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Abstract

Let k and n be positive integers and p be an odd prime. A power
digraph G(pk, n) for which the vertex set is {0, 1, 2, . . . , n− 1} and (u, v)

is a directed edge from a vertex u to a vertex v if upk ≡ v (mod n). We
study the structures of this power digraphs. Moreover, we provide some
interesting results when p is 3, 5 or 7.

1 Introduction

Graph structures and number theory are closely related. For a positive integer
k, the study of digraph associated with the congruence xk ≡ y (mod n) becomes
interesting in the recent years. We first introduce the power digraph with some
important definitions.

Let n be a positive integer and r denote the set of all integers which leave
remainder r when divided by n. Then, the set {0, 1, 2, . . . , (n− 1)} is the set
of complete residue classes of all integers when divided by n. For simplicity, in
this article we will use {0, 1, 2, . . . , n− 1} instead. Let p be an odd prime. We
define a digraph G(pk, n) over the residue classes of n where the vertex set of
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G(pk, n) is the set of complete residue class of all integers when divided by n,
{0, 1, 2, . . . , n− 1} and (u, v) is a directed edge of G(pk, n) from a vertex u to

a vertex v if up
k ≡ v (mod n).

C is a cycle of length c if vertices u1, u2, u3, . . . , uc satisfy the following
condition

u1
pk ≡ u2 (mod n),

u2
pk ≡ u3 (mod n),

u3
pk ≡ u4 (mod n),

...

uc
pk ≡ u1 (mod n)

The vertex u is called a fixed point of G(pk, n) if up
k ≡ u (mod n). In

term of graphs, we can say that G(pk, n) has a loop at a vertex u. We see that

the fixed points are the solution of the congruence equation xp
k ≡ x (mod n).

Moreover, we see that an 1-cycle is said to be a loop or a fixed point and a
cycle of length c is called a c-cycle.

Example 1.1. Let n = 11, p = 3 and k = 2. Since

03
2 ≡ 0 (mod 11) 13

2 ≡ 1 (mod 11) 23
2 ≡ 6 (mod 11)

33
2 ≡ 4 (mod 11) 43

2 ≡ 3 (mod 11) 53
2 ≡ 9 (mod 11)

63
2 ≡ 2 (mod 11) 73

2 ≡ 8 (mod 11) 83
2 ≡ 7 (mod 11)

93
2 ≡ 5 (mod 11) 103

2 ≡ 10 (mod 11),

the power digraph G(32, 11) can be drawn as in Figure 1.
We see that 0, 1 and 10 are fixed points and the other vertices are in some

2-cycles.

Much research has been done on the topic of power digraphs associated
with the congruence. Bryant [1] considered quadratic digraphs and isomorphic
subgroups of a finite group. In 1992, some properties of power digraphs associ-
ated with the congruence and the existence of cycles are studied by Szalay [2].
Next, Rogers [3] and Somer et al. [4] provided some results on fixed points,
cycles and components in the square mapping graphs. After that, the symmet-
ric structures of power digraphs are investigated, see [5, 6]. Many researchers
proved useful results of such digraphs based on the congruence xk ≡ y (mod n),
see [7, 8] and proposed quadratic and cubic residue graphs, see [9, 10, 11].
Then, Mateen et al. [12] generalized the power digraph on the congruence
xp ≡ y (mod n) when p is an odd prime.

Motivated by [12], in Section 2, we investigate the general structures of
power digraph G(pk, n) when p is an odd prime. In Section 3, we study some
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Figure 1: The power digraph G(32, 11)

results on fixed points of G(pk, n) where p ∈ {3, 5, 7}. In the last section,
conclusions and discussions are provided.

2 When p is an odd prime

First, we consider the congruence xm
k ≡ y (mod n) when m is a positive integer

and then provide the following simple and straightforward results. By the fact

that 0m
k ≡ 0 (mod n), 1m

k ≡ 1 (mod n),

(−1)m
k

=

{
1 if m is even

−1 if m is odd

and

(−u)m
k

=

{
u if m is even

−u if m is odd,

we obtain the following lemma.

Lemma 2.1. Let n be a positive integer. The following statements are true.

