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Abstract

Let k and n be positive integers and p be an odd prime. A power
digraph G(p*,n) for which the vertex set is {0,1,2,...,n — 1} and (u,v)
is a directed edge from a vertex u to a vertex v if u? = v (mod n). We
study the structures of this power digraphs. Moreover, we provide some
interesting results when p is 3,5 or 7.

1 Introduction

Graph structures and number theory are closely related. For a positive integer
k, the study of digraph associated with the congruence z* = y (mod n) becomes
interesting in the recent years. We first introduce the power digraph with some
important definitions.

Let n be a positive integer and 7 denote the set of all integers which leave
remainder 7 when divided by n. Then, the set {0,1,2,...,(n — 1)} is the set
of complete residue classes of all integers when divided by n. For simplicity, in
this article we will use {0,1,2,...,n — 1} instead. Let p be an odd prime. We
define a digraph G(p*,n) over the residue classes of n where the vertex set of

*Corresponding Author
Key words: power digraph, congruence relation, fixed point
(2010) Mathematics Subject Classification: 05C20; 11A07

78



R. BOONKLURB AND P. SIRIWONG 79

G(p®,n) is the set of complete residue class of all integers when divided by n,
{0,1,2,...,n — 1} and (u,v) is a directed edge of G(p¥,n) from a vertex u to
a vertex v if u?” = v (mod n).

C is a cycle of length c if vertices wuy,us,us, ..., u. satisfy the following
condition

= ug (mod n),
uz? = ug (mod n),

uz? = uyg (mod n),

u =y (mod n)

The vertex u is called a fixed point of G(p*,n) if W = (mod n). In
term of graphs, we can say that G(p*,n) has a loop at a vertex u. We see that
the fixed points are the solution of the congruence equation 2 = (mod n).
Moreover, we see that an 1-cycle is said to be a loop or a fixed point and a
cycle of length c is called a c-cycle.

Example 1.1. Letn=11,p =3 and k = 2. Since

0% =0 (mod 11) 13’ =1 (mod 11) =6 (mod 11)
33 =4 (mod 11) 43" =3 (mod 11) =9 (mod 11)
=8 (mod 11) =7 (mod 11)

)
3% ) 32
65 =2 (mod 11) 7
93 =5 (mod 11) 103" =10 (mod 11),
)

the power digraph G(3%,11) can be drawn as in Figure 1.
We see that 0,1 and 10 are fized points and the other vertices are in some
2-cycles.

Much research has been done on the topic of power digraphs associated
with the congruence. Bryant [1] considered quadratic digraphs and isomorphic
subgroups of a finite group. In 1992, some properties of power digraphs associ-
ated with the congruence and the existence of cycles are studied by Szalay [2].
Next, Rogers [3] and Somer et al. [4] provided some results on fixed points,
cycles and components in the square mapping graphs. After that, the symmet-
ric structures of power digraphs are investigated, see [5, 6]. Many researchers
proved useful results of such digraphs based on the congruence z* = y (mod n),
see [7, 8] and proposed quadratic and cubic residue graphs, see [9, 10, 11].
Then, Mateen et al. [12] generalized the power digraph on the congruence
2P =y (mod n) when p is an odd prime.

Motivated by [12], in Section 2, we investigate the general structures of
power digraph G(p*,n) when p is an odd prime. In Section 3, we study some
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5 9 7 8
Figure 1: The power digraph G(3%,11)

results on fixed points of G(p*,n) where p € {3,5,7}. In the last section,
conclusions and discussions are provided.

2 When p is an odd prime

First, we consider the congruence z™" =y (mod n) when m is a positive integer
and then provide the following simple and straightforward results. By the fact
that 0m" =0 (mod n), ™ =1 (mod n),

( 1)mk )1 if m is even
-1 if m is odd
and
(_u)mk _Ju if m is even
C|-u ifmis odd,

we obtain the following lemma.

Lemma 2.1. Let n be a positive integer. The following statements are true.
1. The number 0 and 1 are fived points of G(mF,n) when m is even.
2. The number 0,1 and —1 are fived points of G(m*,n) when m is odd.

3. Assume that m is even. For any vertices u and v in G(m¥* n), (u,v) is
an edge in G(mF* n) if and only if (—u,v) is an edge in G(m*,n).

4. Assume that m is odd. For any vertices u and v in G(m* n), (u,v) is an
edge in G(m*,n) if and only if (—u, —v) is an edge in G(mF,n).
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5. Assume that m is odd. For any vertices u in G(m*,n), u is a fized point
of G(m*,n) if and only if —u is a fized point of G(mF*, n).

