East-West J. of Mathematics: Vol. 24, No 2 (2023) pp. 78-88
https://doi.org/10.36853/ewjm0395

STRUCTURES OF POWER DIGRAPHS ASSOCIATED WITH $x^{p^{k}} \equiv y(\bmod n)$ WHERE p IS AN ODD PRIME

Ratinan Boonklurb ${ }^{1}$ and Pinkaew Siriwong ${ }^{2, *}$
${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand email: ratinan.b@chula.ac.th
${ }^{2}$ Dept. of Mathematics and Statistics, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung, 93210, Thailand
email: pinkaew.s@tsu.ac.th

Abstract

Let k and n be positive integers and p be an odd prime. A power digraph $G\left(p^{k}, n\right)$ for which the vertex set is $\{0,1,2, \ldots, n-1\}$ and (u,v) is a directed edge from a vertex u to a vertex v if $u^{p^{k}} \equiv v(\bmod n)$. We study the structures of this power digraphs. Moreover, we provide some interesting results when p is 3,5 or 7 .

1 Introduction

Graph structures and number theory are closely related. For a positive integer k, the study of digraph associated with the congruence $x^{k} \equiv y(\bmod n)$ becomes interesting in the recent years. We first introduce the power digraph with some important definitions.

Let n be a positive integer and \bar{r} denote the set of all integers which leave remainder r when divided by n. Then, the set $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{(n-1)}\}$ is the set of complete residue classes of all integers when divided by n. For simplicity, in this article we will use $\{0,1,2, \ldots, n-1\}$ instead. Let p be an odd prime. We define a digraph $G\left(p^{k}, n\right)$ over the residue classes of n where the vertex set of

[^0]$G\left(p^{k}, n\right)$ is the set of complete residue class of all integers when divided by n, $\{0,1,2, \ldots, n-1\}$ and (u, v) is a directed edge of $G\left(p^{k}, n\right)$ from a vertex u to a vertex v if $u^{p^{k}} \equiv v(\bmod n)$.
C is a cycle of length c if vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{c}$ satisfy the following condition
\[

$$
\begin{aligned}
& u_{1} p^{k} \equiv u_{2}(\bmod n), \\
& u_{2} p^{p^{k}} \equiv u_{3}(\bmod n), \\
& u_{3}{ }^{p^{k}} \equiv u_{4}(\bmod n), \\
& \vdots \\
& u_{c}{ }^{p^{k}} \equiv u_{1}(\bmod n)
\end{aligned}
$$
\]

The vertex u is called a fixed point of $G\left(p^{k}, n\right)$ if $u^{p^{k}} \equiv u(\bmod n)$. In term of graphs, we can say that $G\left(p^{k}, n\right)$ has a loop at a vertex u. We see that the fixed points are the solution of the congruence equation $x^{p^{k}} \equiv x(\bmod n)$. Moreover, we see that an 1-cycle is said to be a loop or a fixed point and a cycle of length c is called a c-cycle.

Example 1.1. Let $n=11, p=3$ and $k=2$. Since

$$
\begin{array}{ccc}
0^{3^{2}} \equiv 0(\bmod 11) & 1^{3^{2}} \equiv 1(\bmod 11) & 2^{3^{2}} \equiv 6(\bmod 11) \\
3^{3^{2}} \equiv 4(\bmod 11) & 4^{3^{2}} \equiv 3(\bmod 11) & 5^{3^{2}} \equiv 9(\bmod 11) \\
6^{3^{2}} \equiv 2(\bmod 11) & 7^{3^{2}} \equiv 8(\bmod 11) & 8^{3^{2}} \equiv 7(\bmod 11) \\
9^{3^{2}} \equiv 5(\bmod 11) & 10^{3^{2}} \equiv 10(\bmod 11),
\end{array}
$$

the power digraph $G\left(3^{2}, 11\right)$ can be drawn as in Figure 1.
We see that 0,1 and 10 are fixed points and the other vertices are in some 2-cycles.