1. The number 0 and 1 are fixed points of G(mk, n) when m is even.

2. The number 0, 1 and −1 are fixed points of G(mk, n) when m is odd.

3. Assume that m is even. For any vertices u and v in G(mk, n), (u, v) is
an edge in G(mk, n) if and only if (−u, v) is an edge in G(mk, n).

4. Assume that m is odd. For any vertices u and v in G(mk, n), (u, v) is an
edge in G(mk, n) if and only if (−u,−v) is an edge in G(mk, n).
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5. Assume that m is odd. For any vertices u in G(mk, n), u is a fixed point
of G(mk, n) if and only if −u is a fixed point of G(mk, n).

6. Assume that m and c are odd. Then, u is a vertex in some c-cycle if and
only if −u is a vertex in c-cycle.

Before showing the relationship between the congruence classes modulo m
and the congruence classes modulo ml, we give the necessary definition as
follow. A digraph G(n) over the set of residue classes of all integers when
divided by n and (u, v) is a directed edge of G(n) from a vertex u to a vertex
v if u ≡ v (mod n).

Lemma 2.2. Let m ≥ 2 and k ≥ 1 be integers. If u ≡ v (mod m), then

um
k ≡ vm

k

(mod ml) for all 1 ≤ l ≤ k + 1. That is, if (u, b1) and (v, b1)

are directed edges in G(m), then (um
k

, b2) and (vm
k

, b2) are directed edges in
G(mk,ml).

Proof. Let m ≥ 2, k ≥ 1 and l ≥ 1 be positive integers such that l ≤ k + 1.

Let s ≥ 0 and 0 ≤ t ≤ m− 1 be integers. Consider (ms+ t)m
k

. We know that

(ms+ t)m
k

=

mk∑
i=0

(
mk

i

)
(ms)m

k−iti.

Since l ≤ k + 1, we have

mk−1∑
i=0

(
mk

i

)
(ms)m

k−iti ≡ 0 (mod ml).

Then,

(ms+ t)m
k ≡

(
mk

mk

)
tm

k ≡ tmk

(mod ml).

Assume u ≡ v (mod m). Then, u = ms1 + t and v = ms2 + t where s1 6= s2.
Thus,

um
k

= (ms1 + t)m
k ≡ tmk

(mod ml)

and

vm
k

= (ms2 + t)m
k ≡ tmk

(mod ml).

Therefore, um
k ≡ vmk

(mod ml). That is, if (u, b1) and (v, b1) are directed

edges in G(m), then (um
k

, b2) and (vm
k

, b2) are directed edges in G(mk,ml).
2

Next, we study the congruence xp
k ≡ y (mod n) when p is an odd prime

and give some results on fixed points of G(pk, 2l), where l ≥ 4. The following
result is the initial step for our result.
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Lemma 2.3. [12] For a prime p of the type p ≡ 3 (mod 4) and l ≥ 4, 0, 1, 2l−1±
1 and 2l−1 are fixed points of G(p, 2l).

Theorem 2.4. For a prime p of the type p ≡ 3 (mod 4) and l ≥ 4, 0, 1, 2l−1±1
and 2l−1 are fixed points of G(pk, 2l) for all integers k ≥ 1.

Proof. Let l ≥ 4 be an integer and p ≡ 3 (mod 4). We prove the theorem by
mathematical induction on k.

Basis step Let k = 1. By Lemma 2.3, we obtain that 0, 1, 2l−1 ± 1 and
2l−1 are fixed points of G(p, 2l).

Induction step Assume that for k ≥ 1, 0, 1, 2l−1 ± 1 and 2l−1 are fixed
points of G(pk, 2l). We claim that 0, 1, 2l−1 ± 1 and 2l−1 are fixed points of
G(p(k + 1), 2l). By Lemma 2.1 (2), we obtain that 0 and 1 are fixed points of
G(p(k + 1), 2l). By the induction hypothesis,

(2l−1 + 1)p
k+1

≡ (2l−1 + 1)p (mod 2l)

≡ 2l−1 + 1 (mod 2l),

(2l−1 − 1)p
k+1

≡ (2l−1 − 1)p (mod 2l)

≡ 2l−1 − 1 (mod 2l) and

(2l−1)p
k+1

≡ (2l−1)p (mod 2l)

≡ 2l−1 (mod 2l).

