hence u, — 0 in Y if and only if ¥(u,) — 0, so if and only if ||u,|¢ — 0 from
[12, Lemma 2.1.9]. 0

Lemma 4.4. If u, — u weakly in Y and ¥(u,) — ¥(u) as n — oo, then we
have ¥ (“”2—_“) — 0 as n — oo. In particular, u,, — w strongly in Y as n — oo.
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Proof. Let u, — u weakly in Y and ¥(u,) — ¥(u) as n — oo. Then if we
use [12, Lemma 2.4.17] (cf. Aramaki [1, Lemma 20]), then we can show that
v (%) — 0 as n — 00, S0 u, — u strongly in Y using (4.7). O We check
that the assumptions of Theorem 4.1 hold.

e U is coercive, that is, U(u) — oo if ||u|ly — oo. This easily follows from
(4.7).

e U is sequentially weakly lower semi-continuous. This follows from [2,
Proposition 4.4 (iii)] and the fact that M is monotone increasing and continu-
ous.

e U € CL(Y,R). This follows from [2, Proposition 4.1] and Me C1([0,00)).

o U € Wy. Indeed, let u,, — u weakly in Y and liminf,, o ¥U(u,) < ¥(u).
Since ¥ is sequentially weakly lower semi-continuous, ¥(u) < liminf, . ¥(u,),
so liminf,, oo ¥(uy,) = ¥(u). Hence there exists a subsequence {u,} of {u,}
such that lim,,/ o U (u, ) = ¥(u). By Lemma 4.4, u,s — u strongly in Y.

e VU is bounded on every bounded subset of Y. This easily follows from
(4.6).

o U/ :Y — Y* admits a continuous inverse (¥/)~! : Y* — Y. This follows
from the following proposition.

Proposition 4.5. (1) ' is strictly monotone in Y, that is,
(U'(u) — W' (v),u — v)y«y >0 for all u,v € Y with u # v.
Moreover, ¥’ is bounded on every bounded subset of Y and coercive in the

sense that o
W)y
||w]]y =00 Hu”y

(ii) ¥’ is of (S )-type, that is, if u, — u weakly in Y and

lim sup(¥’ (up,), up — u)y=y <0,

n—oo

then u, — u strongly in Y.
(iii) The mapping ¥’ : Y — Y™ is a homeomorphism.

Proof. (i) In general, when a functional f : Y — R is of C''-class, f is strictly
convex if and only if f/ : Y — Y™ is strictly monotone (cf. [29, Proposition
25.10]), that is,

(f'(w) = f'(v),u —v)y=y >0 for all u,v €Y with u # v.
From (A.4),
(®'(u) = @' (v),u = v)y-y

= /Q(a(m, Vu(z) — a(z, Vou(z))) - (Vu(z) — Vou(x))dz > 0
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for all u,v € Y with u # v, so ®' is strictly monotone in Y, so ® is strictly
convex. The function M is strictly monotone increasing and convex. Hence for
u,v € Y withu # vand 7 € (0,1), since ®((1—7)u+71v) < (1—7)P(u)+7P(v),
we have

—

M(®(1—1)u+7v)) < M((1—7)®(w) +7®(v)) < (1—7)M(®(w)) +7M(2(v)),

so U((1 —7)u+7v) < (1 =7)%(u) + 7¥(v). Thus U is strictly convex, so
U/ (-) = M(®(-))®’(-) is strictly monotone in Y.

Since it follows from the Holder inequality (Proposition 2.2) and Proposition
3.5 (i) that

(W' (u), v)y= v

= M(®(u)) /Qa(x, Vu(x)) - Vu(z)dx

< cM(D(u)) /Q(ho(x)le(x)l + h (2)| V(@) PO Vo)) de

— M (B(u)) / (ho ()| V(@)

Q
i ()7 [V () [P ey ()70 () de
< 26mﬁb(u)l71(HhOHLP’(»)(Q)HU”Y
1/p' (- - L/p(:
BT OIVuPO Lo oy IO 190 oo

= 2em1 ®(w)' " (|lho | ooy + 11177 O IV uPO Lo )0l
for all v € Y. Hence we have
1 (w)lly- < 2ema®(u) = (lholl s @ + I O IV uPOH] o gy)-
Here we note that
®(u)' =t < A2 holl ey lully + lully v [lullf )
and

1/p' (- N— z + _
Py (/7 O wupO1) = /Q ha ()| Vu(@) P de < [l v [ulll .