6. Assume that m and ¢ are odd. Then, u is a vertex in some c-cycle if and
only if —u is a vertex in c-cycle.

Before showing the relationship between the congruence classes modulo m
and the congruence classes modulo m!, we give the necessary definition as
follow. A digraph G(n) over the set of residue classes of all integers when
divided by n and (u,v) is a directed edge of G(n) from a vertex u to a vertex
v if u =v (mod n).

Lemma 2.2. Let m > 2 and k > 1 be integers. If u = v (mod m), then
um™ = ™" (mod m!) for all 1 <1 < k+ 1. That is, if (u,by) and (v,by)
are directed edges in G(m), then (umk,bg) and ('Umk,bz) are directed edges in
G(m*, mt).

Proof. Let m > 2,k > 1 and [ > 1 be positive integers such that [ < k + 1.
Let s > 0 and 0 <t <m — 1 be integers. Consider (ms + t)mk. We know that

mk

(ms+ )™ =" <”;fk)(ms)m’”ti.

=0

Since I < k + 1, we have

m*—1 k
Z (m >(ms)mk_iti =0 (mod m!).
izo N\
Then,
(ms +t)™" = (zi)tmk =t™" (mod ml).

Assume u = v (mod m). Then, u = ms; +t and v = msg +t where s1 # $o.
Thus,

um” = (msy + t)mk = (mod m!)
and
mP mF — ymk l
™ = (msz +t)"™ =t"™ (mod m').

Therefore, u™" = v™" (mod m!). That is, if (u,b;) and (v, b;) are directed
edges in G(m), then (u™",by) and (v™",by) are directed edges in G(m*, ml).
O

Next, we study the congruence 2 = y (mod n) when p is an odd prime
and give some results on fixed points of G(p*,2!), where [ > 4. The following
result is the initial step for our result.
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Lemma 2.3. [12] For a prime p of the type p = 3 (mod 4) andl > 4, 0,1,2!714+
1 and 2'=1 are fized points of G(p,2).

Theorem 2.4. For a prime p of the type p = 3 (mod 4) and | > 4, 0,1,2!"1+1
and 2!~ are fized points of G(p*,2!) for all integers k > 1.

Proof. Let | > 4 be an integer and p = 3 (mod 4). We prove the theorem by
mathematical induction on k.

Basis step  Let k = 1. By Lemma 2.3, we obtain that 0,1,2"1 4+ 1 and
2!=1 are fixed points of G(p, 2).

Induction step  Assume that for £ > 1, 0,1,2/"1 &1 and 2/~ are fixed
points of G(p*,2'). We claim that 0,1,2"~! + 1 and 2~! are fixed points of
G(p'k +1),2"). By Lemma 2.1 (2), we obtain that 0 and 1 are fixed points of
G(p'k +1),2"). By the induction hypothesis,

@1+ 1" = (271 + 1) (mod 2)

=2"1 11 (mod 2V,

= (271 = 1)? (mod 2"

=21 —1 (mod 2') and

(21" = (2171 (mod 21)
=271 (mod 2.

k41

(@t -1y

By mathematical induction on k, we obtain that 0,1,2'~' 41 and 2!~! are
fixed points of G(p*,2') when p =3 (mod 4) and [ > 4. O

For a prime p of the type p =5 (mod 8), the following result is the initial
case for our result.

Lemma 2.5. [12] For a prime p of the type p = 5 (mod 8) andl < 4, 0,1,2!714+
1,272 £1,271 and — (282 £ 1) 4+ 28 are fized points of G(p,2').

Theorem 2.6. For a prime p of the type p=5 (mod 8) and [ >4, 0,1,2!=1 +
1,272 41,21 and — (272 +£1) +2! are fized points of G(p*,2!) for all integers
k>1.

Proof. Let | > 4 be an integer and p = 5 (mod 8). We prove the theorem by
mathematical induction on k.

Basis step  Let [ = 1. By Lemma 2.5, we obtain that 0,1,2"1 +1,2/72 +
1,271 and —(2!72 £ 1) + 2! are fixed points of G(p, 2}).