By mathematical induction on k, we obtain that 0, 1, 2l−1 ± 1 and 2l−1 are
fixed points of G(pk, 2l) when p ≡ 3 (mod 4) and l ≥ 4. 2

For a prime p of the type p ≡ 5 (mod 8), the following result is the initial
case for our result.

Lemma 2.5. [12] For a prime p of the type p ≡ 5 (mod 8) and l ≤ 4, 0, 1, 2l−1±
1, 2l−2) ± 1, 2l−1 and −(2l−2 ± 1) + 2l are fixed points of G(p, 2l).

Theorem 2.6. For a prime p of the type p ≡ 5 (mod 8) and l ≥ 4, 0, 1, 2l−1±
1, 2l−2±1, 2l−1 and −(2l−2±1)+2l are fixed points of G(pk, 2l) for all integers
k ≥ 1.

Proof. Let l ≥ 4 be an integer and p ≡ 5 (mod 8). We prove the theorem by
mathematical induction on k.

Basis step Let l = 1. By Lemma 2.5, we obtain that 0, 1, 2l−1 ± 1, 2l−2 ±
1, 2l−1 and −(2l−2 ± 1) + 2l are fixed points of G(p, 2l).

Introduction step Assume that for k ≥ 1, 0, 1, 2l−1 ± 1, 2l−2 ± 1, 2l−1 and
−(2l−2±1)+2l are fixed points of G(pk, 2l). We claim that 0, 1, 2l−1±1, 2l−2±
1, 2l−1 and −(2l−2±1)+2l are fixed points of G(pk, 2l). By Lemma 2.1 (2), we
obtain that 0 and 1 are fixed points of G(pk+1, 2l). By the induction hypothesis
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(2l−1 + 1)p
k+1

≡ (2l−1 + 1)p (mod 2l)

≡ 2l−1 + 1(mod 2l),

(2l−1 − 1)p
k+1

≡ (2l−1 − 1)p (mod 2l)

≡ 2l−1 − 1 (mod 2l),

(2l−2 + 1)p
k+1

≡ (2l−2 + 1)p (mod 2l)

≡ 2l−2 + 1 (mod 2l),

(2l−2 − 1)p
k+1

≡ (2l−2 − 1)p (mod 2l)

≡ 2l−2 − 1 (mod 2l),

(2l−1)p
k+1

≡ (2l−1)p (mod2l)

≡ 2l−1 (mod 2l),

(−2l−2 + 1 + 2l)p
k+1

≡ (−2l−2 + 1 + 2l)p (mod 2l)

≡ −2l−2 + 1 + 2l (mod 2l) and

(−2l−2 − 1 + 2l)p
k+1

≡ (−2l−2 − 1 + 2l)p (mod2l)

≡ −2l−2 − 1 + 2l (mod 2l).

By mathematical induction on k, we obtain that 0, 1, 2l−1±1, 2l−2±1, 2l−1

and −(2k−2 ± 1) + 2k are fixed points of G(pk, 2l) when p ≡ 5 (mod 8) and
l ≥ 4. 2

3 When p is 3, 5 or 7

We consider the structures of power digraphs for the special case when p is 3, 5
or 7. We first introduce some important number theory background.

Definition 1. Let m be a positive integer. Define the Euler’s totient function
φ(m) by

φ(m) =
∣∣{r ∈ Z : 0 ≤ r ≤ m and gcd(r,m) = 1}

∣∣.
Note that φ(1) = 1 and φ(m) ≤ m−1 for all m ≥ 2. Moreover, φ(p) = p−1

if and only if p is prime. In addition, if p is a prime, then φ(pk) = pk − pk−1

for every k ∈ N

Definition 2. The Carmichael λ-function is defined at 1, 2, 4, 2k and pk as
follows: λ(1) = 1, λ(2) = 1, λ(4) = 2, λ(2k) = 1

2 (2k); k ≥ 3 and λ(pk) =
φ(pk); k ≥ 1, where p is an odd prime.
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Note that λ(p1
α1p2

α2p3
α3 · · · plαl) = lcm(λ(p1

α1), λ(p2
α2), λ(p3

α3), . . . , λ(pl
αl)).