Much research has been done on the topic of power digraphs associated with the congruence. Bryant [1] considered quadratic digraphs and isomorphic subgroups of a finite group. In 1992, some properties of power digraphs associated with the congruence and the existence of cycles are studied by Szalay [2]. Next, Rogers [3] and Somer et al. [4] provided some results on fixed points, cycles and components in the square mapping graphs. After that, the symmetric structures of power digraphs are investigated, see [5, 6]. Many researchers proved useful results of such digraphs based on the congruence $x^{k} \equiv y(\bmod n)$, see $[7,8]$ and proposed quadratic and cubic residue graphs, see $[9,10,11]$. Then, Mateen et al. [12] generalized the power digraph on the congruence $x^{p} \equiv y(\bmod n)$ when p is an odd prime.

Motivated by [12], in Section 2, we investigate the general structures of power digraph $G\left(p^{k}, n\right)$ when p is an odd prime. In Section 3, we study some

Figure 1: The power digraph $G\left(3^{2}, 11\right)$
results on fixed points of $G\left(p^{k}, n\right)$ where $p \in\{3,5,7\}$. In the last section, conclusions and discussions are provided.

2 When p is an odd prime

First, we consider the congruence $x^{m^{k}} \equiv y(\bmod n)$ when m is a positive integer and then provide the following simple and straightforward results. By the fact that $0^{m^{k}} \equiv 0(\bmod n), 1^{m^{k}} \equiv 1(\bmod n)$,

$$
(-1)^{m^{k}}= \begin{cases}1 & \text { if } m \text { is even } \\ -1 & \text { if } m \text { is odd }\end{cases}
$$

and

$$
(-u)^{m^{k}}= \begin{cases}u & \text { if } m \text { is even } \\ -u & \text { if } m \text { is odd }\end{cases}
$$

we obtain the following lemma.
Lemma 2.1. Let n be a positive integer. The following statements are true.

1. The number 0 and 1 are fixed points of $G\left(m^{k}, n\right)$ when m is even.
2. The number 0,1 and -1 are fixed points of $G\left(m^{k}, n\right)$ when m is odd.
3. Assume that m is even. For any vertices u and v in $G\left(m^{k}, n\right),(u, v)$ is an edge in $G\left(m^{k}, n\right)$ if and only if $(-u, v)$ is an edge in $G\left(m^{k}, n\right)$.
4. Assume that m is odd. For any vertices u and v in $G\left(m^{k}, n\right),(u, v)$ is an edge in $G\left(m^{k}, n\right)$ if and only if $(-u,-v)$ is an edge in $G\left(m^{k}, n\right)$.
5. Assume that m is odd. For any vertices u in $G\left(m^{k}, n\right)$, u is a fixed point of $G\left(m^{k}, n\right)$ if and only if $-u$ is a fixed point of $G\left(m^{k}, n\right)$.
6. Assume that m and c are odd. Then, u is a vertex in some c-cycle if and only if $-u$ is a vertex in c-cycle.

Before showing the relationship between the congruence classes modulo m and the congruence classes modulo m^{l}, we give the necessary definition as follow. A digraph $G(n)$ over the set of residue classes of all integers when divided by n and (u, v) is a directed edge of $G(n)$ from a vertex u to a vertex v if $u \equiv v(\bmod n)$.

Lemma 2.2. Let $m \geq 2$ and $k \geq 1$ be integers. If $u \equiv v(\bmod m)$, then $u^{m^{k}} \equiv v^{m^{k}}\left(\bmod m^{l}\right)$ for all $1 \leq l \leq k+1$. That is, if $\left(u, b_{1}\right)$ and $\left(v, b_{1}\right)$ are directed edges in $G(m)$, then $\left(u^{m^{k}}, b_{2}\right)$ and $\left(v^{m^{k}}, b_{2}\right)$ are directed edges in $G\left(m^{k}, m^{l}\right)$.