If |lu|]| < M, then it is clear that there exists a constant C'(M) > 0 such that
19’ (u) ||y« < C(M), so ¥ is bounded on every bounded subset of Y.
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Let ||lul]ly > 1. Then from (M), (A.3) Lemma 4.2 (i),

(U'(u),uyy~y = M((ID(u))/a(a:,Vu(m)-Vu(m)dm
Q
> o M(D(u) / o ()| V()P d
Q
> B Pl
= p+ 0 Y Y
o moko Ip~
= oy

Since Ip~ > 1, this implies the coervivity of ¥'.
(ii) Let u, — u weakly in Y and limsup,,_, (¥ (upn), un, — w)y+y < 0.
Since ¥’ is monotone from (i), (¥ (u,) — ' (u), un, — u)y=,y > 0. Hence

0 < lminf(¥'(u,) — V' (u), up — u)y=y
n— o0
= lim ll’lf<\11/(un)7 Un — U>Y*,Y
n— o0
< limsup(V' (uy,), up, — u)y~y <0.

n— oo

Therefore, we have lim,, oo M (®(up)){(®' (upn), un — uyy=y = 0. Since u, — u
weakly in Y, the sequence {|lu,||y} is bounded. Hence

lim M (®(up)){(®' (u), up — u)y«y = 0.

n—0o0

Therefore, we have

lim M (®(un)) (P (un) — (), up, — u)y+y = 0.
Thereby, since M (®(uy,)) > 0 and (' (uy,) — P’ (u), up, — u)y =,y > 0, we obtain
that limy,—co M (P (uy,)) = 0 or limy,— 00 (D' (up) — @' (u), up, —u)y =y = 0. When
M(®(un)) — 0 as n — oo, we have ®(u,) — 0 = ¢(0). By Lemma 4.4 with
M =1, u, — 0 strongly in Y (in this case we necessarily have u = 0). When

lim (D' (up) — D' (u), up — u)y~y = lim (®'(uy), up — u)y~y =0,
n—oo n—roo
since @' is of (S4)-type (cf. [1, Proposition 21 (ii)]), we have u,, — u strongly
inY.
(iii) Since ¥’ is strictly monotone from (i), ¥’ is injective. We show that
U’ .Y — Y™ is surjective. Let w € Y*. Define a functional on Y by

o(u) = ¥(u) — (w,u)y~y for u e Y.
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From (M) and Lemma 4.2 (i), for |Ju|ly > 1, we see that

—

l
wm>M@w»—mmww>(§)nu?—wm

Y * tu.

Since Ip~™ > 1, ¢ is coercive. Since ¥ is sequentially weakly lower semi-
continuous, ¢ is so. If we put v = inf,ecy ¢(u)(< o0), then there exists a
sequence {u,} C Y such that v = lim, o ¢(u,). Since ¢ is coercive, the
sequence {u,} is bounded. Since Y is a reflexive Banach space, there exist
a subsequence {uy } of {u,} and ug € Y such that w, — wug weakly in Y,
s0 @(ug) < liminf, o0 @(tn/) = 7. This implies that v > —oo and ug is a
minimizer of ¢, so ¢’'(ug) = 0, i.e., ¥'(ug) = w. Therefore, ¥’ has an inverse
operator (¥/)~1:Y* — Y. We show that (U')~! is continuous. Let f, — f
in Y* as n — oco. Then there exist u,,u € Y such that ¥'(u,) = f, and
U'(u) = f. Then {u,} is bounded in Y. Indeed, if {u,} is unbounded, then
there exists a subsequence {u,:} of {u,} such that ||u, |y — oo as n/ — 0.
Hence

(W' (unr) Yy v = (fors i )yey < Al fwlly= llms Iy < Cllun[ly

for some constant C' > 0. This contradict the coerciveness of ¥’.
Since Y is a reflexive Banach space, there exist a subsequence (still denoted
by {un'}) and ug € Y such that u,, — uo weakly in Y. Hence

lim (U (tpr )y U — ug)y=y = Hm (¥ (up) — U (u), up — ug)y =y
n’—oo n’—oo

= nliinooﬁn' — fyun —ug)y+y = 0.

Since ¥’ is of (Sy)-type, we see that w, — wp strongly in Y. According
to the continuity of ¥/, U'(u,) = fir — f = ¥ (up) = ¥'(u), so we have
ug = u from the injectiveness of ¥’. By the convergent principle (cf. [29,
Theorem 10.13 (i)]), for full sequence {u,}, u, — u strongly in Y, that is,
()1 (fa) - (B)1(f) as 1 > . 0

e J € CHY,R) and J has a compact derivative J' : Y — Y*. We prove
this. Temporarily, we put J(u) = Jp, (u) + Jg,(u) for u € Y, where

Jr, (u) = /QFO(x,u(x))dx and Jg,(u) = g Go(z,u(z))do.