Introduction step  Assume that for k > 1, 0,1,271 £1,272 £ 1,21 and
—(2!7241)+2! are fixed points of G(p*,2!). We claim that 0,1,2!=1 41,2724
1,271 and —(2/724+1) + 2 are fixed points of G(p*,2!). By Lemma 2.1 (2), we
obtain that 0 and 1 are fixed points of G(p**1,2!). By the induction hypothesis
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251+ 1P = (21 4+ 1)P (mod 20)
=21 4 1(mod 2'),

@21 — 1P = (271 — 1)P (mod 2)
=2"1 —1 (mod 2},

2724 1P = (272 4 1)P (mod 2V
=2"2 11 (mod 2V,

272 — 1P = (272 — 1)P (mod 2)

=2"2 _1 (mod 2},
(25_1)1’]c+1 = (2'"1? (mod2')

=271 (mod 2%,

(=224 142" = (<272 + 142)7 (mod 2)
=272 4+ 142" (mod 2') and

(—21-2 14 2l)p’c+1 = (=272 — 1+ 2Y? (mod2))

—2!72 _ 142! (mod 2").
By mathematical induction on k, we obtain that 0, 1, 2l-14 1, 2l=2 4 1, gl—1

and —(28=2 4+ 1) + 2* are fixed points of G(p*,2!) when p = 5 (mod 8) and
>4 O

3 When pis 3,50r7

We consider the structures of power digraphs for the special case when p is 3,5
or 7. We first introduce some important number theory background.

Definition 1. Let m be a positive integer. Define the Fuler’s totient function

¢(m) by
o(m) = ’{r €7:0<r<mand ged(r,m) = 1}|
Note that ¢(1) = 1 and ¢(m) < m—1 for all m > 2. Moreover, ¢(p) = p—1

if and only if p is prime. In addition, if p is a prime, then ¢(p*) = pF — pF—!
for every k € N

Definition 2. The Carmichael \-function is defined at 1,2,4,2% and p* as
follows: A1) = 1,A(2) = 1,A4) = 2,A\(2F) = %(Qk);k > 3 and \(p*) =
é(p*); k > 1, where p is an odd prime.
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Note that A(p1®pa®2ps®3 - - ;) = lem(A(p1®*), A(p2*2), A(p3®3), ..., AM(p1™)).
The followings are properties of ¢ and a due to Euler and Carmicheal.

Theorem 3.1. Let a > 1 and m > 1 be integers.

1. [13] (Euler) Assume that gcd(a, m) = 1. Then, we have a®™ =1 (mod m).
2. [14] (Carmichael) a*™ =1 (mod m) if and only if ged(a,m) = 1.

ZNext, we study the results on fixed points of such digraphs arising from
23 =y (mod n).

Theorem 3.2. u is a fized point of G(32,32) if and only if ged(u,32) = 1.

Proof. Consider A(32) = £¢(2°) = (25 — 2') = 8. By Theorem 3.1 (2), u® =
w32 =1 (mod 32) if and only if ged(u, 32) = 1. That is, u3° = u (mod 32) if
and only if ged(u, 32) = 1. O

Theorem 3.3. Ifn # 1 and n | 30, then u is a fived point of G(32,n) for all
we{0,1,2,...,n—1}.

Proof. Let u € {0,1,2,...,n — 1}. By Theorem 3.1 (1), we obtain that
u=1 (mod 2),u? =1 (mod 3) and u* = 1 (mod5).

Thus,
u® =1 (mod 2),u® =1 (mod 3) and v® =1 (mod 5).

Therefore,
u? = u (mod 2),u® = u (mod 3) and v = u (mod5).

Since 2,3 and 5 are mutually relatively prime, we have

u? =u (mod 6),u" = u (mod 10),u® = u (mod 15) and u® = u (mod 30).

Hence, u is a fixed point of G(32,n) for all u € {0,1,2,...,n — 1} when n # 1
and n | 30. O
Moreover, we construct a power digraph G(32,32). We obtain that

0% =0 (mod 32) 13° =1 (mod 32) 23 =8 (mod 32)
3% =0 (mod 32) 4%’ =1 (mod3?) 5% =8 (mod 32)
63 =0 (mod 32) 73 =1 (mod 32) 8 =8 (mod 32)

Then, we see that G(32,32) consists of 3 copies of isomorphic component
as
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Figure 2: The power digraph G(32,32)

3

o

Figure 2 motivates us to consider the structure of G(3%,3!) and see that
such digraph is involved with a specific digraph G shown in Figure 3.

®

¢ J
Y

3=1 _ 1 vertices

Figure 3: A specific digraph G

Theorem 3.4. Let | be an integer such that 1 <1 < k+ 1. Then, G(3F,3!)
consists of only 3 copies of digraph G shown in Figure 3.

Proof. By Lemma 2.1 (2), we see that 0,1 and —1 are fixed point of G(3%, 3!).
That is,

02" =0 (mod 3'),13" =1 (mod 3') and (—1)3" = —1 (mod 3').