Proof. Let $m \geq 2, k \geq 1$ and $l \geq 1$ be positive integers such that $l \leq k+1$. Let $s \geq 0$ and $0 \leq t \leq m-1$ be integers. Consider $(m s+t)^{m^{k}}$. We know that

$$
(m s+t)^{m^{k}}=\sum_{i=0}^{m^{k}}\binom{m^{k}}{i}(m s)^{m^{k}-i} t^{i}
$$

Since $l \leq k+1$, we have

$$
\sum_{i=0}^{m^{k}-1}\binom{m^{k}}{i}(m s)^{m^{k}-i} t^{i} \equiv 0\left(\bmod m^{l}\right)
$$

Then,

$$
(m s+t)^{m^{k}} \equiv\binom{m^{k}}{m^{k}} t^{m^{k}} \equiv t^{m^{k}}\left(\bmod m^{l}\right)
$$

Assume $u \equiv v(\bmod m)$. Then, $u=m s_{1}+t$ and $v=m s_{2}+t$ where $s_{1} \neq s_{2}$. Thus,

$$
u^{m^{k}}=\left(m s_{1}+t\right)^{m^{k}} \equiv t^{m^{k}}\left(\bmod m^{l}\right)
$$

and

$$
v^{m^{k}}=\left(m s_{2}+t\right)^{m^{k}} \equiv t^{m^{k}}\left(\bmod m^{l}\right)
$$

Therefore, $u^{m^{k}} \equiv v^{m^{k}}\left(\bmod m^{l}\right)$. That is, if $\left(u, b_{1}\right)$ and $\left(v, b_{1}\right)$ are directed edges in $G(m)$, then $\left(u^{m^{k}}, b_{2}\right)$ and $\left(v^{m^{k}}, b_{2}\right)$ are directed edges in $G\left(m^{k}, m^{l}\right)$.

Next, we study the congruence $x^{p^{k}} \equiv y(\bmod n)$ when p is an odd prime and give some results on fixed points of $G\left(p^{k}, 2^{l}\right)$, where $l \geq 4$. The following result is the initial step for our result.

Lemma 2.3. [12] For a prime p of the type $p \equiv 3(\bmod 4)$ and $l \geq 4,0,1,2^{l-1} \pm$ 1 and 2^{l-1} are fixed points of $G\left(p, 2^{l}\right)$.

Theorem 2.4. For a prime p of the type $p \equiv 3(\bmod 4)$ and $l \geq 4,0,1,2^{l-1} \pm 1$ and 2^{l-1} are fixed points of $G\left(p^{k}, 2^{l}\right)$ for all integers $k \geq 1$.

Proof. Let $l \geq 4$ be an integer and $p \equiv 3(\bmod 4)$. We prove the theorem by mathematical induction on k.

Basis step Let $k=1$. By Lemma 2.3, we obtain that $0,1,2^{l-1} \pm 1$ and 2^{l-1} are fixed points of $G\left(p, 2^{l}\right)$.

Induction step Assume that for $k \geq 1,0,1,2^{l-1} \pm 1$ and 2^{l-1} are fixed points of $G\left(p^{k}, 2^{l}\right)$. We claim that $0,1,2^{l-1} \pm 1$ and 2^{l-1} are fixed points of $G\left(p(k+1), 2^{l}\right)$. By Lemma $2.1(2)$, we obtain that 0 and 1 are fixed points of $G\left(p(k+1), 2^{l}\right)$. By the induction hypothesis,

$$
\begin{aligned}
\left(2^{l-1}+1\right)^{p^{k+1}} & \equiv\left(2^{l-1}+1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}+1\left(\bmod 2^{l}\right) \\
\left(2^{l-1}-1\right)^{p^{k+1}} & \equiv\left(2^{l-1}-1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}-1\left(\bmod 2^{l}\right) \text { and } \\
\left(2^{l-1}\right)^{p^{k+1}} & \equiv\left(2^{l-1}\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}\left(\bmod 2^{l}\right)
\end{aligned}
$$

By mathematical induction on k, we obtain that $0,1,2^{l-1} \pm 1$ and 2^{l-1} are fixed points of $G\left(p^{k}, 2^{l}\right)$ when $p \equiv 3(\bmod 4)$ and $l \geq 4$.