By [2, Proposition 3.8], Jr,, Jx, € C*(Y,R) and sequentially weakly continuous
in Y. We show that J, : Y — Y* is weakly-strongly continuous, that is, if
u, — u weakly in Y, then Jp (u,) — Jp, (u) strongly in Y*. Let u, — u
weakly in Y. Then

(Jiy (un) = Ty (), v)y=y = /Q(fo(x,un(x)) — fo(z,u(x)))v(z)dr for v € Y.
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From Proposition 2.9 and (fy), the embedding W'*()(Q) < LZ‘;(())(Q) is com-

pact. Since Y < X < WP()(Q), there exists a constant C' > 0 such that

vl ) < Clvlly for allv e Y.

ARSI
By the Holder inequality (Proposition 2.2), for any v € Y,
(TF, (un) = T, (), 0) v+ v |
= / ag () V@ fo(z, un () = fol, u(x))]ag(x)"/ ™ |v(z)|dx
Q

< 20lag O o un () = Folul) N gapo gy laa” 0O Lo -

Since

1 .
lag vl s @) = 101 a00) ) < Clelly,

we have
177, (1) = T, )lly= < 2C0ag "1 fol, wn () = SoC DI e -

We want, to show that || Jz, (un) — Jp, (u)|ly= — 0 as n — oco. By Proposition
2.1 (iv), it suffices to show that

Pal () (aal/qo(')fo(-,un(-)) - aal/qo(')fo(~,u(~))) —0asn— oo. (4.8)

We can see that
—1/qo(: —1/qo(-
puscr (05770 ol () = a0 fo( ()

= / ao(m)fqé(””)/q(’(“")\fo(m,un(as)) _ fo(l",u(x))|q6(m)dm.
Q

Since u,, — u weakly in Y and the embedding Y — LZ(:)(())(Q) is compact, we
can see that u,, — u strongly in Lg‘;(()) (©). From [3, Theorem A.1], there exist
a subsequence {u,} of {u,} and g € L%°0)(Q) such that ag(z)"/ %@, (x) —
ap(x)V/ 0@ y(z) ae. x € Q and |ag(x)V/®®u, (z)| < g(x) for ae. x € Q.
Since ag(x) > 0 and fy is a Carathéodory function, fo(z, u, (z)) = fo(z, u(z))
a.e. € Q. From (fy) and ag(z) > 1, we have
ag(w) =00 | fo (@ s () = fol, ulw))| 5

< Chag(z)~0@/0@) (2 4 qo(2)|up ()| + ag(2)|u(z)]| 2@ 1)5@)

< Ca(ag(a) @/ 4 ag () 0@ =E/ 0 () (2)| 2 fu(a)|©()))

< Ca(1+ ag(@)(Jupr ()2 + Ju(a)|©)))

< Cy(1 + 2g(2)®@) for some positive constant Co.
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The last term is an integrable function in Q independent of n’. Thus by
the Lebesgue dominated convergence theorem, we have (4.8), so ||Jp, (un) —
Jp,(W)|ly= — 0 as n — oo. Similarly, we can show that Ji is also weakly-
strongly continuous in Y. In particular, J };0 and J }(0 are compact, so J' is also
compact.

End of the proof of Theorem 3.7

¥ has strictly local minimum at 0 and ¥(0) = J(0) = 0. Since ¥(u) > 0
for any u € Y and ¥(u) = 0 if and only if w = 0, ¥ has a strictly local (global)
minimum. By the definition (4.4) and (3.4) of J, it is clear that J(0) =0

Therefore, all the hypotheses of Theorem 4.1 hold. We derive that « defined
by (4.1) satisfies a = 0.