Since 3s; = 0 (mod 3) for all integers s; > 1, by Lemma 2.2, we have
(351)3" = 03" =0 (mod 3!) for all integers 1 <1< k + 1.

Since 3s2 + 1 = 1 (mod 3) for all integers sy > 1, by Lemma 2.2, we have
(3s2 4+ 1)3" = 13" =1 (mod 3!) for all integers 1 <1< k + 1.

Since 3s3 — 1 = —1 (mod 3) for all integers s3 > 1, by Lemma 2.2, we have
(3s3 —1)3" = (=1)3" = —1 (mod 3!) for all integers 1 <1< k + 1.

Then, we obtain 3 copies of the digraph G in G(3*,3!) as shown in Figure
4.
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Figure 4: The power digraph G(3%,3!)

O
After that, we investigate results of the power digraph over the considered

congruence equation when p = 5 and k = 2 which are resemble to Theorem 3.2
and Theorem 3.3.

Theorem 3.5. u is a fized point of G(52,288) if and only if ged(u,288) = 1.

Proof. Consider A\(288) = A(2° - 3%) = lem(A(2°), \(3%)) = lem(8, 6) = 24. By
Theorem 3.1 (2), u** = v %) =1 (mod 288) if and only if ged(u, 288) = 1.
That is, u5° = u (mod 288) if and only if ged(u, 288) = 1. O

Theorem 3.6. Ifn # 1 and n | 2730, then u is a fived point of G(5%,n) for
alluwe{0,1,2,...,n—1}.

Proof. Let u € {0,1,2,...,n — 1}. By Theorem 3.1 (1), we obtain that

u=1 (mod 2),u? =1 (mod 3),u* =1 (mod 5),
u® =1 (mod 7) and u'? =1 (mod 13).

Thus,

u?* =1 (mod 2),u** =1 (mod 3),u** =1 (mod 5),
u?* =1 (mod 7) and u?** =1 (mod 13).

Therefore,

u?® = u (mod 2),u?> = u (mod 3),u* = u (mod 5),
u?% = u (mod 5) and u?® = u (mod 13).

Since 2,3,5,7 and 13 are mutually relatively prime, we have that

u?® = u (mod 6),u* =u (mod 10),u* = u (mod 14),u* = u (mod 15),
u?% = u (mod 21),u* = u (mod 30),u?® = u (mod 35),u?> = u (mod 42),

u?% = u (mod 910),u?> = u (mod 1365) and u?> = u (mod 2730).
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Hence, u is a fixed point of G(5%,n) for all u € {0,1,2,...,n — 1} when
n # 1 and n | 2730. O

Then, we prove results on fixed points of a digraph G(7%,n) which are
resemble to Theorem 3.2 and Theorem 3.3, respectively.

Theorem 3.7. u is a fized point of G(72,576) if and only if ged(u,576) = 1.

Proof. Consider A\(576) = A\(26-32) = lem(\(25), A(3?)) = lem(16,6) = 48. By
Theorem 3.1 (2), u*® = v*®7) =1 (mod 576) if and only if ged(u,288) = 1.
That is, u” = u (mod 576) if and only if ged(u, 576) = 1. O

Theorem 3.8. Ifn # 1 and n | 2730, then u is a fived point of G(7%,n) for
allue{0,1,2,...,n—1}.

Proof. The proof is similar to the proof of Theorem 3.6. |

4 Conclusion and Discussion

In the study of structures of power digraphs over the congruence equation
" = y (mod n), we provide fixed points of a digraph G(p*,2!) where p =
3 (mod 4);1 > 4 and p = 5 (mod 8);! > 4 which generalize useful results on
fixed points of a digraph G(p,2') under the same conditions.

According to some specific prime integers, we discuss the conditions on the
number x and n enabled us to study fixed points of digraphs G(3%,n), G(5%,n)
and G(7%,n). We obtain that u is a fixed point of G(p?,n) if and only if
ged(u, n) = 1 where ordered pair (p, n) is (3,32), (5,288) or (7,576). Moreover,
u is a fixed point of G(p?,n) for all u € {0,1,2,...,n — 1} when n # 1 and
n | m where ordered pair (p,m) is (3,30), (5,2730) or (7,2730). Besides fixed
points, we consider the structure of a digraph G(3%,3!) where 1 <1 <k + 1.

Furthermore, we show some general results based on such the congruence
equation am = y (mod n) when m is a positive integer. As for future, we
suggest proposing the results on the existence of cycles and few decompositions
of components and enumerating.
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