For a prime p of the type $p \equiv 5(\bmod 8)$, the following result is the initial case for our result.
Lemma 2.5. [12] For a prime p of the type $p \equiv 5(\bmod 8)$ and $l \leq 4,0,1,2^{l-1} \pm$ $1,2^{l-2)} \pm 1,2^{l-1}$ and $-\left(2^{l-2} \pm 1\right)+2^{l}$ are fixed points of $G\left(p, 2^{l}\right)$.
Theorem 2.6. For a prime p of the type $p \equiv 5(\bmod 8)$ and $l \geq 4,0,1,2^{l-1} \pm$ $1,2^{l-2} \pm 1,2^{l-1}$ and $-\left(2^{l-2} \pm 1\right)+2^{l}$ are fixed points of $G\left(p^{k}, 2^{l}\right)$ for all integers $k \geq 1$.

Proof. Let $l \geq 4$ be an integer and $p \equiv 5(\bmod 8)$. We prove the theorem by mathematical induction on k.

Basis step Let $l=1$. By Lemma 2.5, we obtain that $0,1,2^{l-1} \pm 1,2^{l-2} \pm$ $1,2^{l-1}$ and $-\left(2^{l-2} \pm 1\right)+2^{l}$ are fixed points of $G\left(p, 2^{l}\right)$.

Introduction step Assume that for $k \geq 1,0,1,2^{l-1} \pm 1,2^{l-2} \pm 1,2^{l-1}$ and $-\left(2^{l-2} \pm 1\right)+2^{l}$ are fixed points of $G\left(p^{k}, 2^{l}\right)$. We claim that $0,1,2^{l-1} \pm 1,2^{l-2} \pm$ $1,2^{l-1}$ and $-\left(2^{l-2} \pm 1\right)+2^{l}$ are fixed points of $G\left(p^{k}, 2^{l}\right)$. By Lemma 2.1 (2), we obtain that 0 and 1 are fixed points of $G\left(p^{k+1}, 2^{l}\right)$. By the induction hypothesis

$$
\begin{aligned}
\left(2^{l-1}+1\right)^{p^{k+1}} & \equiv\left(2^{l-1}+1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}+1\left(\bmod 2^{l}\right), \\
\left(2^{l-1}-1\right)^{p^{k+1}} & \equiv\left(2^{l-1}-1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}-1\left(\bmod 2^{l}\right), \\
\left(2^{l-2}+1\right)^{p^{k+1}} & \equiv\left(2^{l-2}+1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-2}+1\left(\bmod 2^{l}\right), \\
\left(2^{l-2}-1\right)^{p^{k+1}} & \equiv\left(2^{l-2}-1\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-2}-1\left(\bmod 2^{l}\right), \\
\left(2^{l-1}\right)^{p^{k+1}} & \equiv\left(2^{l-1}\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv 2^{l-1}\left(\bmod 2^{l}\right), \\
\left(-2^{l-2}+1+2^{l}\right)^{p^{k+1}} & \equiv\left(-2^{l-2}+1+2^{l}\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv-2^{l-2}+1+2^{l}\left(\bmod 2^{l}\right) \operatorname{and} \\
\left(-2^{l-2}-1+2^{l}\right)^{p^{k+1}} & \equiv\left(-2^{l-2}-1+2^{l}\right)^{p}\left(\bmod 2^{l}\right) \\
& \equiv-2^{l-2}-1+2^{l}\left(\bmod 2^{l}\right) .
\end{aligned}
$$

By mathematical induction on k, we obtain that $0,1,2^{l-1} \pm 1,2^{l-2} \pm 1,2^{l-1}$ and $-\left(2^{k-2} \pm 1\right)+2^{k}$ are fixed points of $G\left(p^{k}, 2^{l}\right)$ when $p \equiv 5(\bmod 8)$ and $l \geq 4$.