Fix € > 0. From (3.6) and (3.7), there exist p; and p2 with 0 < p; <1 < pa
such that

Fy(z,t) < sao(x)\t|lp+ for a.e. z € Q and t € [—p1, p1], (4.9)
Fo(z,t) < eag(z)|t|” forae z€Qandte R\ [—po,pa], (4.10)
Go(z,t) < 5b0($)|t|l1’+ for o-a.e. x € 'y and t € [—p1, p1], (4.11)
Go(x,t) < ebo(x)[t|'P” for o-ae. 2 € Ty and t € R\ [—p2, po]. (4.12)

From (3.5), we can choose s € R such that Ip™ < s and

ag —1 Np~ By —1(N—1)p~
ag N—-p= B~ N-p-

lp+<s<min{ }ifp<N.
We note that

1 _
Ipt <s< Mp*(x) for all x €
ap(x

and

Bo(z) =1 4 N
Ipt <s< 5222 —p9(g) for all x € Ts.
p 5o () p° () 2

For p; < |t| < pa, from (fp) and (go) and the fact that ag(x) > 1 for a.e. € Q
and bg(x) > 1 for o-a.e. & € I'y, there exists a constant C' = C(p1, p2) > 0 such
that

er(Jt] + ag ()|t < Cag(z)|t]® for ae. z € Q,  (4.13)
dy ([t 4 bo ()|t < Cho(z)|t]* for o-a.e. = € Ty. (4.14)

FQ(I, t)

<
GO (x, t) <
Thus from (4.9)-(4.14), we have

Fo(x,t) < cao(2)|t|'*" + Cag(z)[t|® for ae. z € Qand all t € R, (4.15)
Go(z,t) <e ( )|t|lp + Cbo(x)|t|® for o-a.e. © €Ty and all t € R.  (4.16)
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Since ¥ — La ()(Q),LZO(‘)(Q) Lb ¢ )(Fg) ZO(.)(FQ), we have

HUIIsz+ ) llullz (o) < Cillully  (4.17)

ag(-) @0()

for all u € Y. By (4.15), (4.16) and (4.17),

@ + ||U||Lép+ + [lu HLg !

J(u) :/QFO(:U,u(x))der/ Go(z,u(z))do < C’1€||u||lf++CCl||uH§/. (4.18)

>

Moreover, it follows from (A.3) that

1
(/ A(z, Vu(z dm) > mT <k> ||u||l{,’+ for u € Y with |lully < 1.

Since s > Ip™, we have

: Jw _ 1 (Y
hriljblpm — (ko) Che. (4.19)

On the other hand, for |t| > pa, we have

Fo(z,t) < C’pg+a0(m) + cap(z)[t|"?” for a.e.x € Q,

and
Go(z,t) < Cp?bo(:v) + ebo(x)[t|"P for o-a.e.x € Ty.

For |t| < pa, Fo(z,t) < Cpg+a0(x) a.e. v € Q and Go(z,t) < Cpggbo(x) for

o-a.e. © € I'y. Since Y < L'P (), Lé R )(Fg), we can see that

ao(+)

J(u) = / Fo(x,u(x))dm+/ Fo(z,u(z))dx
{ze|u(@)|<p2} {zeQ;|u(@)[>p2}

+/ Go(x,u(x))da—i—/ Go(z,u(z))do
{z€ls;u(x)|<p2} {z€l2;u(x)[>p2}

C’l/an(:c)dw+5/Qa0(x)\u(:c)|lp_dz
+01/F 17()(Jv)alcr+s/F bo(z)|u(x)|" do

< Cillaollrr (o) + Cillbollr(ry) + 2eCuflull ¥

IN

n lp—
If |lully > 1, then ¥(u) > =2 (p ) 2

J(u) LY
li — <2— | — . 4.2
Hzljl\nysilgc U(u) = mo (kO) e (4:20)
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Since € > 0 is arbitrary, it follows from (4.19) and (4.20) that

) J(u) . J(u)
max < limsup , limsup ——= » <0
{ u—0 (W) |ully —oo ¥(u)

Thus we have @« = 0 in Theorem 4.1. By (3.4) and Remark 3.3, if we put
6 =1/, then the conclusion of Theorem 3.7 holds.

Corollary 4.6. Let Q be a bounded domain of RY (N > 2) with a C%!-
boundary I' satisfying (1.2) and let p € C;(Q). Assume that (A.1)-(A.5)
hold, functions fo and go satisfy (fo) with g < Ip~ and (go) with r§ < Ip~,
respectively, and (3.5) is satisfied. Moreover, assume that

max < limsup ess supTGQM,limsup ess supTGFQM <0,
t—+0 T ag(@) [P S0 B TCOTE e
(4.21)
.. . fo(l’,t) o . gO(xvt)
1 f — 1 f — 2L L >
max{ im in essmfzegao(m)mlw_l, im in essin fyer, b7 f = 0,
. fo(ﬂ?,t) . gO(xat)
max 4 limsup ess sup,cqo———————,limsup ess sup ——— 3 <0,
{t—>+o<> e @ e S @)l
(4.23)
S . fo(.’L’,t) PR . go((E,t)
max < liminf essin ————~ — liminfessin ———— 5 >0.
{t—)—oo fCEGQ a0($)|t|lpi_1 o o0 fIGFz bo(x)|t|lp7_1 el
2

(4.24
and there exists § > 0 such that fo(z,t) > 0 for a.e. z € Q and 0 <t < 4.
Then the conclusion of Theorem 3.7 holds.