The followings are properties of φ and α due to Euler and Carmicheal.

Theorem 3.1. Let a ≥ 1 and m ≥ 1 be integers.

1. [13] (Euler) Assume that gcd(a,m) = 1. Then, we have aφ(m) ≡ 1 (mod m).

2. [14] (Carmichael) aλ(m) ≡ 1 (mod m) if and only if gcd(a,m) = 1.

Next, we study the results on fixed points of such digraphs arising from
x3

2 ≡ y (mod n).

Theorem 3.2. u is a fixed point of G(32, 32) if and only if gcd(u, 32) = 1.

Proof. Consider λ(32) = 1
2φ(25) = 1

2 (25 − 24) = 8. By Theorem 3.1 (2), u8 =

uλ(32) ≡ 1 (mod 32) if and only if gcd(u, 32) = 1. That is, u3
2 ≡ u (mod 32) if

and only if gcd(u, 32) = 1. 2

Theorem 3.3. If n 6= 1 and n | 30, then u is a fixed point of G(32, n) for all
u ∈ {0, 1, 2, . . . , n− 1}.

Proof. Let u ∈ {0, 1, 2, . . . , n− 1}. By Theorem 3.1 (1), we obtain that

u ≡ 1 (mod 2), u2 ≡ 1 (mod 3) and u4 ≡ 1 (mod5).

Thus,

u8 ≡ 1 (mod 2), u8 ≡ 1 (mod 3) and u8 ≡ 1 (mod 5).

Therefore,

u9 ≡ u (mod 2), u9 ≡ u (mod 3) and u9 ≡ u (mod5).

Since 2, 3 and 5 are mutually relatively prime, we have

u9 ≡ u (mod 6), u9 ≡ u (mod 10), u9 ≡ u (mod 15) and u9 ≡ u (mod 30).

Hence, u is a fixed point of G(32, n) for all u ∈ {0, 1, 2, . . . , n− 1} when n 6= 1
and n | 30. 2

Moreover, we construct a power digraph G(32, 32). We obtain that

03
2 ≡ 0 (mod 32) 13

2 ≡ 1 (mod 32) 23
2 ≡ 8 (mod 32)

33
2 ≡ 0 (mod 32) 43

2 ≡ 1 (mod32) 53
2 ≡ 8 (mod 32)

63
2 ≡ 0 (mod 32) 73

2 ≡ 1 (mod 32) 83
2 ≡ 8 (mod 32).

Then, we see that G(32, 32) consists of 3 copies of isomorphic component
as
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Figure 2: The power digraph G(32, 32)

Figure 2 motivates us to consider the structure of G(3k, 3l) and see that
such digraph is involved with a specific digraph G shown in Figure 3.

Figure 3: A specific digraph G

Theorem 3.4. Let l be an integer such that 1 ≤ l ≤ k + 1. Then, G(3k, 3l)
consists of only 3 copies of digraph G shown in Figure 3.

Proof. By Lemma 2.1 (2), we see that 0, 1 and −1 are fixed point of G(3k, 3l).
That is,

03
k ≡ 0 (mod 3l), 13

k ≡ 1 (mod 3l) and (−1)3
k ≡ −1 (mod 3l).

Since 3s1 ≡ 0 (mod 3) for all integers s1 ≥ 1, by Lemma 2.2, we have

(3s1)3
k ≡ 03

k ≡ 0 (mod 3l) for all integers 1 ≤ l ≤ k + 1.
Since 3s2 + 1 ≡ 1 (mod 3) for all integers s2 ≥ 1, by Lemma 2.2, we have

(3s2 + 1)3
k ≡ 13

k ≡ 1 (mod 3l) for all integers 1 ≤ l ≤ k + 1.
Since 3s3 − 1 ≡ −1 (mod 3) for all integers s3 ≥ 1, by Lemma 2.2, we have

(3s3 − 1)3
k ≡ (−1)3

k ≡ −1 (mod 3l) for all integers 1 ≤ l ≤ k + 1.
Then, we obtain 3 copies of the digraph G in G(3k, 3l) as shown in Figure

4.
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Figure 4: The power digraph G(3k, 3l)

2

After that, we investigate results of the power digraph over the considered
congruence equation when p = 5 and k = 2 which are resemble to Theorem 3.2
and Theorem 3.3.