3 When p is 3,5 or 7

We consider the structures of power digraphs for the special case when p is 3,5 or 7 . We first introduce some important number theory background.

Definition 1. Let m be a positive integer. Define the Euler's totient function $\phi(m) b y$

$$
\phi(m)=\mid\{r \in \mathbb{Z}: 0 \leq r \leq m \text { and } \operatorname{gcd}(r, m)=1\} \mid .
$$

Note that $\phi(1)=1$ and $\phi(m) \leq m-1$ for all $m \geq 2$. Moreover, $\phi(p)=p-1$ if and only if p is prime. In addition, if p is a prime, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ for every $k \in \mathbb{N}$

Definition 2. The Carmichael λ-function is defined at $1,2,4,2^{k}$ and p^{k} as follows: $\lambda(1)=1, \lambda(2)=1, \lambda(4)=2, \lambda\left(2^{k}\right)=\frac{1}{2}\left(2^{k}\right) ; k \geq 3$ and $\lambda\left(p^{k}\right)=$ $\phi\left(p^{k}\right) ; k \geq 1$, where p is an odd prime.

Note that $\lambda\left(p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} \cdots p_{l}{ }^{\alpha_{l}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}{ }^{\alpha_{1}}\right), \lambda\left(p_{2}{ }^{\alpha_{2}}\right), \lambda\left(p_{3}{ }^{\alpha_{3}}\right), \ldots, \lambda\left(p_{l}{ }^{\alpha_{l}}\right)\right)$. The followings are properties of ϕ and α due to Euler and Carmicheal.

Theorem 3.1. Let $a \geq 1$ and $m \geq 1$ be integers.

1. [13] (Euler) Assume that $\operatorname{gcd}(a, m)=1$. Then, we have $a^{\phi(m)} \equiv 1(\bmod m)$.
2. [14] (Carmichael) $a^{\lambda(m)} \equiv 1(\bmod m)$ if and only if $\operatorname{gcd}(a, m)=1$.

Next, we study the results on fixed points of such digraphs arising from $x^{3^{2}} \equiv y(\bmod n)$.
Theorem 3.2. u is a fixed point of $G\left(3^{2}, 32\right)$ if and only if $\operatorname{gcd}(u, 32)=1$.
Proof. Consider $\lambda(32)=\frac{1}{2} \phi\left(2^{5}\right)=\frac{1}{2}\left(2^{5}-2^{4}\right)=8$. By Theorem $3.1(2), u^{8}=$ $u^{\lambda(32)} \equiv 1(\bmod 32)$ if and only if $\operatorname{gcd}(u, 32)=1$. That is, $u^{3^{2}} \equiv u(\bmod 32)$ if and only if $\operatorname{gcd}(u, 32)=1$.

Theorem 3.3. If $n \neq 1$ and $n \mid 30$, then u is a fixed point of $G\left(3^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$.

Proof. Let $u \in\{0,1,2, \ldots, n-1\}$. By Theorem 3.1 (1), we obtain that

$$
u \equiv 1(\bmod 2), u^{2} \equiv 1(\bmod 3) \text { and } u^{4} \equiv 1(\bmod 5)
$$

Thus,

$$
u^{8} \equiv 1(\bmod 2), u^{8} \equiv 1(\bmod 3) \text { and } u^{8} \equiv 1(\bmod 5)
$$

Therefore,

$$
u^{9} \equiv u(\bmod 2), u^{9} \equiv u(\bmod 3) \text { and } u^{9} \equiv u(\bmod 5)
$$

Since 2,3 and 5 are mutually relatively prime, we have

$$
u^{9} \equiv u(\bmod 6), u^{9} \equiv u(\bmod 10), u^{9} \equiv u(\bmod 15) \text { and } u^{9} \equiv u(\bmod 30)
$$

Hence, u is a fixed point of $G\left(3^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$ when $n \neq 1$ and $n \mid 30$.