Proof. For any € > 0, there exists 0 < p; < 1 such that from (4.21)-(4.24),

an(gc)|t|lp+_1 for a.e. z € Q and t € [0, p1],

IN

sbo(a:)\t|lp+*1 for o-a.e. x € T'y and t € [0, p1],
—zsao(m)|t\l”+_1 for a.e. z € Q and t € [—p1,0],

Y

Q
o
— — — —
8
S G
S~— SN— S~— N~—
IA

(:c)|t|lp+*1 for o-a.e. x € 'y and t € [—p1,0].

A%
\
)
o

S

t
Fo(z,t) = / fo(z,s)ds < 6ao(ats)|t|ler for a.e. z € Q and t € [0, p1],
0
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and

0 0
Fy(z,t) = f/t folz, s)ds < /|t 5a0(:c)|s|lp+*1ds < aeao(:c)|t|lp+

for a.e. z € Q and t € [—p1,0]. Hence
Fo(x,t) < eao(ac)|t|ler for a.e. z € Q and t € [—p1, p1]. (4.25)
Similarly we have
Golz,t) < ebo(2)[t|P" for o-ae. z € Ty and t € [—py, p1]. (4.26)

Therefore, we have

. Go(:l?, t)
lim sup ess supzer, <e.
t—0 b(]

. FO (937 t)
max < lim sup ess sup,co W

£-50 ao(z)[¢[P*”
Since € > 0 is arbitrary, we have (3.6).

. qg'flp_ rg'flp_
For given € > 0, we choose py > 1 so that 2 max{cgpy , dops P <e.
For ¢t > ps, from (4.23),

fo(l‘, t)
go(z,1)

< eap(z)|t|'” ~! for a.e. x € Q and t € [py, 00),
< ebo(x)[t]? 7! for o-ae. x € Ty and t € [pg, 00).

For 0 <t < po, from (fo) with g < Ip~, we have

+_
folz,t) <|fo(z,t)] < co(l—l—ao(x)\ﬂq”(x)_l) < co(l—&—ao(az:)pgO 1) for a.e. x € Q.
Since ag(z) > 1 a.e. z € Q and ¢ <Ip~,

t

+ +
Fo(z,t) = [ folz,s)ds < colpa + ao(2)ps” ) < 2coao(x)py’
0

_ + g - _
= 2cag(z)pF plo < cag(z)pf for ae. z € Q.

Hence for ¢t > po,

P2

R )= [t s+ [ oo, e < con(le”
0 p2

for a.e. x € Q and ¢ € [pa, 00).
Similarly for ¢ > pa, Go(x,t) < 2ebo(z)|t|'"P for a.e. x € Ty.
For t < —pq, from (4.24),
fO(x, t)

go(z,t) > —¢|t|'’” for o-a.e. € Ty and t € (—00, —pa).

—¢|t|'”” for a.e. x € Q and t € (—o0, —py),

VoIV
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Hence for —py <t <0, we have

+_
—fom,t) < |folz, )] < co(1 + ag(x)p% ~") for ae. z € Q.
Thereby,

0

t 0 .
et = [ = [ s [ et a@ef s

—ltl —ltl

+ _
< coag(z)pP < eag(x)pf ae. z e

For t < —py, we have

0 —p2
Fo(, 1) :/ (—fo(x,s))ds—f—/t (= folz, 8))ds < 2ea0(2)[t]7 ae. o € Q.

—pP2

Similarly for t < —pa, Go(x,t) < 2ebo(x)[t|" for o-a.e. x € I'y. Thus for
t| > pa, Fo(w,t) < 2eao(x)|t|P for a.e. € Q and Go(x,t) < 2ebo(z)[t|'P for
o-a.e. © € I's. Therefore, we have

max < limsup ess supzeq Folw,?) lim sup ess supzer Go(z,1) <9
e NIlp €le T 7 = (S 46
t] 00 ag (@) 0o Y2 g () [t

Since € > 0 is arbitrary, we have (3.7).

Moreover, since fo(z,t) > 0 for a.e. z € Q and 0 < t < §, we have
Fy(z,t) > 0 for a.e. z € Q and 0 <t <. Thus all the hypotheses of Theorem
3.7 hold. This competes the proof. O
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