Theorem 3.5. u is a fixed point of G(52, 288) if and only if gcd(u, 288) = 1.

Proof. Consider λ(288) = λ(25 · 32) = lcm(λ(25), λ(32)) = lcm(8, 6) = 24. By
Theorem 3.1 (2), u24 = uλ(288) ≡ 1 (mod 288) if and only if gcd(u, 288) = 1.

That is, u5
2 ≡ u (mod 288) if and only if gcd(u, 288) = 1. 2

Theorem 3.6. If n 6= 1 and n | 2730, then u is a fixed point of G(52, n) for
all u ∈ {0, 1, 2, . . . , n− 1}.

Proof. Let u ∈ {0, 1, 2, . . . , n− 1}. By Theorem 3.1 (1), we obtain that

u ≡ 1 (mod 2), u2 ≡ 1 (mod 3), u4 ≡ 1 (mod 5),
u6 ≡ 1 (mod 7) and u12 ≡ 1 (mod 13).

Thus,

u24 ≡ 1 (mod 2), u24 ≡ 1 (mod 3), u24 ≡ 1 (mod 5),
u24 ≡ 1 (mod 7) and u24 ≡ 1 (mod 13).

Therefore,

u25 ≡ u (mod 2), u25 ≡ u (mod 3), u25 ≡ u (mod 5),
u25 ≡ u (mod 5) and u25 ≡ u (mod 13).

Since 2, 3, 5, 7 and 13 are mutually relatively prime, we have that

u25 ≡ u (mod 6), u25 ≡ u (mod 10), u25 ≡ u (mod 14), u25 ≡ u (mod 15),
u25 ≡ u (mod 21), u25 ≡ u (mod 30), u25 ≡ u (mod 35), u25 ≡ u (mod 42),

...
u25 ≡ u (mod 910), u25 ≡ u (mod 1365) and u25 ≡ u (mod 2730).
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Hence, u is a fixed point of G(52, n) for all u ∈ {0, 1, 2, . . . , n − 1} when
n 6= 1 and n | 2730. 2

Then, we prove results on fixed points of a digraph G(72, n) which are
resemble to Theorem 3.2 and Theorem 3.3, respectively.

Theorem 3.7. u is a fixed point of G(72, 576) if and only if gcd(u, 576) = 1.

Proof. Consider λ(576) = λ(26 ·32) = lcm(λ(26), λ(32)) = lcm(16, 6) = 48. By
Theorem 3.1 (2), u48 = uλ(576) ≡ 1 (mod 576) if and only if gcd(u, 288) = 1.

That is, u7
2 ≡ u (mod 576) if and only if gcd(u, 576) = 1. 2

Theorem 3.8. If n 6= 1 and n | 2730, then u is a fixed point of G(72, n) for
all u ∈ {0, 1, 2, . . . , n− 1}.

Proof. The proof is similar to the proof of Theorem 3.6. 2

4 Conclusion and Discussion

In the study of structures of power digraphs over the congruence equation

xp
k ≡ y (mod n), we provide fixed points of a digraph G(pk, 2l) where p ≡

3 (mod 4); l ≥ 4 and p ≡ 5 (mod 8); l ≥ 4 which generalize useful results on
fixed points of a digraph G(p, 2l) under the same conditions.

According to some specific prime integers, we discuss the conditions on the
number x and n enabled us to study fixed points of digraphs G(32, n), G(52, n)
and G(72, n). We obtain that u is a fixed point of G(p2, n) if and only if
gcd(u, n) = 1 where ordered pair (p, n) is (3, 32), (5, 288) or (7, 576). Moreover,
u is a fixed point of G(p2, n) for all u ∈ {0, 1, 2, . . . , n − 1} when n 6= 1 and
n | m where ordered pair (p,m) is (3, 30), (5, 2730) or (7, 2730). Besides fixed
points, we consider the structure of a digraph G(3k, 3l) where 1 ≤ l ≤ k + 1.

Furthermore, we show some general results based on such the congruence

equation xm
k ≡ y (mod n) when m is a positive integer. As for future, we

suggest proposing the results on the existence of cycles and few decompositions
of components and enumerating.
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