Moreover, we construct a power digraph $G\left(3^{2}, 3^{2}\right)$. We obtain that

$$
\begin{array}{ccc}
0^{3^{2}} \equiv 0\left(\bmod 3^{2}\right) & 1^{3^{2}} \equiv 1\left(\bmod 3^{2}\right) & 2^{3^{2}} \equiv 8\left(\bmod 3^{2}\right) \\
3^{3^{2}} \equiv 0\left(\bmod 3^{2}\right) & 4^{3^{2}} \equiv 1\left(\bmod 3^{2}\right) & 5^{3^{2}} \equiv 8\left(\bmod 3^{2}\right) \\
6^{3^{2}} \equiv 0\left(\bmod 3^{2}\right) & 7^{3^{2}} \equiv 1\left(\bmod 3^{2}\right) & 8^{3^{2}} \equiv 8\left(\bmod 3^{2}\right)
\end{array}
$$

Then, we see that $G\left(3^{2}, 3^{2}\right)$ consists of 3 copies of isomorphic component as

Figure 2: The power digraph $G\left(3^{2}, 3^{2}\right)$

Figure 2 motivates us to consider the structure of $G\left(3^{k}, 3^{l}\right)$ and see that such digraph is involved with a specific digraph \mathcal{G} shown in Figure 3.

Figure 3: A specific digraph \mathcal{G}

Theorem 3.4. Let l be an integer such that $1 \leq l \leq k+1$. Then, $G\left(3^{k}, 3^{l}\right)$ consists of only 3 copies of digraph \mathcal{G} shown in Figure 3.
Proof. By Lemma 2.1 (2), we see that 0,1 and -1 are fixed point of $G\left(3^{k}, 3^{l}\right)$. That is,

$$
0^{3^{k}} \equiv 0\left(\bmod 3^{l}\right), 1^{3^{k}} \equiv 1\left(\bmod 3^{l}\right) \text { and }(-1)^{3^{k}} \equiv-1\left(\bmod 3^{l}\right)
$$

Since $3 s_{1} \equiv 0(\bmod 3)$ for all integers $s_{1} \geq 1$, by Lemma 2.2, we have $\left(3 s_{1}\right)^{3^{k}} \equiv 0^{3^{k}} \equiv 0\left(\bmod 3^{l}\right)$ for all integers $1 \leq l \leq k+1$.

Since $3 s_{2}+1 \equiv 1(\bmod 3)$ for all integers $s_{2} \geq 1$, by Lemma 2.2, we have $\left(3 s_{2}+1\right)^{3^{k}} \equiv 1^{3^{k}} \equiv 1\left(\bmod 3^{l}\right)$ for all integers $1 \leq l \leq k+1$.

Since $3 s_{3}-1 \equiv-1(\bmod 3)$ for all integers $s_{3} \geq 1$, by Lemma 2.2 , we have $\left(3 s_{3}-1\right)^{3^{k}} \equiv(-1)^{3^{k}} \equiv-1\left(\bmod 3^{l}\right)$ for all integers $1 \leq l \leq k+1$.

Then, we obtain 3 copies of the digraph \mathcal{G} in $G\left(3^{k}, 3^{l}\right)$ as shown in Figure 4.

Figure 4: The power digraph $G\left(3^{k}, 3^{l}\right)$

After that, we investigate results of the power digraph over the considered congruence equation when $p=5$ and $k=2$ which are resemble to Theorem 3.2 and Theorem 3.3.

Theorem 3.5. u is a fixed point of $G\left(5^{2}, 288\right)$ if and only if $\operatorname{gcd}(u, 288)=1$.
Proof. Consider $\lambda(288)=\lambda\left(2^{5} \cdot 3^{2}\right)=\operatorname{lcm}\left(\lambda\left(2^{5}\right), \lambda\left(3^{2}\right)\right)=\operatorname{lcm}(8,6)=24$. By Theorem $3.1(2), u^{24}=u^{\lambda(288)} \equiv 1(\bmod 288)$ if and only if $\operatorname{gcd}(u, 288)=1$. That is, $u^{5^{2}} \equiv u(\bmod 288)$ if and only if $\operatorname{gcd}(u, 288)=1$.

Theorem 3.6. If $n \neq 1$ and $n \mid 2730$, then u is a fixed point of $G\left(5^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$.

Proof. Let $u \in\{0,1,2, \ldots, n-1\}$. By Theorem 3.1 (1), we obtain that

$$
\begin{gathered}
u \equiv 1(\bmod 2), u^{2} \equiv 1(\bmod 3), u^{4} \equiv 1(\bmod 5) \\
u^{6} \equiv 1(\bmod 7) \text { and } u^{12} \equiv 1(\bmod 13)
\end{gathered}
$$

Thus,

$$
\begin{gathered}
u^{24} \equiv 1(\bmod 2), u^{24} \equiv 1(\bmod 3), u^{24} \equiv 1(\bmod 5), \\
u^{24} \equiv 1(\bmod 7) \text { and } u^{24} \equiv 1(\bmod 13)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
u^{25} \equiv u(\bmod 2), u^{25} \equiv u(\bmod 3), u^{25} \equiv u(\bmod 5) \\
u^{25} \equiv u(\bmod 5) \text { and } u^{25} \equiv u(\bmod 13)
\end{gathered}
$$

Since $2,3,5,7$ and 13 are mutually relatively prime, we have that
$u^{25} \equiv u(\bmod 6), u^{25} \equiv u(\bmod 10), u^{25} \equiv u(\bmod 14), u^{25} \equiv u(\bmod 15)$, $u^{25} \equiv u(\bmod 21), u^{25} \equiv u(\bmod 30), u^{25} \equiv u(\bmod 35), u^{25} \equiv u(\bmod 42)$,

$$
u^{25} \equiv u(\bmod 910), u^{25} \equiv u(\bmod 1365) \text { and } u^{25} \equiv u(\bmod 2730)
$$

Hence, u is a fixed point of $G\left(5^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$ when $n \neq 1$ and $n \mid 2730$.

Then, we prove results on fixed points of a digraph $G\left(7^{2}, n\right)$ which are resemble to Theorem 3.2 and Theorem 3.3, respectively.

Theorem 3.7. u is a fixed point of $G\left(7^{2}, 576\right)$ if and only if $\operatorname{gcd}(u, 576)=1$.
Proof. Consider $\lambda(576)=\lambda\left(2^{6} \cdot 3^{2}\right)=\operatorname{lcm}\left(\lambda\left(2^{6}\right), \lambda\left(3^{2}\right)\right)=\operatorname{lcm}(16,6)=48$. By Theorem $3.1(2), u^{48}=u^{\lambda(576)} \equiv 1(\bmod 576)$ if and only if $\operatorname{gcd}(u, 288)=1$. That is, $u^{7^{2}} \equiv u(\bmod 576)$ if and only if $\operatorname{gcd}(u, 576)=1$.

Theorem 3.8. If $n \neq 1$ and $n \mid 2730$, then u is a fixed point of $G\left(7^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$.

Proof. The proof is similar to the proof of Theorem 3.6.

4 Conclusion and Discussion

In the study of structures of power digraphs over the congruence equation $x^{p^{k}} \equiv y(\bmod n)$, we provide fixed points of a digraph $G\left(p^{k}, 2^{l}\right)$ where $p \equiv$ $3(\bmod 4) ; l \geq 4$ and $p \equiv 5(\bmod 8) ; l \geq 4$ which generalize useful results on fixed points of a digraph $G\left(p, 2^{l}\right)$ under the same conditions.

According to some specific prime integers, we discuss the conditions on the number x and n enabled us to study fixed points of digraphs $G\left(3^{2}, n\right), G\left(5^{2}, n\right)$ and $G\left(7^{2}, n\right)$. We obtain that u is a fixed point of $G\left(p^{2}, n\right)$ if and only if $\operatorname{gcd}(u, n)=1$ where ordered pair (p, n) is $(3,32),(5,288)$ or $(7,576)$. Moreover, u is a fixed point of $G\left(p^{2}, n\right)$ for all $u \in\{0,1,2, \ldots, n-1\}$ when $n \neq 1$ and $n \mid m$ where ordered pair (p, m) is $(3,30),(5,2730)$ or $(7,2730)$. Besides fixed points, we consider the structure of a digraph $G\left(3^{k}, 3^{l}\right)$ where $1 \leq l \leq k+1$.

Furthermore, we show some general results based on such the congruence equation $x^{m^{k}} \equiv y(\bmod n)$ when m is a positive integer. As for future, we suggest proposing the results on the existence of cycles and few decompositions of components and enumerating.

References

[1] S. Bryant, Group, graphs, and Fermat's last theorem, Am. Math. Monthly 74, 152-155 (1967).
[2] L. Szalay, A discrete iteration in number theory, BDTF Tud. Közl. 8, 71-91 (1992).
[3] T.D. Rogers, The graph of the square mapping on the prime fields, Discrete Math. 148,317-324 (1996)
[4] L. Somer and M. Krizek, On a connection of number theory with graph theory, Czech. Math. J. 5, 465-485 (2004).
[5] Y. J. Wei and G. Tang, The iteration digraphs of finite commutative rings, Turk. J. Math. 39, 872-883 (2015)
[6] L. Somer and M. Krizek, On symmetric digraphs of the congruence $x^{k} \equiv y(\bmod m)$, Discrete Math. 309, 1999-2009 (2009).
[7] J. Skowronek-Kazió, Some digraphs arising from number theory and remarks on the zero-divisor graph of the ring Z_{n}, Inf. Process. Lett. 18, 165-169 (2008).
[8] M. H. Mateen and M. K. Mahmood, Power digraphs associated with the congruence $x^{n} \equiv y(\bmod m)$, Punjab Univ. J. Math. 51, 93-102 (2019).
[9] Y. J. Wei, J. Z. Nan, G. H. Tang and H. D. Su, The cubic mapping graphs of the residue classes of integers, Ars. Combin.97, 101-110 (2010).
[10] Y. Wei, G. Tang and H. Su, The square mapping graphs of finite commutative rings, Algebra Colloq. 19, 569-580 (2012).
[11] M. Rezaei, S. U. Rehman, Z. U. Khan, A. Q. Baig and M. R. Farahani, Quadratic residues graph, Int. J. Pure Appl. Math. 113, 465-470 (2017).
[12] M. H. Mateen, M. K. Mathmmod, D. Alghazzawi and J-B. Liu, Structures of power digraphs over the congruence equation $x^{p} \equiv y(\bmod m)$ and enumerations, AIMS Math. 6(5), 4581-4596 (2021).
[13] Y. Meemark, Theory of Numbers, Retrieved from http://pioneer.netserv.chula.ac.th/ myotsana/MATH331NT.pdf.
[14] R. D. Carmichael, Note on a new number theory function, Bull. Am. Math. Soc. 16, 232-238 (1910).

[^0]: *Corresponding Author
 Key words: power digraph, congruence relation, fixed point
 (2010) Mathematics Subject Classification: 05C20; 11A07

